Podcast
Questions and Answers
¿Cuál de las siguientes opciones representa un decimal periódico?
¿Cuál de las siguientes opciones representa un decimal periódico?
- 3.14159
- 2.71828
- 0.12345
- 1.3333... (correct)
Un decimal finito siempre se puede expresar como una fracción con un denominador que es una potencia de 10.
Un decimal finito siempre se puede expresar como una fracción con un denominador que es una potencia de 10.
True (A)
Describe la diferencia clave entre un decimal periódico puro y un decimal periódico mixto (semiperiódico).
Describe la diferencia clave entre un decimal periódico puro y un decimal periódico mixto (semiperiódico).
Un decimal periódico puro tiene el periodo (la parte que se repite) inmediatamente después de la coma decimal, mientras que un decimal periódico mixto tiene una parte no periódica entre la coma decimal y el periodo.
El decimal 0.125 es un ejemplo de un decimal ________.
El decimal 0.125 es un ejemplo de un decimal ________.
Empareja cada tipo de decimal con su descripción correcta:
Empareja cada tipo de decimal con su descripción correcta:
¿Cuál de los siguientes números es un decimal semiperiódico?
¿Cuál de los siguientes números es un decimal semiperiódico?
Todos los números racionales pueden ser expresados como decimales finitos.
Todos los números racionales pueden ser expresados como decimales finitos.
Describe el proceso para convertir un decimal periódico puro a una fracción.
Describe el proceso para convertir un decimal periódico puro a una fracción.
El número 3.14 es un ejemplo de un decimal ________.
El número 3.14 es un ejemplo de un decimal ________.
Relaciona cada número con su tipo de decimal:
Relaciona cada número con su tipo de decimal:
¿Cuál de las siguientes afirmaciones es incorrecta?
¿Cuál de las siguientes afirmaciones es incorrecta?
La fracción 2/7 resulta en un decimal finito.
La fracción 2/7 resulta en un decimal finito.
Explica por qué un decimal periódico puede ser representado como una fracción.
Explica por qué un decimal periódico puede ser representado como una fracción.
En un decimal semiperiódico, la parte entre la coma y el periodo se llama ________.
En un decimal semiperiódico, la parte entre la coma y el periodo se llama ________.
Relaciona el siguiente decimal con la clasificación correcta
Relaciona el siguiente decimal con la clasificación correcta
Dado el número 3.272727..., ¿cuál de las siguientes opciones lo describe correctamente?
Dado el número 3.272727..., ¿cuál de las siguientes opciones lo describe correctamente?
Es posible convertir cualquier decimal infinito no periódico a una fracción.
Es posible convertir cualquier decimal infinito no periódico a una fracción.
Explica cómo determinar si una fracción resultará en un decimal finito o periódico sin realizar la división.
Explica cómo determinar si una fracción resultará en un decimal finito o periódico sin realizar la división.
Un decimal periódico ________ tiene dígitos no repetidos entre la coma decimal y el período.
Un decimal periódico ________ tiene dígitos no repetidos entre la coma decimal y el período.
Relaciona los decimales con su tipo correcto:
Relaciona los decimales con su tipo correcto:
Flashcards
Decimal Finito
Decimal Finito
Decimal que tiene un número finito de cifras después de la coma decimal.
Decimal Periódico
Decimal Periódico
Decimal que tiene una o más cifras que se repiten infinitamente después de la coma decimal.
Decimal Semiperiodico
Decimal Semiperiodico
Decimal con cifras no periódicas seguidas de cifras periódicas.
Study Notes
- Números decimales son números no enteros, que tienen una parte entera y una parte decimal separadas por una coma.
Decimales Finitos
- También denominados decimales exactos.
- Tienen un número limitado de cifras decimales.
- Se pueden expresar como una fracción cuyo denominador es una potencia de 10.
- Ejemplo: 3.125 (tiene tres cifras decimales) = 3125/1000
Decimales Infinitos Periódicos
- Tienen un número infinito de cifras decimales, pero estas siguen un patrón que se repite indefinidamente.
- El patrón repetido se llama período.
- Se pueden expresar como una fracción.
- Ejemplo: 2.3333... (el 3 se repite)
- Notación: El período se indica con una barra horizontal encima de las cifras que se repiten; en el ejemplo anterior, se escribiría 2.3.
Decimales Periódicos Puros
- El período comienza inmediatamente después de la coma decimal.
- Ejemplo: 5.727272... (el 72 se repite) = 5.72
Decimales Periódicos Mixtos (Semiperiódicos)
- Tienen una parte no periódica entre la coma decimal y el período.
- La parte no periódica se llama anteperíodo.
- Ejemplo: 4.156666... (el 6 se repite, el 15 es el anteperíodo) = 4.156
Identificación de Tipos de Decimales
- Decimal Finito: Si el número decimal termina, es finito.
- Decimal Periódico: Si ves un patrón que se repite indefinidamente, es periódico.
- Decimal Periódico Puro: Si el patrón se repite desde inmediatamente después de la coma, es periódico puro.
- Decimal Periódico Mixto: Si hay cifras entre la coma y el patrón repetido, es periódico mixto.
Conversión a Fracción
- Decimales Finitos: Escribir el número completo (sin la coma) como numerador y una potencia de 10 (con tantos ceros como cifras decimales) como denominador. Luego, simplificar la fracción resultante.
- Decimales Periódicos Puros: Escribir el número completo (sin la coma) menos la parte entera como numerador, y tantos nueves como cifras tenga el período como denominador.
- Decimales Periódicos Mixtos: Escribir el número completo (sin la coma) menos la parte no periódica (antes del período) como numerador. En el denominador, escribir tantos nueves como cifras tenga el período, seguidos de tantos ceros como cifras tenga el anteperíodo.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.