Logarithmic Properties Quiz
5 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Explain how the logarithmic property $ ext{log}_a(mn) = ext{log}_a m + ext{log}_a n$ can be applied to simplify $ ext{log}_3(27)$.

$ ext{log}_3(27) = ext{log}_3(3 imes 9) = ext{log}_3(3) + ext{log}_3(9) = 1 + 2 = 3$

Using the property $ ext{log}_a rac{m}{n} = ext{log}_a m - ext{log}_a n$, determine how to solve $ ext{log}_5 rac{25}{5}$.

$ ext{log}_5 rac{25}{5} = ext{log}_5(25) - ext{log}_5(5) = 2 - 1 = 1$

Illustrate how to apply the rule $ ext{log}_a(m^n) = n ext{log}_a m$ to calculate $ ext{log}_2(64)$.

$ ext{log}_2(64) = ext{log}_2(2^6) = 6 imes ext{log}_2(2) = 6 \ (\text{since } \text{log}_2(2) = 1)$

Apply the logarithm property $ ext{log}a 1 = 0$ and evaluate $ ext{log}{10}( rac{100}{100})$.

<p>$ ext{log}<em>{10}( rac{100}{100}) = ext{log}</em>{10}(1) = 0$</p> Signup and view all the answers

Using the property $ ext{log}a y = y$, derive the value of $ ext{log}{10}10$.

<p>$ ext{log}_{10}10 = 10$</p> Signup and view all the answers

Use Quizgecko on...
Browser
Browser