Mathematics II - Differential Equations Exam
8 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Find the degree and order of $(\frac{d^2y}{dx^2})^{\frac{3}{2}} + 5 \frac{dy}{dx} + y = e^{x^2}$

  • 2,2
  • 2,3
  • 3,2 (correct)
  • 1,2
  • $\frac{1}{D^2 + 2} cos 3x = ?$

  • None of these (correct)
  • $\frac{sin 3x}{-11}$
  • $\frac{cos 3x}{-9}$
  • $\frac{cos 3x}{-7}$
  • If $x = u + v$ and $y = v$ then $\frac{\partial(x,y)}{\partial(u,v)}$ = ?

  • None of these
  • 0
  • 1 (correct)
  • 2
  • $\int \int dxdy = ?$

    <p>4</p> Signup and view all the answers

    $PI = \frac{1}{D^2 - 2} sin 3x = ?$

    <p>None of these</p> Signup and view all the answers

    $L[f(t) = e^{-at}]=?$

    <p>$\frac{1}{s+a}$</p> Signup and view all the answers

    $L[t(t-1)] = ?$

    <p>$\frac{2}{s^3}$</p> Signup and view all the answers

    $L = ?$

    <p>None of these</p> Signup and view all the answers

    Study Notes

    Mathematics II - END SEMESTER EXAMINATION

    Instructions to the Candidate

    • The exam duration is 2 hours
    • Figures to the right indicate full marks
    • Draw neat sketches and diagrams whenever necessary

    Part - A

    Multiple Choice Questions

    • Answer any 10 questions (1 mark each)

    Differential Equations

    • The degree and order of (d2ydx2)32+5dydx+y=ex2(\frac{d^2y}{dx^2})^{\frac{3}{2}} + 5 \frac{dy}{dx} + y = e^{x^2}(dx2d2y​)23​+5dxdy​+y=ex2 can be determined
    • The options are 2,2; 2,3; 1,2; and 3,2

    Inverse Laplace Transforms

    • PI=1D2+2cos3xPI = \frac{1}{D^2 + 2} cos 3xPI=D2+21​cos3x can be simplified to cos3x−7\frac{cos 3x}{-7}−7cos3x​, sin3x−11\frac{sin 3x}{-11}−11sin3x​, cos3x−9\frac{cos 3x}{-9}−9cos3x​, or None of these
    • PI=1D2−2sin3xPI = \frac{1}{D^2 - 2} sin 3xPI=D2−21​sin3x can be simplified to sin3x10\frac{sin 3x}{10}10sin3x​, sin3x−11\frac{sin 3x}{-11}−11sin3x​, sin3x−7\frac{sin 3x}{-7}−7sin3x​, or None of these

    Partial Derivatives

    • If x=u+vx = u + vx=u+v and y=vy = vy=v, then ∂(x,y)∂(u,v)\frac{\partial(x,y)}{\partial(u,v)}∂(u,v)∂(x,y)​ can be evaluated
    • The options are 0, 1, 2, and None of these

    Double Integrals

    • The value of ∫∫dxdy\int \int dxdy∫∫dxdy is 1, 2, 3, or 4
    • The value of ∫∫∫dxdydz\int \int \int dxdydz∫∫∫dxdydz is 1, 2, 3, or 4

    Differential Equations - Integrating Factor

    • If 1M(x,y)∂M(x,y)∂y=1N(x,y)∂N(x,y)∂x\frac{1}{M(x,y)} \frac{\partial M(x,y)}{\partial y} = \frac{1}{N(x,y)} \frac{\partial N(x,y)}{\partial x}M(x,y)1​∂y∂M(x,y)​=N(x,y)1​∂x∂N(x,y)​, then e∫(∂M(x,y)∂y−∂N(x,y)∂x)dxe^{\int (\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x}) dx}e∫(∂y∂M(x,y)​−∂x∂N(x,y)​)dx is an integrating factor of the differential equation M(x,y)dx + N(x,y)dy = 0
    • The statement is either True or False

    Laplace Transforms

    • L[f(t)=e−at]L[f(t) = e^{-at}]L[f(t)=e−at] can be evaluated
    • The options are 1s\frac{1}{s}s1​, 1s+a\frac{1}{s+a}s+a1​, e−ats\frac{e^{-at}}{s}se−at​, and 1s−a\frac{1}{s-a}s−a1​
    • L[t(t−1)]L[t(t-1)]L[t(t−1)] can be evaluated
    • The options are 2s3\frac{2}{s^3}s32​, ess2\frac{e^s}{s^2}s2es​, 1s3\frac{1}{s^3}s31​, and None of these
    • LLL can be evaluated
    • The options are 1s\frac{1}{s}s1​, 1s2\frac{1}{s^2}s21​, 1s3\frac{1}{s^3}s31​, and None of these

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    This exam assesses the student's understanding of differential equations, covering topics such as degree and order of equations. It includes multiple-choice questions and requires neat sketches and diagrams.

    More Like This

    Laplace Transform in Mathematics
    5 questions
    Laplace Transform Method
    3 questions

    Laplace Transform Method

    HearteningArtNouveau avatar
    HearteningArtNouveau
    Laplace Transform for ODEs
    10 questions
    Use Quizgecko on...
    Browser
    Browser