نموذج البرمجة الخطية

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

Flashcards

بحوث العمليات

أساليب كمية تساعد في صنع القرار تحت عدم التأكد.

البرمجة الخطية

أسلوب رياضي لتوزيع الموارد المحدودة لتحقيق أفضل نتائج.

دالة الهدف

هدف واحد محدد بوضوح يقاس كمياً لتحقيقه.

صياغة القيود

شروط يجب على المتغيرات تحقيقها بغض النظر عن العوائد.

Signup and view all the flashcards

خطوات بناء النماذج

تحديد المشكلة، المعلومات، البدائل، النموذج، التطبيق والتقييم.

Signup and view all the flashcards

Study Notes

Introduction to Linear Programming Models

  • Linear programming (LP) is a quantitative method for optimizing a single objective function while considering various constraints.
  • LP is used in various sectors, including production, distribution, finance, etc.
  • It aims to maximize profits or minimize costs.

Components of a Linear Programming Model

  • Objective Function: The mathematical expression representing the quantity to be maximized or minimized.
  • Constraints: Restrictions on the use of resources or limitations placed on the decision variables. These limitations are expressed as linear inequalities.
  • Decision Variables: The unknowns that need to be determined to optimize the objective function.
  • Non-negativity constraints: These constraints stipulate that decision variables cannot be negative, which is a practical requirement for most real-world applications.

Steps for Formulating a Linear Programming Model

  • Define the Decision Variables: Clearly identify the variables to be determined.
  • State the Objective Function: Formulate the mathematical expression to either maximize or minimize the desired outcome.
  • Formulate the Constraints: Express the limitations and restrictions on the resources or conditions as linear inequalities.
  • Specify Non-negativity Constraints: Ensure that all decision variables are non-negative.

Example of a linear programming problem

  • A company produces two products (A and B). Each unit of product A requires 30 cubic feet of wood and 5 labor hours, and yields a profit of 50$. Each unit of product B requires 20 cubic feet of wood and 10 labor hours, and yields a profit of 75$.
  • Resources: 400 cubic feet of wood and 120 labor hours are available.
  • Variables:
    • x1: number of units of product A
    • x2: number of units of product B
  • Objective function: maximize profit (z) = 50x1 + 75x2
  • Constraints:
    • 30x1 + 20x2 ≤ 400 (wood constraint)
    • 5x1 + 10x2 ≤ 120 (labor constraint)
  • Non-negativity constraints: x1, x2 ≥ 0

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

More Like This

Linear Programming
15 questions

Linear Programming

NourishingRoseQuartz avatar
NourishingRoseQuartz
Linear Programming Terminology
10 questions
Linear Programming Basics
8 questions

Linear Programming Basics

ReplaceableSwan9729 avatar
ReplaceableSwan9729
Linear Programming problem
1 questions

Linear Programming problem

HeartwarmingTourmaline4433 avatar
HeartwarmingTourmaline4433
Use Quizgecko on...
Browser
Browser