Podcast
Questions and Answers
What is the value of $d(PQ)$?
What is the value of $d(PQ)$?
- $2 - 2\cos(A-B)$ (correct)
- $\sqrt{2 - 2\cos(A-B)}$
- $1 + 1 - 2\cos(A-B)$
- $\sqrt{1 + 1 - 2\cos(A-B)}$
What is the value of $\tan(\theta + \frac{\pi}{2})$?
What is the value of $\tan(\theta + \frac{\pi}{2})$?
- $\cot\theta$
- $\frac{\sin(\theta + \frac{\pi}{2})}{\cos(\theta + \frac{\pi}{2})}$
- $-\cot\theta$ (correct)
- $-\frac{\pi\cos(\theta + \frac{\pi}{2})}{2\sin(\theta + \frac{\pi}{2})}$
What is the value of $\tan(-\theta)$?
What is the value of $\tan(-\theta)$?
- $\frac{\pi\sin(-\theta)}{2\cos(-\theta)}$
- $\cot\theta$ (correct)
- $\frac{\pi\cos(-\theta)}{2\sin(-\theta)}$
- $\frac{\sin(-\theta)}{\cos(-\theta)}$
What is the value of $\cos(A+B)$?
What is the value of $\cos(A+B)$?
What is the value of $\sin(-\theta)$?
What is the value of $\sin(-\theta)$?
What is the expansion of $cos(2(A-B))$?
What is the expansion of $cos(2(A-B))$?
Using the given theorem, prove that $sin(-\theta) = -sin(\theta)$.
Using the given theorem, prove that $sin(-\theta) = -sin(\theta)$.
Explain the relationship between $tan(-\theta)$ and $cot(\theta)$ using the given theorem.
Explain the relationship between $tan(-\theta)$ and $cot(\theta)$ using the given theorem.
Prove that $cos(A+B) = cos(A)cos(B) - sin(A)sin(B)$ using the given theorem.
Prove that $cos(A+B) = cos(A)cos(B) - sin(A)sin(B)$ using the given theorem.
What is the value of $d(PQ)$ in terms of $cos(A-B)$?
What is the value of $d(PQ)$ in terms of $cos(A-B)$?