Podcast
Questions and Answers
Qual é a propriedade de logarithmos que estabelece que logb(MN) = logb(M) + logb(N)?
Qual é a propriedade de logarithmos que estabelece que logb(MN) = logb(M) + logb(N)?
Como se chama a propriedade que estabelece que logb(1) = 0?
Como se chama a propriedade que estabelece que logb(1) = 0?
Qual é a forma de se escrever uma equação logarítmica em uma base diferente?
Qual é a forma de se escrever uma equação logarítmica em uma base diferente?
Como se resolve uma equação logarítmica?
Como se resolve uma equação logarítmica?
Signup and view all the answers
O que é uma equação logarítmica?
O que é uma equação logarítmica?
Signup and view all the answers
Qual é a propriedade de logarithmos utilizada para resolver a equação log₂(4) + log₂(2x) = log₂(15x³) - log₂(5x)?
Qual é a propriedade de logarithmos utilizada para resolver a equação log₂(4) + log₂(2x) = log₂(15x³) - log₂(5x)?
Signup and view all the answers
O que é equivalente à equação exponencial 2ᵏ = 7?
O que é equivalente à equação exponencial 2ᵏ = 7?
Signup and view all the answers
Qual é o nome da função que models o crescimento populacional e é representada como P(t) = K / (1 + (C/K) e^(-r(t-t₀)))?
Qual é o nome da função que models o crescimento populacional e é representada como P(t) = K / (1 + (C/K) e^(-r(t-t₀)))?
Signup and view all the answers
O que é o objetivo de utilizar equações logarítmicas em finanças?
O que é o objetivo de utilizar equações logarítmicas em finanças?
Signup and view all the answers
Qual é a relação entre as equações logarítmicas e as equações exponenciais?
Qual é a relação entre as equações logarítmicas e as equações exponenciais?
Signup and view all the answers
Study Notes
Logarithmic Equations
Overview
Logarithmic equations are mathematical expressions that involve logarithmic functions. These equations can be solved using the properties of logarithms, such as the product rule, quotient rule, and power rule, as well as the one-to-one property of logarithmic functions.
Understanding Logarithmic Equations
A logarithmic equation is a mathematical expression that involves logarithmic functions. It is formed by taking the logarithm of both sides of an equation with respect to a certain base. To solve logarithmic equations, we can use the properties of logarithms, which are as follows:
- Product Rule: (\log_b MN = \log_b M + \log_b N)
- Quotient Rule: (\log_b \frac{M}{N} = \log_b M - \log_b N)
- Power Rule: (\log_b M^n = n \log_b M)
- Zero Exponent Rule: (\log_b 1 = 0)
- Change of Base Rule: (\log_b(x) = \frac{\ln(x)}{\ln(b)}) or (\log_b(x) = \frac{\ln(x)}{\log_e(b)})
Solving Logarithmic Equations
Solving logarithmic equations involves isolating the logarithmic terms on one side of the equation and using the properties of logarithms to simplify them. Here's an example of how to solve a logarithmic equation using the properties of logarithms:
Example 1
Solve the equation: (\log_2(4) + \log_2(2x) = \log_2(15x^3) - \log_2(5x))
To solve this equation, we can use the product rule of logarithms:
(\log_2(4) + \log_2(2x) = \log_2(15x^3) - \log_2(5x))
(\log_2(8x) = \log_2(3x^2))
Taking the (2)nd exponent on both sides of the equation, we get:
(8x = 3x^2)
Solving for (x), we get:
(x = \frac{8}{3})
This solution is valid, as there are no extraneous solutions when applying the properties of logarithms.
Exponential Equations
It's also important to note that logarithmic equations are equivalent to exponential equations. For example, the equation (b^y = x) is equivalent to (\log_b(x) = y). This allows us to solve exponential equations by rewriting them in logarithmic form and applying the properties of logarithms.
Example 2
Solve the exponential equation: (2^x = 7)
Rewriting this equation in logarithmic form, we get:
(\log_2(7) = x)
Using the change of base rule, we can rewrite this equation as:
(\frac{\ln(7)}{\ln(2)} = x)
Solving for (x), we get:
(x = \frac{\ln(7)}{\ln(2)} \approx 2.807)
Applications of Logarithmic Equations
Logarithmic equations have many applications in various fields, including mathematics, science, engineering, and finance. They are particularly useful for modeling and analyzing exponential growth, such as population growth or compound interest.
Population Growth
For example, the logistic function, which models population growth, can be represented as:
(P(t) = \frac{K}{1 + \frac{C}{K} e^{-r(t-t_0)}})
where (P(t)) is the population at time (t), (K) is the carrying capacity of the environment, (C) is the intrinsic growth rate, (r) is the rate of change in population, and (t_0) is the time when the population reaches half its carrying capacity.
Compound Interest
In finance, logarithmic equations are used to calculate compound interest, which is the interest earned on an initial investment that is then added to the investment, and the process is repeated over time. The formula for compound interest is:
(A = P(1 + \frac{r}{n})^{nt})
where (A) is the final amount, (P) is the initial investment, (r) is the annual interest rate, (n) is the number of times the interest is compounded per year, and (t) is the number of years the money is invested.
Conclusion
Logarithmic equations have many applications in mathematics and other fields, and they can be solved using the properties of logarithms. By understanding the properties of logarithms and their relationships with exponential functions, we can effectively solve a wide range of mathematical problems and analyze real-world situations.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Learn how to solve logarithmic equations using the properties of logarithms, including the product rule, quotient rule, and power rule. Understand the relationships between logarithmic and exponential functions and explore real-world applications in fields such as mathematics, science, engineering, and finance.