Podcast
Questions and Answers
什么是双曲线的定义?
什么是双曲线的定义?
什么是双曲线的焦点?
什么是双曲线的焦点?
什么是双曲线的軌跡?
什么是双曲线的軌跡?
双曲线的对称性是什么样的?
双曲线的对称性是什么样的?
Signup and view all the answers
双曲线的渐近线是什么?
双曲线的渐近线是什么?
Signup and view all the answers
双曲线的eccentricity是什么?
双曲线的eccentricity是什么?
Signup and view all the answers
Study Notes
Hyperbola Properties
Definition
- A hyperbola is a conic section defined as the set of all points in a plane such that the difference of the distances from two fixed points (foci) is constant.
Equations
- Standard equation:
(x^2/a^2) - (y^2/b^2) = 1
- Center at origin:
(x^2/a^2) - (y^2/b^2) = 1
- Center at (h, k):
((x-h)^2/a^2) - ((y-k)^2/b^2) = 1
Properties
- Foci: Two fixed points on the transverse axis, equidistant from the center of the hyperbola.
- Vertices: The points where the hyperbola intersects the transverse axis.
- Transverse axis: The axis that passes through the foci.
- Conjugate axis: The axis that passes through the center and is perpendicular to the transverse axis.
- Asymptotes: The lines that the hyperbola approaches as x or y increases without bound.
- Eccentricity: The ratio of the distance between the foci to the distance between the vertices.
Graphical Characteristics
- Open shape: A hyperbola is an open shape, extending to infinity in both directions.
- Symmetry: Hyperbolas have mirror symmetry about the transverse and conjugate axes.
- Branches: A hyperbola has two branches that open in opposite directions.
双曲线性质
- 双曲线是指所有点到两个固定点(焦点)的距离之差保持不变的平面内所有点的集合。
双曲线方程
- 标准方程:
(x^2/a^2) - (y^2/b^2) = 1
- 原点为中心:
(x^2/a^2) - (y^2/b^2) = 1
- 中心在 (h, k):
((x-h)^2/a^2) - ((y-k)^2/b^2) = 1
双曲线性质
焦点
- 两个固定点,位于 ngang轴上,距双曲线中心等距
端点
- 双曲线与 ngang轴的交点
ngang轴
- 经过焦点的轴
共轭轴
- 经过中心,垂直于 ngang轴的轴
###渐近线
- 双曲线趋于无穷大的时候,接近的两条直线
离心率
- 焦点之间的距离与端点之间的距离之比
图形特征
- 开放形状:双曲线是一条开放的曲线,伸展到无限远
- 对称性:双曲线关于 ngang轴和共轭轴具有镜像对称性
- 分支:双曲线有两个朝向相反方向的分支
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.