Multiplying Fractions by Whole Numbers: Step-by-Step Guide
12 Questions
2 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

ما الخطوة الأولى التي يجب اتباعها عند ضرب كسر بعدد صحيح؟

  • ضرب العدد الصحيح بالمقام
  • تبسيط الكسر (correct)
  • ضرب الكسر بالعدد الصحيح
  • ضرب البسط بالمقام
  • ما هو الناتج من ضرب كسر ٢/٣ بالعدد الصحيح ٥؟

  • ١٥
  • ٧
  • ٨
  • ١٠ (correct)
  • ماذا يجب أن نفعل بالناتج للوصول إلى الناتج النهائي عند ضرب كسر بعدد صحيح؟

  • تبسيطه (correct)
  • ضربه مرة أخرى في المقام
  • تقسيمه على البسط
  • تقسيمه على المقام
  • ما هو العملية التي يجب تنفيذها قبل ضرب كسر بعدد صحيح؟

    <p>التقليل من قيمة البسط والمقام</p> Signup and view all the answers

    ما هو ناتج ضرب العدد الصحيح ٥ في المقام بعد توفيق قيمة الكسر؟

    <p>٣٠</p> Signup and view all the answers

    ما هو التصحيح المنطقي بعد عملية ضرب كسر بعدد صحيح؟

    <p>توفيق ناتج الكسر</p> Signup and view all the answers

    ما هو أحد أخطاء شائعة يقع فيها الأشخاص عند ضرب الكسور بالأعداد الصحيحة؟

    <p>نسيان تبسيط الكسر قبل الضرب</p> Signup and view all the answers

    لماذا يعتبر فهم كيفية ضرب الكسور بالأعداد الصحيحة مهمًا في مجموعة واسعة من التطبيقات؟

    <p>لتحويل الكسور إلى مقاييس قياسية</p> Signup and view all the answers

    ما هو تطبيق محتمل لضرب الكسور بالأعداد الصحيحة في المجال العلمي؟

    <p>تحويل كسر من وحدة زمنية إلى وحدة قياسية</p> Signup and view all the answers

    لماذا يُنصح بتجنب ضرب البسط فقط عند ضرب الكسور بالأعداد الصحيحة؟

    <p>لضمان المكافئية في الناتج</p> Signup and view all the answers

    ما هو نتيجة ضرب كسر "٤/٧" بالعدد ٩؟

    <p>( \frac{12}{21} )</p> Signup and view all the answers

    ما هو أثر نسيان التحويل إلى كسر مبسط قبل ضربه بالأعداد الصحيحة؟

    <p>إنشاء كسور لا تمثل النتائج المُفتَرَضة</p> Signup and view all the answers

    Study Notes

    Multiplying Fractions by Whole Numbers: A Step-by-Step Guide

    When you need to perform calculations involving fractions, one of the fundamental operations is multiplying fractions by whole numbers. This process might seem daunting at first, but with a clear understanding of the steps and the rules involved, you'll find it's quite straightforward.

    Step 1: Simplify the fraction

    Before you can multiply a fraction by a whole number, make sure the fraction is in its simplest form. This means finding the highest common factor (HCF) for both the numerator and denominator, then dividing both by the HCF.

    For example, ( \frac{12}{18} ) can be simplified to ( \frac{2}{3} ) by dividing both the numerator and denominator by their HCF, which is 6 in this case.

    Step 2: Multiply the numerator by the whole number

    Take the simplified numerator and multiply it by the whole number.

    For instance, multiplying ( \frac{2}{3} ) by 5 gives you ( (2 \times 5) = 10 ).

    Step 3: Multiply the denominator by the whole number

    Next, multiply the simplified denominator by the whole number.

    Continuing the example, multiplying ( 3 \times 5 ) gives ( 15 ).

    Step 4: Simplify the result

    Now, find the highest common factor for the result of the product in the numerator and the product in the denominator, then divide both by this HCF.

    Applying this to our example, the result is ( \frac{10}{15} ), and the HCF of 10 and 15 is 5. We can simplify this fraction to ( \frac{2}{3} ), which is the original simplified fraction, confirming our result.

    Common pitfalls

    One of the most common mistakes when multiplying fractions by whole numbers is forgetting to simplify the fraction before performing the multiplication. This can result in a more complex fraction that's actually equivalent to the original simplified fraction.

    Another common mistake is forgetting to multiply both the numerator and the denominator. If you multiply only the numerator, you'll end up with a fraction that's not equivalent to the original fraction and might not reflect the intended result.

    Applications

    Understanding how to multiply fractions by whole numbers is important in a wide variety of applications, including cooking, carpentry, and science. For instance, in cooking, you might need to convert a recipe that calls for a fraction of an ingredient to a standard unit of measurement. In carpentry, you might need to calculate a fraction of a board's length when building a project. In science, you might need to convert a fraction of a unit of time or distance to a standard unit when conducting an experiment.

    Summary

    Mastering the art of multiplying fractions by whole numbers is essential when working with fractions. By following the steps and avoiding common pitfalls, you'll be able to perform these calculations with ease.

    Practice problems

    1. Multiply ( \frac{3}{5} ) by 8.
    2. Multiply ( \frac{1}{4} ) by 12.
    3. Multiply ( \frac{4}{7} ) by 9.

    Confidence: 95%

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Learn the step-by-step process of multiplying fractions by whole numbers with this comprehensive guide. Understand how to simplify fractions, multiply numerators and denominators, and avoid common pitfalls. Practice problems included to solidify your understanding.

    More Like This

    Use Quizgecko on...
    Browser
    Browser