Mathematics II - Differential Equations Exam

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

Find the degree and order of $(\frac{d^2y}{dx^2})^{\frac{3}{2}} + 5 \frac{dy}{dx} + y = e^{x^2}$

  • 2,2
  • 2,3
  • 3,2 (correct)
  • 1,2

$\frac{1}{D^2 + 2} cos 3x = ?$

  • None of these (correct)
  • $\frac{sin 3x}{-11}$
  • $\frac{cos 3x}{-9}$
  • $\frac{cos 3x}{-7}$

If $x = u + v$ and $y = v$ then $\frac{\partial(x,y)}{\partial(u,v)}$ = ?

  • None of these
  • 0
  • 1 (correct)
  • 2

$\int \int dxdy = ?$

<p>4 (D)</p> Signup and view all the answers

$PI = \frac{1}{D^2 - 2} sin 3x = ?$

<p>None of these (D)</p> Signup and view all the answers

$L[f(t) = e^{-at}]=?$

<p>$\frac{1}{s+a}$ (B)</p> Signup and view all the answers

$L[t(t-1)] = ?$

<p>$\frac{2}{s^3}$ (C)</p> Signup and view all the answers

$L = ?$

<p>None of these (C)</p> Signup and view all the answers

Flashcards are hidden until you start studying

Study Notes

Mathematics II - END SEMESTER EXAMINATION

Instructions to the Candidate

  • The exam duration is 2 hours
  • Figures to the right indicate full marks
  • Draw neat sketches and diagrams whenever necessary

Part - A

Multiple Choice Questions

  • Answer any 10 questions (1 mark each)

Differential Equations

  • The degree and order of (d2ydx2)32+5dydx+y=ex2(\frac{d^2y}{dx^2})^{\frac{3}{2}} + 5 \frac{dy}{dx} + y = e^{x^2}(dx2d2y​)23​+5dxdy​+y=ex2 can be determined
  • The options are 2,2; 2,3; 1,2; and 3,2

Inverse Laplace Transforms

  • PI=1D2+2cos3xPI = \frac{1}{D^2 + 2} cos 3xPI=D2+21​cos3x can be simplified to cos3x−7\frac{cos 3x}{-7}−7cos3x​, sin3x−11\frac{sin 3x}{-11}−11sin3x​, cos3x−9\frac{cos 3x}{-9}−9cos3x​, or None of these
  • PI=1D2−2sin3xPI = \frac{1}{D^2 - 2} sin 3xPI=D2−21​sin3x can be simplified to sin3x10\frac{sin 3x}{10}10sin3x​, sin3x−11\frac{sin 3x}{-11}−11sin3x​, sin3x−7\frac{sin 3x}{-7}−7sin3x​, or None of these

Partial Derivatives

  • If x=u+vx = u + vx=u+v and y=vy = vy=v, then ∂(x,y)∂(u,v)\frac{\partial(x,y)}{\partial(u,v)}∂(u,v)∂(x,y)​ can be evaluated
  • The options are 0, 1, 2, and None of these

Double Integrals

  • The value of ∫∫dxdy\int \int dxdy∫∫dxdy is 1, 2, 3, or 4
  • The value of ∫∫∫dxdydz\int \int \int dxdydz∫∫∫dxdydz is 1, 2, 3, or 4

Differential Equations - Integrating Factor

  • If 1M(x,y)∂M(x,y)∂y=1N(x,y)∂N(x,y)∂x\frac{1}{M(x,y)} \frac{\partial M(x,y)}{\partial y} = \frac{1}{N(x,y)} \frac{\partial N(x,y)}{\partial x}M(x,y)1​∂y∂M(x,y)​=N(x,y)1​∂x∂N(x,y)​, then e∫(∂M(x,y)∂y−∂N(x,y)∂x)dxe^{\int (\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x}) dx}e∫(∂y∂M(x,y)​−∂x∂N(x,y)​)dx is an integrating factor of the differential equation M(x,y)dx + N(x,y)dy = 0
  • The statement is either True or False

Laplace Transforms

  • L[f(t)=e−at]L[f(t) = e^{-at}]L[f(t)=e−at] can be evaluated
  • The options are 1s\frac{1}{s}s1​, 1s+a\frac{1}{s+a}s+a1​, e−ats\frac{e^{-at}}{s}se−at​, and 1s−a\frac{1}{s-a}s−a1​
  • L[t(t−1)]L[t(t-1)]L[t(t−1)] can be evaluated
  • The options are 2s3\frac{2}{s^3}s32​, ess2\frac{e^s}{s^2}s2es​, 1s3\frac{1}{s^3}s31​, and None of these
  • LLL can be evaluated
  • The options are 1s\frac{1}{s}s1​, 1s2\frac{1}{s^2}s21​, 1s3\frac{1}{s^3}s31​, and None of these

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Laplace Transform Quiz
5 questions
Laplace Transform in Mathematics
5 questions
Laplace Transform for ODEs
10 questions
Laplace Transform Concepts
11 questions

Laplace Transform Concepts

EventfulWilliamsite9597 avatar
EventfulWilliamsite9597
Use Quizgecko on...
Browser
Browser