Podcast
Questions and Answers
Genetic engineering, also called genetic modification or genetic manipulation, is the direct manipulation of an organism's genes using biotechnology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesizing the DNA. A construct is usually created and used to insert this DNA into the host organism. Microbial genetics is a subject area within microbiology and genetic engineering. It studies the genetics of very small (micro) organisms; bacteria, archaea, viruses and some protozoa and fungi. This involves the study of the genotype of microbial species and the expression system in the form of phenotypes. Using microbes, protocols were developed to insert genes into bacterial plasmids, taking advantage of their fast reproduction, to make bio-factories for the gene of interest. Such genetically engineered bacteria can produce
Genetic engineering, also called genetic modification or genetic manipulation, is the direct manipulation of an organism's genes using biotechnology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesizing the DNA. A construct is usually created and used to insert this DNA into the host organism. Microbial genetics is a subject area within microbiology and genetic engineering. It studies the genetics of very small (micro) organisms; bacteria, archaea, viruses and some protozoa and fungi. This involves the study of the genotype of microbial species and the expression system in the form of phenotypes. Using microbes, protocols were developed to insert genes into bacterial plasmids, taking advantage of their fast reproduction, to make bio-factories for the gene of interest. Such genetically engineered bacteria can produce
pharmaceuticals.