Podcast
Questions and Answers
Find the degree and order of $(\frac{d^2y}{dx^2})^{\frac{3}{2}} + 5 \frac{dy}{dx} + y = e^{x^2}$
Find the degree and order of $(\frac{d^2y}{dx^2})^{\frac{3}{2}} + 5 \frac{dy}{dx} + y = e^{x^2}$
$\frac{1}{D^2 + 2} cos 3x = ?$
$\frac{1}{D^2 + 2} cos 3x = ?$
If $x = u + v$ and $y = v$ then $\frac{\partial(x,y)}{\partial(u,v)}$ = ?
If $x = u + v$ and $y = v$ then $\frac{\partial(x,y)}{\partial(u,v)}$ = ?
$\int \int dxdy = ?$
$\int \int dxdy = ?$
Signup and view all the answers
$PI = \frac{1}{D^2 - 2} sin 3x = ?$
$PI = \frac{1}{D^2 - 2} sin 3x = ?$
Signup and view all the answers
$L[f(t) = e^{-at}]=?$
$L[f(t) = e^{-at}]=?$
Signup and view all the answers
$L[t(t-1)] = ?$
$L[t(t-1)] = ?$
Signup and view all the answers
$L = ?$
$L = ?$
Signup and view all the answers
Study Notes
Mathematics II - END SEMESTER EXAMINATION
Instructions to the Candidate
- The exam duration is 2 hours
- Figures to the right indicate full marks
- Draw neat sketches and diagrams whenever necessary
Part - A
Multiple Choice Questions
- Answer any 10 questions (1 mark each)
Differential Equations
- The degree and order of (d2ydx2)32+5dydx+y=ex2(\frac{d^2y}{dx^2})^{\frac{3}{2}} + 5 \frac{dy}{dx} + y = e^{x^2}(dx2d2y)23+5dxdy+y=ex2 can be determined
- The options are 2,2; 2,3; 1,2; and 3,2
Inverse Laplace Transforms
- PI=1D2+2cos3xPI = \frac{1}{D^2 + 2} cos 3xPI=D2+21cos3x can be simplified to cos3x−7\frac{cos 3x}{-7}−7cos3x, sin3x−11\frac{sin 3x}{-11}−11sin3x, cos3x−9\frac{cos 3x}{-9}−9cos3x, or None of these
- PI=1D2−2sin3xPI = \frac{1}{D^2 - 2} sin 3xPI=D2−21sin3x can be simplified to sin3x10\frac{sin 3x}{10}10sin3x, sin3x−11\frac{sin 3x}{-11}−11sin3x, sin3x−7\frac{sin 3x}{-7}−7sin3x, or None of these
Partial Derivatives
- If x=u+vx = u + vx=u+v and y=vy = vy=v, then ∂(x,y)∂(u,v)\frac{\partial(x,y)}{\partial(u,v)}∂(u,v)∂(x,y) can be evaluated
- The options are 0, 1, 2, and None of these
Double Integrals
- The value of ∫∫dxdy\int \int dxdy∫∫dxdy is 1, 2, 3, or 4
- The value of ∫∫∫dxdydz\int \int \int dxdydz∫∫∫dxdydz is 1, 2, 3, or 4
Differential Equations - Integrating Factor
- If 1M(x,y)∂M(x,y)∂y=1N(x,y)∂N(x,y)∂x\frac{1}{M(x,y)} \frac{\partial M(x,y)}{\partial y} = \frac{1}{N(x,y)} \frac{\partial N(x,y)}{\partial x}M(x,y)1∂y∂M(x,y)=N(x,y)1∂x∂N(x,y), then e∫(∂M(x,y)∂y−∂N(x,y)∂x)dxe^{\int (\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x}) dx}e∫(∂y∂M(x,y)−∂x∂N(x,y))dx is an integrating factor of the differential equation M(x,y)dx + N(x,y)dy = 0
- The statement is either True or False
Laplace Transforms
- L[f(t)=e−at]L[f(t) = e^{-at}]L[f(t)=e−at] can be evaluated
- The options are 1s\frac{1}{s}s1, 1s+a\frac{1}{s+a}s+a1, e−ats\frac{e^{-at}}{s}se−at, and 1s−a\frac{1}{s-a}s−a1
- L[t(t−1)]L[t(t-1)]L[t(t−1)] can be evaluated
- The options are 2s3\frac{2}{s^3}s32, ess2\frac{e^s}{s^2}s2es, 1s3\frac{1}{s^3}s31, and None of these
- LLL can be evaluated
- The options are 1s\frac{1}{s}s1, 1s2\frac{1}{s^2}s21, 1s3\frac{1}{s^3}s31, and None of these
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
This exam assesses the student's understanding of differential equations, covering topics such as degree and order of equations. It includes multiple-choice questions and requires neat sketches and diagrams.