Leukocytes Quiz
532 Questions
4 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the main function of leukocytes in the body?

  • To produce hormones
  • To defend the body against foreign invaders (correct)
  • To transport oxygen to the cells
  • To regulate the body's temperature
  • Which type of hematopoietic cells differentiate into terminally differentiated cells?

  • Progenitor cells
  • Precursor cells
  • All of the above
  • Stem cells (correct)
  • What are the three main types of hematopoietic cells?

  • Stem cells, progenitor cells, and precursor cells (correct)
  • Myeloblasts, promyelocytes, and myelocytes
  • Neutrophils, lymphocytes, and monocytes
  • Eosinophils, basophils, and monocytes
  • Which type of leukocyte spends very little time in peripheral blood before migrating to tissues?

    <p>Eosinophils</p> Signup and view all the answers

    What is the most common type of circulatory leukocyte?

    <p>Neutrophils</p> Signup and view all the answers

    What type of leukocyte is responsible for cell-mediated immunity?

    <p>T lymphocytes</p> Signup and view all the answers

    Which type of leukocyte is associated with allergic reactions?

    <p>Eosinophils</p> Signup and view all the answers

    Which type of leukocyte has large purple-black granules containing histamine and heparin?

    <p>Basophils</p> Signup and view all the answers

    What is the function of monocytes in the body?

    <p>To function as phagocytes</p> Signup and view all the answers

    Which type of hematopoietic cell differentiates into neutrophils?

    <p>Myeloblasts</p> Signup and view all the answers

    What is the shape of a neutrophil nucleus?

    <p>Segmented</p> Signup and view all the answers

    Which type of leukocyte is responsible for humoral immunity?

    <p>B lymphocytes</p> Signup and view all the answers

    What is the function of leukocytes in the body?

    <p>To defend the body against foreign invaders</p> Signup and view all the answers

    What are the three main types of hematopoietic cells?

    <p>Stem cells, progenitor cells, and precursor cells</p> Signup and view all the answers

    Which leukocyte type is associated with allergic reactions and parasite infection?

    <p>Eosinophils</p> Signup and view all the answers

    What is the most abundant type of leukocyte in the circulatory system?

    <p>Neutrophils</p> Signup and view all the answers

    Which leukocyte type has a bilobed nucleus and large purple-black granules containing histamine and heparin?

    <p>Basophils</p> Signup and view all the answers

    Which type of leukocyte is responsible for cell-mediated immunity?

    <p>T lymphocytes</p> Signup and view all the answers

    What is the function of monocytes in the body?

    <p>To defend the body against foreign invaders</p> Signup and view all the answers

    Which type of leukocyte spends only a few hours in the peripheral blood before migrating to tissues?

    <p>Neutrophils</p> Signup and view all the answers

    What do hematopoietic growth factors do?

    <p>Influence stem cells to mature into terminally differentiated cells</p> Signup and view all the answers

    What is the first stage of myeloblast differentiation?

    <p>Promyelocytes</p> Signup and view all the answers

    Which type of leukocyte is associated with chronic inflammation?

    <p>Eosinophils</p> Signup and view all the answers

    Which type of leukocyte is responsible for humoral immunity?

    <p>B lymphocytes</p> Signup and view all the answers

    Which leukocyte type is the largest in peripheral blood?

    <p>Monocytes</p> Signup and view all the answers

    Which hematopoietic cell type differentiates into neutrophils?

    <p>Myeloblasts</p> Signup and view all the answers

    Which leukocyte type is associated with chronic inflammation?

    <p>Neutrophils</p> Signup and view all the answers

    Which leukocyte type is responsible for antibody production?

    <p>Lymphocytes</p> Signup and view all the answers

    Which hematopoietic cell type is influenced by growth factors to mature into terminally differentiated cells?

    <p>Stem cells</p> Signup and view all the answers

    Which leukocyte type is associated with allergic reactions and parasite infection?

    <p>Eosinophils</p> Signup and view all the answers

    Which leukocyte type constitutes less than 1% of total leukocytes?

    <p>Basophils</p> Signup and view all the answers

    Which leukocyte type has a segmented nucleus with two to four lobes?

    <p>Neutrophils</p> Signup and view all the answers

    Which hematopoietic cell type develops into leukocytes?

    <p>Progenitor cells</p> Signup and view all the answers

    Which leukocyte type circulates for only a few hours in the peripheral blood before migrating to tissues?

    <p>Neutrophils</p> Signup and view all the answers

    Which leukocyte type is associated with histamine and heparin release?

    <p>Basophils</p> Signup and view all the answers

    Which hematopoietic cell type is pluripotential and gives rise to all blood cell types?

    <p>Stem cells</p> Signup and view all the answers

    Leukocytes develop from pluripotential stem cells in the liver.

    <p>False</p> Signup and view all the answers

    Leukocytes are attracted to sites of inflammation, infection, or tissue injury by chemoattractants.

    <p>True</p> Signup and view all the answers

    Myelopoiesis involves the differentiation of myeloblasts into mature neutrophils with segmented nuclei.

    <p>False</p> Signup and view all the answers

    There are five types of human leukocytes.

    <p>True</p> Signup and view all the answers

    Basophils constitute the majority of circulatory leukocytes.

    <p>False</p> Signup and view all the answers

    Monocytes leave the blood and enter the tissues, where they mature into macrophages and function as phagocytes.

    <p>True</p> Signup and view all the answers

    The normal range for total leukocyte count is 4,000-11,000/mm3 in adults.

    <p>True</p> Signup and view all the answers

    • Leukocytes develop from ______ stem cells in the bone marrow under the influence of hematopoietic growth factors.

    <p>pluripotential</p> Signup and view all the answers

    • Stem cells mature into terminally differentiated cells that circulate for a few hours in peripheral blood before migrating to ______.

    <p>tissues</p> Signup and view all the answers

    • Hematopoietic cells differentiate into stem cells, lymphoid and ______ multipotential cells, progenitor cells, colony-forming cells, precursor cells, and mature cells.

    <p>myeloid</p> Signup and view all the answers

    • Myelopoiesis involves the differentiation of myeloblasts into promyelocytes, myelocytes, metamyelocytes, and mature neutrophils with ______ nuclei.

    <p>segmented</p> Signup and view all the answers

    • The five types of human ______ include neutrophils, lymphocytes, monocytes, eosinophils, and basophils.

    <p>leukocytes</p> Signup and view all the answers

    • Neutrophils constitute the majority of circulatory leukocytes and have an average lifespan of 10 hours before moving to ______ through the blood vessel wall.

    <p>tissues</p> Signup and view all the answers

    • Eosinophils have a concentration in peripheral blood from 1-3% and are associated with allergic reactions, parasite infection, and ______ inflammation.

    <p>chronic</p> Signup and view all the answers

    • Basophils constitute less than 1% of leukocytes and function as mediators of inflammatory responses, especially those of hypersensitivity and ______ reactions.

    <p>allergic</p> Signup and view all the answers

    • ______ are the largest cells in the peripheral blood, leave the blood and enter the tissues, where they mature into macrophages, and function as phagocytes.

    <p>Monocytes</p> Signup and view all the answers

    • Lymphocytes generally classified as large and mature lymphocytes with two types, T and B lymphocytes, account for 20-40% of leukocytes and are responsible for cell-mediated and ______ immunity.

    <p>humoral</p> Signup and view all the answers

    • WBC count, types, and function can be obtained from CBC, DLC, and PBF, and normal range for total leukocyte count is 4,000-11,000/mm3 in adults, with a lower count than RBCs due to a shorter ______.

    <p>lifespan</p> Signup and view all the answers

    What is the main component of plasma in blood?

    <p>Water</p> Signup and view all the answers

    What is the main protein constituent of plasma in blood?

    <p>Albumin</p> Signup and view all the answers

    What is the function of erythrocytes in the body?

    <p>Transporting oxygen and carbon dioxide</p> Signup and view all the answers

    What is the main function of leukocytes in the body?

    <p>Defending against foreign antigens</p> Signup and view all the answers

    What is the function of platelets in the body?

    <p>Maintaining hemostasis</p> Signup and view all the answers

    What is the approximate volume of blood in females?

    <p>4-5 L</p> Signup and view all the answers

    What is the temperature of blood in the body?

    <p>37-38°C</p> Signup and view all the answers

    What is the pH of blood in the body?

    <p>7.35-7.45</p> Signup and view all the answers

    What is the viscosity of blood relative to water?

    <p>4.5-5.5</p> Signup and view all the answers

    What is the composition of plasma in blood?

    <p>90% water and 10% other substances</p> Signup and view all the answers

    What are the cellular elements of blood?

    <p>Leukocytes, platelets, and erythrocytes</p> Signup and view all the answers

    What is the function of immunoglobulins in the body?

    <p>Involved in immune defense</p> Signup and view all the answers

    What is the lifespan of erythrocytes in circulation?

    <p>Approximately 120 days</p> Signup and view all the answers

    What are the two types of committed erythroid progenitor cells?

    <p>Burst-forming unit-erythroid and colony-forming unit-erythroid</p> Signup and view all the answers

    How many morphologically defined stages are there in erythroid maturation?

    <p>Six</p> Signup and view all the answers

    How long do normoblasts spend in the proliferating and maturing compartment of the bone marrow?

    <p>5-7 days</p> Signup and view all the answers

    What are reticulocytes?

    <p>Immature RBCs that do not contain a nucleus</p> Signup and view all the answers

    What is the diameter of erythrocytes?

    <p>7-8 µm</p> Signup and view all the answers

    What is the function of Erythropoietin (EPO)?

    <p>Regulating the final stages of erythroid maturation</p> Signup and view all the answers

    What stimulates Erythropoiesis?

    <p>Erythropoietin hormone produced by the kidney in response to hypoxia</p> Signup and view all the answers

    What is the composition of the erythrocyte membrane?

    <p>52% protein, 40% lipid, and 8% carbohydrate</p> Signup and view all the answers

    What are the two types of proteins in the erythrocyte membrane?

    <p>Integral and peripheral</p> Signup and view all the answers

    What is the deformability of the red cell due to?

    <p>Its biconcave shape, the viscosity of hemoglobin, and the viscoelastic properties of erythrocyte membrane</p> Signup and view all the answers

    What is the function of the RBC membrane?

    <p>To provide deformability, elasticity, and permeability</p> Signup and view all the answers

    What is the lifespan of erythrocytes in circulation?

    <p>Approximately 120 days</p> Signup and view all the answers

    What are the two types of erythroid progenitor cells?

    <p>Burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E)</p> Signup and view all the answers

    What is the hormone responsible for stimulating erythropoiesis?

    <p>Erythropoietin (EPO)</p> Signup and view all the answers

    What is the function of reticulocytes?

    <p>Contain residual ribosomal RNA</p> Signup and view all the answers

    What is the diameter of erythrocytes?

    <p>7-8 µm</p> Signup and view all the answers

    What is the composition of the erythrocyte membrane?

    <p>52% lipid, 40% protein, and 8% carbohydrate</p> Signup and view all the answers

    What is the role of peripheral proteins in the erythrocyte membrane?

    <p>Skeletal support for the membrane lipid bilayer</p> Signup and view all the answers

    What is the function of Erythropoietin (EPO)?

    <p>Regulate the final stages of erythroid maturation</p> Signup and view all the answers

    What is the deformability of the red cell due to?

    <p>The viscosity of hemoglobin</p> Signup and view all the answers

    What stimulates the production of Erythropoietin (EPO)?

    <p>Hypoxia</p> Signup and view all the answers

    What is the function of normoblasts?

    <p>Mature into erythrocytes</p> Signup and view all the answers

    What is the role of glycophorins in the erythrocyte membrane?

    <p>Contain blood group antigens</p> Signup and view all the answers

    What is the role of androgen in erythropoiesis?

    <p>Stimulate Erythropoietin (EPO) secretion</p> Signup and view all the answers

    What is the lifespan of erythrocytes in circulation?

    <p>Approximately 120 days</p> Signup and view all the answers

    Which cells differentiate into committed erythroid progenitor cells?

    <p>Hematopoietic stem cells</p> Signup and view all the answers

    What is the hormone that stimulates erythropoiesis?

    <p>Erythropoietin</p> Signup and view all the answers

    What is the function of reticulocytes?

    <p>Mature into erythrocytes</p> Signup and view all the answers

    What is the diameter of erythrocytes?

    <p>7-8 µm</p> Signup and view all the answers

    What is the only cytokine important in regulating the final stages of erythroid maturation?

    <p>Erythropoietin</p> Signup and view all the answers

    What is the percentage of protein in the erythrocyte membrane?

    <p>52%</p> Signup and view all the answers

    What is the function of peripheral proteins in the erythrocyte membrane?

    <p>Skeletal support for the membrane lipid bilayer</p> Signup and view all the answers

    What is the hormone that appears to stimulate EPO secretion?

    <p>Androgen</p> Signup and view all the answers

    What are the two types of proteins in the erythrocyte membrane?

    <p>Integral and peripheral</p> Signup and view all the answers

    What is the shape of erythrocytes?

    <p>Biconcave</p> Signup and view all the answers

    What is the function of residual ribosomal RNA in reticulocytes?

    <p>Mature into erythrocytes</p> Signup and view all the answers

    What is the lifespan of erythrocytes in circulation?

    <p>Approximately 120 days</p> Signup and view all the answers

    Which cells differentiate into committed erythroid progenitor cells?

    <p>Hematopoietic stem cells</p> Signup and view all the answers

    What is the final stage of erythroid maturation before the release of erythrocytes to the peripheral blood?

    <p>Reticulocyte</p> Signup and view all the answers

    What are reticulocytes?

    <p>Immature RBCs without a nucleus</p> Signup and view all the answers

    What is the function of erythropoietin hormone?

    <p>Stimulate RBC maturation</p> Signup and view all the answers

    What is the composition of the erythrocyte membrane?

    <p>40% protein, 52% lipid, and 8% carbohydrate</p> Signup and view all the answers

    What is the function of integral proteins in the erythrocyte membrane?

    <p>Provide skeletal support for the membrane lipid bilayer</p> Signup and view all the answers

    What is the deformability of the red cell due to?

    <p>The viscoelastic properties of erythrocyte membrane</p> Signup and view all the answers

    What is the hormone responsible for regulating the final stages of erythroid maturation?

    <p>Erythropoietin</p> Signup and view all the answers

    What causes the production of erythropoietin hormone?

    <p>Low RBC count (anemia)</p> Signup and view all the answers

    What is the diameter of erythrocytes?

    <p>7-8 µm</p> Signup and view all the answers

    What is the difference between normoblasts and reticulocytes?

    <p>Normoblasts have a nucleus, while reticulocytes do not</p> Signup and view all the answers

    What is the lifespan of a red blood cell?

    <p>120 days</p> Signup and view all the answers

    What are the two types of erythroid progenitor cells?

    <p>Burst-forming unit-erythroid and colony-forming unit-erythroid</p> Signup and view all the answers

    What is the final stage of erythroid maturation before release into circulation?

    <p>Reticulocyte</p> Signup and view all the answers

    What is the diameter of an erythrocyte?

    <p>7-8 µm</p> Signup and view all the answers

    What is the name of the hormone responsible for stimulating erythropoiesis?

    <p>Erythropoietin</p> Signup and view all the answers

    What is the composition of the erythrocyte membrane?

    <p>52% protein, 40% lipid, 8% carbohydrate</p> Signup and view all the answers

    What is the name of the hormone that appears to stimulate EPO secretion?

    <p>Androgen</p> Signup and view all the answers

    What is the name of the immature RBCs that do not contain a nucleus but contain residual ribosomal RNA?

    <p>Reticulocytes</p> Signup and view all the answers

    What is the function of spectrin and ankyrin in the erythrocyte membrane?

    <p>Skeletal support for the membrane lipid bilayer</p> Signup and view all the answers

    What is the name of the cytokine important in regulating the final stages of erythroid maturation?

    <p>Erythropoietin</p> Signup and view all the answers

    What is the name of the stage during which erythrocytes spend 5-7 days in the proliferating and maturing compartment of the bone marrow?

    <p>Basophilic Normoblast</p> Signup and view all the answers

    What is the name of the hormone produced by the kidney in response to hypoxia?

    <p>Erythropoietin</p> Signup and view all the answers

    What is the lifespan of a circulating erythrocyte?

    <p>120 ± 10 days</p> Signup and view all the answers

    Which cells differentiate into committed erythroid progenitor cells?

    <p>Hematopoietic stem cells</p> Signup and view all the answers

    How many morphologically defined stages are there in erythroid maturing cells formation?

    <p>Six</p> Signup and view all the answers

    How long do reticulocytes remain in the bone marrow before being released into circulation?

    <p>1-2 days</p> Signup and view all the answers

    What is the diameter of erythrocytes?

    <p>7-8 µm</p> Signup and view all the answers

    What is the function of Erythropoietin hormone?

    <p>Stimulate erythrocyte proliferation</p> Signup and view all the answers

    What is the composition of the erythrocyte membrane?

    <p>52% lipid, 40% protein, 8% carbohydrate</p> Signup and view all the answers

    What is the function of peripheral proteins in the erythrocyte membrane?

    <p>Spectrin and ankyrin</p> Signup and view all the answers

    What is the deformability of the red cell due to?

    <p>The viscosity of hemoglobin</p> Signup and view all the answers

    What is the main function of the RBC membrane?

    <p>Maintain erythrocyte's biconcave shape</p> Signup and view all the answers

    What is the only cytokine important in regulating the final stages of erythroid maturation?

    <p>Erythropoietin</p> Signup and view all the answers

    What stimulates the production of erythropoietin hormone?

    <p>Low oxygen levels</p> Signup and view all the answers

    What is the difference between erythrocytes count in males and females?

    <p>Males have 5.5 million erythrocytes, while females have 4.8 million erythrocytes</p> Signup and view all the answers

    Normoblasts spend approximately 1-2 days in the proliferating and maturing compartment of the bone marrow before being released to the peripheral blood.

    <p>False</p> Signup and view all the answers

    Erythrocytes have a diameter of approximately 7-8 µm.

    <p>True</p> Signup and view all the answers

    Erythropoietin (EPO) is the only cytokine important in regulating the final stages of erythroid maturation.

    <p>False</p> Signup and view all the answers

    Androgens have been shown to stimulate EPO secretion.

    <p>True</p> Signup and view all the answers

    Erythropoiesis is stimulated by Erythropoietin hormone produced by the liver in response to hypoxia.

    <p>False</p> Signup and view all the answers

    The erythrocyte membrane is composed of 40% protein, 52% lipid, and 8% carbohydrate.

    <p>False</p> Signup and view all the answers

    The erythrocyte membrane has two types of proteins: integral and peripheral.

    <p>True</p> Signup and view all the answers

    Spectrin and ankyrin are integral proteins found in the erythrocyte membrane.

    <p>False</p> Signup and view all the answers

    The deformability of the red cell is due to its biconcave shape, the viscosity of hemoglobin, and the viscoelastic properties of erythrocyte membrane.

    <p>True</p> Signup and view all the answers

    The erythrocyte membrane provides deformability, elasticity, permeability, and contains blood group antigens.

    <p>True</p> Signup and view all the answers

    Erythrocytes are capable of carrying out protein synthesis.

    <p>False</p> Signup and view all the answers

    Erythrocytes are non-nucleated cells.

    <p>True</p> Signup and view all the answers

    During erythroid maturation, normoblasts spend approximately 2-3 days in the bone marrow before being released into circulation as reticulocytes.

    <p>False</p> Signup and view all the answers

    Erythrocytes are non-nucleated cells with a diameter of 7-8 µm and contain residual ribosomal RNA.

    <p>False</p> Signup and view all the answers

    Erythropoietin (EPO) is the only cytokine important in regulating the final stages of erythroid maturation.

    <p>False</p> Signup and view all the answers

    Androgen stimulates EPO secretion in the body.

    <p>True</p> Signup and view all the answers

    Erythropoiesis is stimulated by hypoxia, which can be caused by high RBC count (polycythemia).

    <p>False</p> Signup and view all the answers

    The erythrocyte membrane is composed of 40% protein, 52% lipid, and 8% carbohydrate.

    <p>False</p> Signup and view all the answers

    The erythrocyte membrane has only one type of protein: integral proteins.

    <p>False</p> Signup and view all the answers

    Peripheral proteins in the erythrocyte membrane serve as a skeletal support for the membrane lipid bilayer.

    <p>True</p> Signup and view all the answers

    The biconcave shape of the red cell, viscosity of hemoglobin, and viscoelastic properties of erythrocyte membrane are all responsible for the deformability of the RBC.

    <p>True</p> Signup and view all the answers

    The erythrocyte membrane is responsible for maintaining the biconcave shape of the RBC, providing deformability, elasticity, permeability, and containing blood group antigens.

    <p>True</p> Signup and view all the answers

    Erythrocytes are responsible for cell-mediated immunity.

    <p>False</p> Signup and view all the answers

    Leukocytes are responsible for humoral immunity.

    <p>True</p> Signup and view all the answers

    Haematopoiesis is the process of blood cell destruction.

    <p>False</p> Signup and view all the answers

    The proliferation of precursor cells in haematopoiesis is regulated by cytokines.

    <p>True</p> Signup and view all the answers

    The replacement of circulating mature blood cells does not depend on hematopoietic precursor cells.

    <p>False</p> Signup and view all the answers

    There are four types of hematopoiesis: erythropoiesis, leukopoiesis, thrombopoiesis, and lymphopoiesis.

    <p>False</p> Signup and view all the answers

    Haematopoiesis takes place primarily in the liver in adults.

    <p>False</p> Signup and view all the answers

    The process of haematopoiesis involves a careful balance between cellular proliferation, differentiation, and cell death.

    <p>True</p> Signup and view all the answers

    Hematopoietic precursor cells are divided into two cellular compartments: stem cells and progenitor cells.

    <p>False</p> Signup and view all the answers

    Stem cells are unipotential and give rise to only one lineage of blood cells.

    <p>False</p> Signup and view all the answers

    Progenitor cells have unrestricted development potential and include colony-forming units (CFUs) that produce all types of blood cells.

    <p>False</p> Signup and view all the answers

    Maturing cells constitute less than 95% of total hematopoietic cells and are not morphologically recognizable.

    <p>False</p> Signup and view all the answers

    Hematopoietic precursor cell survival, self-renewal, proliferation, and differentiation are not regulated by hematopoietic growth factors or cytokines.

    <p>False</p> Signup and view all the answers

    The hematopoietic microenvironment, which includes stromal cells and extracellular matrix, is not crucial for the development of hematopoietic cells.

    <p>False</p> Signup and view all the answers

    Haematopoiesis is the process of ______ cell production

    <p>Blood</p> Signup and view all the answers

    Hematopoietic precursor cells retain ______ capability

    <p>Mitotic</p> Signup and view all the answers

    The replacement of circulating mature blood cells depends on the function of ______ precursor cells

    <p>Hematopoietic</p> Signup and view all the answers

    There are three types of ______: erythropoiesis, leukopoiesis, and thrombopoiesis

    <p>Haematopoiesis</p> Signup and view all the answers

    Haematopoiesis takes place in hematopoietic organs, primarily in ______ marrow in adults

    <p>Bone</p> Signup and view all the answers

    The process of haematopoiesis involves careful balance between cellular proliferation, differentiation, and ______ death

    <p>Cell</p> Signup and view all the answers

    Hematopoietic precursor cells are divided into three cellular compartments: ______ cells, progenitor cells, and maturing cells

    <p>Stem</p> Signup and view all the answers

    [Blank] cells are pluripotential and give rise to all lineages of blood cells

    <p>Stem</p> Signup and view all the answers

    Progenitor cells have ______ development potential and include colony-forming units (CFUs) that produce different types of blood cells

    <p>Restricted</p> Signup and view all the answers

    Maturing cells constitute more than 95% of total hematopoietic cells and are ______ recognizable

    <p>Morphologically</p> Signup and view all the answers

    Hematopoietic precursor cell survival, self-renewal, proliferation, and differentiation are regulated by hematopoietic growth factors or ______

    <p>Cytokines</p> Signup and view all the answers

    The hematopoietic microenvironment, which includes stromal cells and extracellular matrix, is crucial for the development of ______ cells

    <p>Hematopoietic</p> Signup and view all the answers

    • Hematology is the study of ______ and blood-forming tissues, including their formation, function, and associated diseases.

    <p>blood</p> Signup and view all the answers

    • Plasma makes up approximately ______% of the blood volume, while erythrocytes make up 45%, and leukocytes and platelets make up 1%.

    <p>55</p> Signup and view all the answers

    • The main protein constituent of plasma is albumin, which acts as a carrier molecule for compounds such as ______ and heme.

    <p>bilirubin</p> Signup and view all the answers

    • Other blood proteins carry vitamins, minerals, and ______, while immunoglobulins and complements are involved in immune defense.

    <p>lipids</p> Signup and view all the answers

    • Erythrocytes contain ______, which is responsible for transporting oxygen and carbon dioxide between the lungs and body tissues.

    <p>hemoglobin</p> Signup and view all the answers

    • Leukocytes defend the body against foreign antigens, such as ______ and viruses.

    <p>bacteria</p> Signup and view all the answers

    • Platelets are necessary for maintaining ______.

    <p>hemostasis</p> Signup and view all the answers

    • Blood comprises ______% of the body weight, with a volume of 4-5 L in females and 5-6 L in males.

    <p>8</p> Signup and view all the answers

    • The temperature of blood is 37-38°C, with a pH of ______ and a viscosity of 4.5-5.5 relative to water.

    <p>7.35-7.45</p> Signup and view all the answers

    • Blood is composed of plasma (90% water and 10% other substances) and formed elements (red blood cells, white blood cells, and platelets), with plasma containing various proteins such as albumin, globulins, and ______.

    <p>fibrinogen</p> Signup and view all the answers

    • Leukocytes are also known as ______ blood cells.

    <p>white</p> Signup and view all the answers

    • The most common leukocyte in the blood is the ______.

    <p>neutrophil</p> Signup and view all the answers

    What is the composition of blood and what are its major components?

    <p>Blood is composed of plasma and cellular elements, including leukocytes, platelets, and erythrocytes. Plasma makes up approximately 55% of the blood volume, while erythrocytes make up 45%, and leukocytes and platelets make up 1%.</p> Signup and view all the answers

    What is the main protein constituent of plasma and what is its function?

    <p>The main protein constituent of plasma is albumin, which acts as a carrier molecule for compounds such as bilirubin and heme.</p> Signup and view all the answers

    What are the various substances found in plasma besides water and albumin?

    <p>Plasma contains various dissolved ions, proteins, carbohydrates, fats, hormones, vitamins, and enzymes.</p> Signup and view all the answers

    What is the function of immunoglobulins and complements in the body?

    <p>Immunoglobulins and complements are involved in immune defense.</p> Signup and view all the answers

    What is the function of erythrocytes and what is the main molecule they contain?

    <p>Erythrocytes contain hemoglobin, which is responsible for transporting oxygen and carbon dioxide between the lungs and body tissues.</p> Signup and view all the answers

    What is the function of leukocytes in the body?

    <p>Leukocytes defend the body against foreign antigens, such as bacteria and viruses.</p> Signup and view all the answers

    What is the function of platelets in the body?

    <p>Platelets are necessary for maintaining hemostasis.</p> Signup and view all the answers

    What is the volume of blood in females and males?

    <p>Blood comprises 4-5 L in females and 5-6 L in males.</p> Signup and view all the answers

    What is the temperature and pH of blood?

    <p>The temperature of blood is 37-38°C, with a pH of 7.35-7.45.</p> Signup and view all the answers

    What is the viscosity of blood in relation to water?

    <p>The viscosity of blood is 4.5-5.5 relative to water.</p> Signup and view all the answers

    What are the various proteins found in plasma besides albumin?

    <p>Plasma contains various proteins such as globulins and fibrinogen.</p> Signup and view all the answers

    What is the function of hemoglobin in erythrocytes?

    <p>Hemoglobin is responsible for transporting oxygen and carbon dioxide between the lungs and body tissues.</p> Signup and view all the answers

    What is hematology?

    <p>The study of blood and blood-forming tissues, including their formation, function, and associated diseases.</p> Signup and view all the answers

    What are the components of blood?

    <p>Plasma and cellular elements, including leukocytes, platelets, and erythrocytes.</p> Signup and view all the answers

    What is the principal component of plasma?

    <p>Water, which contains ions, proteins, carbohydrates, fats, hormones, vitamins, and enzymes necessary for normal cell function.</p> Signup and view all the answers

    What is the main protein constituent of plasma?

    <p>Albumin, which acts as a carrier molecule for compounds such as bilirubin and heme.</p> Signup and view all the answers

    What is the function of erythrocytes?

    <p>To transport oxygen and carbon dioxide between the lungs and body tissues.</p> Signup and view all the answers

    What is the function of platelets?

    <p>To maintain hemostasis.</p> Signup and view all the answers

    What are the functions of blood?

    <p>Transporting oxygen, nutrients, hormones, and waste products; maintaining normal acid-base balance, body temperature, and water balance; delivering specialized cells for tissue protection; and preventing leakage by closing holes in blood vessels.</p> Signup and view all the answers

    What is the main component of plasma and what is its function?

    <p>The main component of plasma is water, which contains ions, proteins, carbohydrates, fats, hormones, vitamins, and enzymes necessary for normal cell function.</p> Signup and view all the answers

    What is the function of albumin in plasma?

    <p>Albumin acts as a carrier molecule for compounds such as bilirubin and heme.</p> Signup and view all the answers

    What are immunoglobulins and complements and what is their role in the body?

    <p>Immunoglobulins and complements are specialized blood proteins involved in immune defense.</p> Signup and view all the answers

    What is the function of coagulation proteins in the body?

    <p>Coagulation proteins maintain normal hemostasis.</p> Signup and view all the answers

    What is the main function of erythrocytes in the body?

    <p>Erythrocytes contain hemoglobin, which is responsible for transporting oxygen and carbon dioxide between the lungs and body tissues.</p> Signup and view all the answers

    What is the main function of leukocytes in the body?

    <p>Leukocytes defend the body against foreign antigens such as bacteria and viruses.</p> Signup and view all the answers

    What is the main function of platelets in the body?

    <p>Platelets are necessary for maintaining hemostasis.</p> Signup and view all the answers

    What is the volume of whole blood in females and males?

    <p>Whole blood has a volume of 4-5 L in females and 5-6 L in males.</p> Signup and view all the answers

    What is the temperature of whole blood in the body?

    <p>Whole blood has a temperature of 37-38°C.</p> Signup and view all the answers

    What is the pH range of whole blood in the body?

    <p>Whole blood has a pH range of 7.35-7.45.</p> Signup and view all the answers

    What are the functions of blood in the body?

    <p>The functions of blood include transporting oxygen, nutrients, hormones, and waste products; maintaining normal acid-base balance, body temperature, and water balance; delivering specialized cells for tissue protection; and preventing leakage by closing holes in blood vessels.</p> Signup and view all the answers

    What are the main cellular elements of blood and their percentages in the blood volume?

    <p>Blood is composed of plasma and cellular elements, including leukocytes, platelets, and erythrocytes. Plasma comprises approximately 55% of the blood volume, while erythrocytes comprise 45%, and leukocytes and platelets comprise 1%.</p> Signup and view all the answers

    What is myelopoiesis?

    <p>Myelopoiesis is the process of granulocytic cell differentiation.</p> Signup and view all the answers

    What are the five types of human leukocytes?

    <p>The five types of human leukocytes are neutrophils, lymphocytes, monocytes, eosinophils, and basophils.</p> Signup and view all the answers

    What is the function of basophils in the body?

    <p>Basophils function as mediators of inflammatory responses, especially those of hypersensitivity and allergic reactions.</p> Signup and view all the answers

    What is the function of monocytes in the body?

    <p>Monocytes function as phagocytes.</p> Signup and view all the answers

    What is the concentration of eosinophils in peripheral blood?

    <p>Eosinophils have a concentration in peripheral blood from 1-3%.</p> Signup and view all the answers

    What is the role of hematopoietic growth factors in leukocyte development?

    <p>Hematopoietic growth factors influence stem cells to mature into terminally differentiated cells.</p> Signup and view all the answers

    What is the function of lymphocytes in the body?

    <p>Lymphocytes generally classified as large and mature lymphocyte and account between 20-40% function of lymphocyte.</p> Signup and view all the answers

    What is the process of leukocyte development?

    <p>Leukocytes develop from pluripotential stem cells in the bone marrow and differentiate into stem cells, progenitor cells, precursor cells, and mature cells.</p> Signup and view all the answers

    What is the shape of a neutrophil nucleus?

    <p>Neutrophils have a segmented nucleus with two to four lobes.</p> Signup and view all the answers

    What are some conditions associated with eosinophils?

    <p>Eosinophils are associated with allergic reactions, parasite infection, and chronic inflammation.</p> Signup and view all the answers

    What is the function of neutrophils in the body?

    <p>Neutrophils are the majority of circulatory leukocytes and serve as defenders of the body against foreign invaders.</p> Signup and view all the answers

    What is the function of basophils in the body?

    <p>Basophils function as mediators of inflammatory responses, especially those of hypersensitivity and allergic reactions.</p> Signup and view all the answers

    What is the lifespan of erythrocytes in circulation?

    <p>Approximately 120 ± 10 days.</p> Signup and view all the answers

    What are the two types of erythroid progenitor cells?

    <p>Burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E).</p> Signup and view all the answers

    How many morphologically defined stages are involved in erythroid maturation?

    <p>Six.</p> Signup and view all the answers

    How long do normoblasts spend in the bone marrow before reaching the reticulocyte stage?

    <p>5 to 7 days.</p> Signup and view all the answers

    What are reticulocytes and how long do they stay in the bone marrow before being released into circulation?

    <p>Immature RBCs that do not contain a nucleus but contain residual ribosomal RNA. They stay in the bone marrow for 1-2 days before being released into circulation.</p> Signup and view all the answers

    What is the diameter of erythrocytes?

    <p>7-8 µm.</p> Signup and view all the answers

    What is the percentage of erythrocytes in females and males?

    <p>Females have 4.8 million erythrocytes, while males have 5.5 million erythrocytes.</p> Signup and view all the answers

    What is the hormone that stimulates erythropoiesis and where is it produced?

    <p>Erythropoietin (EPO) is produced by the kidney in response to hypoxia.</p> Signup and view all the answers

    What is the composition of the erythrocyte membrane?

    <p>52% protein, 40% lipid, and 8% carbohydrate.</p> Signup and view all the answers

    What are the two types of proteins in the erythrocyte membrane and what are their functions?

    <p>Integral proteins include transport proteins and glycophorins, while peripheral proteins include spectrin and ankyrin, which serve as skeletal support for the membrane lipid bilayer.</p> Signup and view all the answers

    What are the factors that contribute to the deformability of erythrocytes?

    <p>Biconcave shape, viscosity of hemoglobin, and viscoelastic properties of erythrocyte membrane.</p> Signup and view all the answers

    What is the function of the erythrocyte membrane?

    <p>Maintain erythrocyte's biconcave shape, provide deformability, elasticity, permeability, and contain blood group antigens.</p> Signup and view all the answers

    What is haematopoiesis?

    <p>The process of blood cell production.</p> Signup and view all the answers

    What are the three types of hematopoiesis?

    <p>Erythropoiesis, leukopoiesis, and thrombopoiesis.</p> Signup and view all the answers

    Where does haematopoiesis take place in adults?

    <p>Primarily in bone marrow.</p> Signup and view all the answers

    What is the function of hematopoietic precursor cells?

    <p>To replace circulating mature blood cells.</p> Signup and view all the answers

    What are the three cellular compartments of hematopoietic precursor cells?

    <p>Stem cells, progenitor cells, and maturing cells.</p> Signup and view all the answers

    What is the difference between stem cells and progenitor cells?

    <p>Stem cells are pluripotential and give rise to all lineages of blood cells, while progenitor cells have restricted development potential.</p> Signup and view all the answers

    What is the function of maturing cells in hematopoiesis?

    <p>They constitute more than 95% of total hematopoietic cells and are morphologically recognizable.</p> Signup and view all the answers

    What regulates hematopoietic precursor cell survival, self-renewal, proliferation, and differentiation?

    <p>Hematopoietic growth factors or cytokines.</p> Signup and view all the answers

    What is the hematopoietic microenvironment?

    <p>It includes stromal cells and extracellular matrix, and is crucial for the development of hematopoietic cells.</p> Signup and view all the answers

    What is the role of cytokines in haematopoiesis?

    <p>Cytokines regulate the proliferation of precursor cells in haematopoiesis.</p> Signup and view all the answers

    What is the importance of cellular balance in haematopoiesis?

    <p>The process of haematopoiesis involves careful balance between cellular proliferation, differentiation, and cell death.</p> Signup and view all the answers

    What is the role of colony-forming units (CFUs) in hematopoiesis?

    <p>Progenitor cells include CFUs that produce different types of blood cells.</p> Signup and view all the answers

    What is myelopoiesis?

    <p>The process of granulocytic cell differentiation.</p> Signup and view all the answers

    What percentage of peripheral blood do eosinophils typically constitute?

    <p>1-3%</p> Signup and view all the answers

    What is the function of basophils in the body?

    <p>To mediate inflammatory responses, especially those of hypersensitivity and allergic reactions.</p> Signup and view all the answers

    What is the function of monocytes in the body?

    <p>To function as phagocytes.</p> Signup and view all the answers

    What percentage of lymphocytes are classified as large and mature lymphocytes?

    <p>20-40%</p> Signup and view all the answers

    Which type of leukocyte is the majority of circulatory leukocytes?

    <p>Neutrophils</p> Signup and view all the answers

    What is the shape of a neutrophil nucleus?

    <p>Segmented with two to four lobes</p> Signup and view all the answers

    Which type of leukocyte is associated with chronic inflammation?

    <p>Eosinophils</p> Signup and view all the answers

    What is the process of hematopoietic cells differentiating into stem cells, progenitor cells, precursor cells, and mature cells called?

    <p>Hematopoiesis</p> Signup and view all the answers

    Which type of leukocyte is responsible for cell-mediated immunity?

    <p>Lymphocytes</p> Signup and view all the answers

    Which type of leukocyte is associated with allergic reactions and parasite infection?

    <p>Eosinophils</p> Signup and view all the answers

    What influences stem cells to mature into terminally differentiated cells?

    <p>Hematopoietic growth factors</p> Signup and view all the answers

    What is the process of granulocytic cell differentiation called?

    <p>Myelopoiesis</p> Signup and view all the answers

    What percentage of the total leukocyte count do basophils constitute?

    <p>0-1%</p> Signup and view all the answers

    Which leukocyte type is the largest in the peripheral blood?

    <p>Monocytes</p> Signup and view all the answers

    What type of leukocyte is responsible for antibody-mediated immunity?

    <p>Lymphocytes</p> Signup and view all the answers

    What is the concentration of eosinophils in peripheral blood?

    <p>1-3%</p> Signup and view all the answers

    Which hematopoietic cells influence stem cells to mature into terminally differentiated cells?

    <p>Hematopoietic growth factors</p> Signup and view all the answers

    What is the function of basophils in the body?

    <p>Mediation of inflammatory responses</p> Signup and view all the answers

    What is the shape of the nucleus of a neutrophil?

    <p>Segmented with two to four lobes</p> Signup and view all the answers

    What is the function of monocytes in the body?

    <p>Phagocytosis</p> Signup and view all the answers

    What is the process of red blood cell differentiation called?

    <p>Erythropoiesis</p> Signup and view all the answers

    Which leukocyte type is associated with chronic inflammation?

    <p>Eosinophils</p> Signup and view all the answers

    What is the function of hematopoietic cells in the body?

    <p>To differentiate into terminally differentiated cells</p> Signup and view all the answers

    What is the process of granulocytic cell differentiation called?

    <p>Myelopoiesis</p> Signup and view all the answers

    What percentage of the total leukocyte count do basophils constitute?

    <p>0-1%</p> Signup and view all the answers

    Which leukocyte type is the largest in the peripheral blood?

    <p>Monocytes</p> Signup and view all the answers

    What type of leukocyte is responsible for antibody-mediated immunity?

    <p>Lymphocytes</p> Signup and view all the answers

    What is the concentration of eosinophils in peripheral blood?

    <p>1-3%</p> Signup and view all the answers

    Which hematopoietic cells influence stem cells to mature into terminally differentiated cells?

    <p>Hematopoietic growth factors</p> Signup and view all the answers

    What is the function of basophils in the body?

    <p>Mediation of inflammatory responses</p> Signup and view all the answers

    What is the shape of the nucleus of a neutrophil?

    <p>Segmented with two to four lobes</p> Signup and view all the answers

    What is the function of monocytes in the body?

    <p>Phagocytosis</p> Signup and view all the answers

    What is the process of red blood cell differentiation called?

    <p>Erythropoiesis</p> Signup and view all the answers

    Which leukocyte type is associated with chronic inflammation?

    <p>Eosinophils</p> Signup and view all the answers

    What is the function of hematopoietic cells in the body?

    <p>To differentiate into terminally differentiated cells</p> Signup and view all the answers

    What is the process of granulocytic cell differentiation called?

    <p>Myelopoiesis</p> Signup and view all the answers

    What is the concentration of eosinophils in peripheral blood?

    <p>1-3%</p> Signup and view all the answers

    Which leukocyte type functions as mediators of inflammatory responses, especially those of hypersensitivity and allergic reactions?

    <p>Basophils</p> Signup and view all the answers

    What is the function of lymphocytes in the body?

    <p>Humoral immunity</p> Signup and view all the answers

    Which type of leukocyte has a segmented nucleus with two to four lobes?

    <p>Neutrophils</p> Signup and view all the answers

    Which type of hematopoietic growth factors influence stem cells to mature into terminally differentiated cells?

    <p>Myelopoietic growth factors</p> Signup and view all the answers

    What is the function of monocytes in the body?

    <p>Phagocytosis</p> Signup and view all the answers

    What is the process of erythrocyte differentiation called?

    <p>Erythropoiesis</p> Signup and view all the answers

    Which type of leukocyte is not mentioned in the text?

    <p>Platelets</p> Signup and view all the answers

    Which type of leukocyte is associated with chronic inflammation?

    <p>Monocytes</p> Signup and view all the answers

    What is the shape of an eosinophil nucleus?

    <p>Bilobed</p> Signup and view all the answers

    What is the function of basophils in the body?

    <p>Mediation of inflammatory responses</p> Signup and view all the answers

    What is the process of granulocytic cell differentiation called?

    <p>Myelopoiesis</p> Signup and view all the answers

    Which type of leukocyte has a concentration in peripheral blood from 1-3% and is associated with chronic inflammation?

    <p>Eosinophils</p> Signup and view all the answers

    Which type of leukocyte constitutes from 0-1% of the total leukocyte and functions as mediators of inflammatory responses, especially those of hypersensitivity and allergic reactions?

    <p>Basophils</p> Signup and view all the answers

    What is the function of lymphocytes in the body?

    <p>Cell-mediated immunity</p> Signup and view all the answers

    Which type of leukocyte is the largest cell in the peripheral blood and functions as phagocytes?

    <p>Monocytes</p> Signup and view all the answers

    What are the five types of human leukocytes?

    <p>Neutrophils, lymphocytes, monocytes, eosinophils, and basophils</p> Signup and view all the answers

    What is the concentration of eosinophils in peripheral blood?

    <p>1-3%</p> Signup and view all the answers

    Which type of hematopoietic growth factors influence stem cells to mature into terminally differentiated cells?

    <p>Myelopoietic growth factors</p> Signup and view all the answers

    What is the shape of the nucleus of neutrophils?

    <p>Segmented with two to four lobes</p> Signup and view all the answers

    Which type of leukocyte is associated with allergic reactions, parasite infection, and chronic inflammation?

    <p>Basophils</p> Signup and view all the answers

    What is the function of basophils in the body?

    <p>Mediators of inflammatory responses, especially those of hypersensitivity and allergic reactions</p> Signup and view all the answers

    What is the process of erythrocyte differentiation called?

    <p>Erythropoiesis</p> Signup and view all the answers

    What is the process of granulocytic cell differentiation called?

    <p>Myelopoiesis</p> Signup and view all the answers

    Which type of leukocyte has a concentration in peripheral blood from 1-3% and is associated with chronic inflammation?

    <p>Eosinophils</p> Signup and view all the answers

    Which type of leukocyte constitutes from 0-1% of the total leukocyte and functions as mediators of inflammatory responses, especially those of hypersensitivity and allergic reactions?

    <p>Basophils</p> Signup and view all the answers

    What is the function of lymphocytes in the body?

    <p>Cell-mediated immunity</p> Signup and view all the answers

    Which type of leukocyte is the largest in the peripheral blood and functions as phagocytes?

    <p>Monocytes</p> Signup and view all the answers

    What is the shape of a neutrophil nucleus?

    <p>Segmented with two to four lobes</p> Signup and view all the answers

    What is the main function of eosinophils in the body?

    <p>Allergic reactions</p> Signup and view all the answers

    Which type of hematopoietic growth factors influence stem cells to mature into terminally differentiated cells?

    <p>All of the above</p> Signup and view all the answers

    Which type of leukocyte is associated with parasite infections?

    <p>Eosinophils</p> Signup and view all the answers

    Which type of hematopoietic cell differentiates into basophils?

    <p>Precursor cells</p> Signup and view all the answers

    What is the function of basophils in the body?

    <p>Mediating inflammatory responses</p> Signup and view all the answers

    Which type of leukocyte accounts for the majority of circulatory leukocytes?

    <p>Neutrophils</p> Signup and view all the answers

    What is the Picornaviridae family?

    <p>A family of RNA viruses</p> Signup and view all the answers

    Which of the following are the four categories of enteroviruses?

    <p>Coxsackie A viruses, Coxsackie B viruses, echoviruses, and polioviruses</p> Signup and view all the answers

    How do enteroviruses spread?

    <p>Through the fecal-oral route</p> Signup and view all the answers

    What is poliovirus?

    <p>A rare paralytic illness</p> Signup and view all the answers

    How is poliovirus transmitted?

    <p>Through the feces of infected people</p> Signup and view all the answers

    What is the initial immune response to poliovirus?

    <p>IgM response</p> Signup and view all the answers

    What are the two forms of poliovirus vaccine?

    <p>Live attenuated (OPV) and inactivated (IPV)</p> Signup and view all the answers

    Which poliovirus vaccine induces a stronger protective immune response?

    <p>Inactivated (IPV)</p> Signup and view all the answers

    How is poliovirus diagnosed in the lab?

    <p>Stool sample test</p> Signup and view all the answers

    What are the potential disadvantages of poliovirus vaccination?

    <p>Vaccine-derived polioviruses</p> Signup and view all the answers

    Which of the following are non-polio enteroviruses?

    <p>Coxsackie A viruses</p> Signup and view all the answers

    What illnesses can enteroviruses cause?

    <p>Hand, foot, and mouth disease, myocarditis, meningitis, and pancreatitis</p> Signup and view all the answers

    What is the family that enteroviruses belong to?

    <p>Picornaviridae</p> Signup and view all the answers

    Which of the following are the four categories of enteroviruses?

    <p>Polioviruses, Coxsackie A viruses, Coxsackie B viruses, and echoviruses</p> Signup and view all the answers

    How do enteroviruses spread?

    <p>Through the fecal-oral route</p> Signup and view all the answers

    Which of the following are non-polio enteroviruses?

    <p>Coxsackie A viruses</p> Signup and view all the answers

    What is poliovirus?

    <p>A rare paralytic illness caused by a virus</p> Signup and view all the answers

    How does poliovirus transmission occur?

    <p>Through the feces of infected people</p> Signup and view all the answers

    What is the immune response to poliovirus?

    <p>An initial IgM response followed by IgG</p> Signup and view all the answers

    What are the two forms of poliovirus vaccine?

    <p>Live attenuated (OPV) and inactivated (IPV)</p> Signup and view all the answers

    Which poliovirus vaccine induces blood and mucosal immune response against all three serotypes of poliovirus?

    <p>Live attenuated (OPV)</p> Signup and view all the answers

    Which poliovirus vaccine is administered through injection and induces a stronger protective immune response than OPV?

    <p>Inactivated (IPV)</p> Signup and view all the answers

    What are the potential disadvantages of poliovirus vaccination?

    <p>Vaccine-derived polioviruses and rare cases of vaccine-associated paralytic polio</p> Signup and view all the answers

    How can poliovirus be diagnosed in a lab?

    <p>Through electron microscope, cell culture, or PCR</p> Signup and view all the answers

    Enteroviruses are DNA viruses of group IV Baltimore.

    <p>False</p> Signup and view all the answers

    Poliovirus is a paralytic illness caused by a virus that infects nerve cells.

    <p>True</p> Signup and view all the answers

    Coxsackie A, Coxsackie B, and echoviruses are non-polio enteroviruses that cannot cause severe illnesses in people.

    <p>False</p> Signup and view all the answers

    Enteroviruses spread through the fecal-oral route.

    <p>True</p> Signup and view all the answers

    Poliovirus transmission occurs mainly through the saliva of infected people.

    <p>False</p> Signup and view all the answers

    The immune response to poliovirus includes an initial IgG response followed by IgM.

    <p>False</p> Signup and view all the answers

    There are two forms of poliovirus vaccine: live attenuated (OPV) and inactivated (IPV).

    <p>True</p> Signup and view all the answers

    OPV induces a stronger protective immune response than IPV.

    <p>False</p> Signup and view all the answers

    IPV is administered through injection.

    <p>True</p> Signup and view all the answers

    The lab diagnosis of poliovirus can be done through electron microscope, cell culture, or PCR.

    <p>True</p> Signup and view all the answers

    Serology cannot be useful in determining if a patient has paralytic poliomyelitis.

    <p>False</p> Signup and view all the answers

    Vaccine-associated paralytic polio is a potential disadvantage of poliovirus vaccination.

    <p>True</p> Signup and view all the answers

    What are the four categories of enteroviruses?

    <p>Polioviruses, Coxsackie A viruses, Coxsackie B viruses, and echoviruses.</p> Signup and view all the answers

    How do enteroviruses spread?

    <p>Through the fecal-oral route.</p> Signup and view all the answers

    What are some illnesses that can be caused by non-polio enteroviruses?

    <p>Mild to severe illnesses, such as hand, foot, and mouth disease, myocarditis, meningitis, and pancreatitis.</p> Signup and view all the answers

    What is poliovirus?

    <p>A rare paralytic illness caused by a virus that infects nerve cells in the spinal cord, brain stem, or motor cortex.</p> Signup and view all the answers

    How does poliovirus transmission occur?

    <p>Mainly through the feces of infected people.</p> Signup and view all the answers

    What are some symptoms of poliovirus?

    <p>Fever, headache, and sore throat.</p> Signup and view all the answers

    What is the immune response to poliovirus?

    <p>An initial IgM response followed by IgG, which helps prevent re-infection.</p> Signup and view all the answers

    What are the two forms of poliovirus vaccine?

    <p>Live attenuated (OPV) and inactivated (IPV).</p> Signup and view all the answers

    Which poliovirus vaccine induces a stronger protective immune response?

    <p>Inactivated (IPV).</p> Signup and view all the answers

    Which poliovirus vaccine is safer and more effective?

    <p>Live attenuated (OPV).</p> Signup and view all the answers

    What are some potential disadvantages of poliovirus vaccination?

    <p>Vaccine-derived polioviruses and rare cases of vaccine-associated paralytic polio.</p> Signup and view all the answers

    How can poliovirus be diagnosed in a lab?

    <p>Through electron microscope, cell culture, or PCR, and serology can be useful in determining if a patient has paralytic poliomyelitis.</p> Signup and view all the answers

    • Enteroviruses belong to the ______ family and are RNA viruses of group IV Baltimore.

    <p>Picornaviridae</p> Signup and view all the answers

    • Coxsackie A, Coxsackie B, and echoviruses are ______-polio enteroviruses that can cause mild to severe illnesses in people, especially those with weak immune systems.

    <p>non</p> Signup and view all the answers

    • Poliovirus is a rare ______ illness caused by a virus that infects nerve cells in the spinal cord, brain stem, or motor cortex.

    <p>paralytic</p> Signup and view all the answers

    • Poliovirus transmission occurs mainly through the ______ of infected people, and symptoms include fever, headache, and sore throat.

    <p>feces</p> Signup and view all the answers

    • The immune response to poliovirus includes an initial IgM response followed by ______, which helps prevent re-infection.

    <p>IgG</p> Signup and view all the answers

    • There are two forms of poliovirus vaccine: live attenuated (OPV) and ______ (IPV).

    <p>inactivated</p> Signup and view all the answers

    • OPV induces blood and mucosal immune response against all three serotypes of poliovirus and is safe and ______.

    <p>effective</p> Signup and view all the answers

    • IPV is administered through ______ and induces a stronger protective immune response than OPV, but it is more expensive and requires qualified health workers and sterile equipment.

    <p>injection</p> Signup and view all the answers

    • The lab diagnosis of poliovirus can be done through electron microscope, cell culture, or ______, and serology can be useful in determining if a patient has paralytic poliomyelitis.

    <p>PCR</p> Signup and view all the answers

    • Vaccine-derived polioviruses and rare cases of ______-associated paralytic polio are potential disadvantages of poliovirus vaccination.

    <p>vaccine</p> Signup and view all the answers

    • Enteroviruses spread through the ______-oral route and can cause hand, foot, and mouth disease, myocarditis, meningitis, and pancreatitis.

    <p>fecal</p> Signup and view all the answers

    • Coxsackie A viruses, Coxsackie B viruses, and echoviruses are all categories of ______.

    <p>enteroviruses</p> Signup and view all the answers

    • Enteroviruses belong to the ______ family and are RNA viruses of group IV Baltimore.

    <p>Picornaviridae</p> Signup and view all the answers

    • The four categories of enteroviruses are polioviruses, Coxsackie A viruses, Coxsackie B viruses, and ______.

    <p>echoviruses</p> Signup and view all the answers

    • Coxsackie A, Coxsackie B, and echoviruses are non-polio enteroviruses that can cause mild to severe illnesses in people, especially those with ______ immune systems.

    <p>weak</p> Signup and view all the answers

    • Enteroviruses spread through the ______ route and can cause hand, foot, and mouth disease, myocarditis, meningitis, and pancreatitis.

    <p>fecal-oral</p> Signup and view all the answers

    • Poliovirus is a rare paralytic illness caused by a virus that infects nerve cells in the spinal cord, brain stem, or ______ cortex.

    <p>motor</p> Signup and view all the answers

    • Poliovirus transmission occurs mainly through the ______ of infected people, and symptoms include fever, headache, and sore throat.

    <p>feces</p> Signup and view all the answers

    • The immune response to poliovirus includes an initial IgM response followed by ______, which helps prevent re-infection.

    <p>IgG</p> Signup and view all the answers

    • There are two forms of poliovirus vaccine: live attenuated (OPV) and ______ (IPV).

    <p>inactivated</p> Signup and view all the answers

    • OPV induces blood and mucosal immune response against all three serotypes of poliovirus and is ______ and effective.

    <p>safe</p> Signup and view all the answers

    • IPV is administered through injection and induces a stronger protective immune response than OPV, but it is more expensive and requires qualified health workers and ______ equipment.

    <p>sterile</p> Signup and view all the answers

    • Vaccine-derived polioviruses and rare cases of vaccine-associated paralytic polio are potential ______ of poliovirus vaccination.

    <p>disadvantages</p> Signup and view all the answers

    • The lab diagnosis of poliovirus can be done through electron microscope, cell culture, or PCR, and serology can be useful in ______ if a patient has paralytic poliomyelitis.

    <p>determining</p> Signup and view all the answers

    What is mycology?

    <p>The study of fungi</p> Signup and view all the answers

    What is the major membrane sterol found in fungi?

    <p>Ergosterol</p> Signup and view all the answers

    What is the structure that comes together to form the mycelium of fungi?

    <p>Hyphae</p> Signup and view all the answers

    What are conidia?

    <p>A type of fungal spore</p> Signup and view all the answers

    What are the two types of spores that fungi can produce?

    <p>Asexual and sexual</p> Signup and view all the answers

    What are the different types of media that fungal cultures can be grown on?

    <p>General-purpose, selective, and differential agars</p> Signup and view all the answers

    What are the direct examination methods for fungal infections?

    <p>Saline wet mounts, lactophenol cotton blue wet mounts, and potassium hydroxide (KOH) mounts</p> Signup and view all the answers

    What are some body sites that fungal pathogens can infect?

    <p>Lungs, throat, and genital tract</p> Signup and view all the answers

    Which of the following is not a common fungal pathogen found in various body sites?

    <p>Staphylococcus aureus</p> Signup and view all the answers

    What is the difference between systemic mycosis and opportunistic mycosis?

    <p>Opportunistic mycosis occurs primarily in immunocompromised patients, while systemic mycosis is a multiorgan infection caused by fungi</p> Signup and view all the answers

    What are dimorphic fungi?

    <p>Fungi that can show both a yeast and a mold phase</p> Signup and view all the answers

    What is the target of antifungal medications?

    <p>Fungal ergosterol synthesis</p> Signup and view all the answers

    What is mycology?

    <p>The study of fungi</p> Signup and view all the answers

    What is the major membrane sterol found in fungi?

    <p>Ergosterol</p> Signup and view all the answers

    What is the structure that hyphae come together to form?

    <p>Mycelium</p> Signup and view all the answers

    What are conidia?

    <p>Asexual reproductive structures</p> Signup and view all the answers

    How do fungi reproduce?

    <p>Both sexually and asexually</p> Signup and view all the answers

    What are the three types of media that fungal cultures can be grown on?

    <p>General-purpose, selective, and differential agars</p> Signup and view all the answers

    What are some direct examination methods for fungal identification?

    <p>Saline wet mounts, lactophenol cotton blue wet mounts, and potassium hydroxide (KOH) mounts</p> Signup and view all the answers

    Where can fungal pathogens infect in the body?

    <p>Various body sites</p> Signup and view all the answers

    What are some common fungal pathogens found in various body sites?

    <p>Candida spp., Aspergillus, Histoplasma capsulatum, and Cryptococcus neoformans</p> Signup and view all the answers

    What is the difference between systemic mycosis and opportunistic mycosis?

    <p>Systemic mycosis occurs only in immunocompromised patients, while opportunistic mycosis can occur in anyone</p> Signup and view all the answers

    What are dimorphic fungi?

    <p>Fungi that have both a yeast and a mold phase</p> Signup and view all the answers

    What is the target of antifungal medications?

    <p>Lipid synthesis</p> Signup and view all the answers

    What is mycology?

    <p>The study of fungi</p> Signup and view all the answers

    What is the major membrane sterol found in fungi?

    <p>Ergosterol</p> Signup and view all the answers

    What is the mycelium?

    <p>A vegetative structure</p> Signup and view all the answers

    What are conidia?

    <p>A type of spore</p> Signup and view all the answers

    How do fungi reproduce?

    <p>Both sexually and asexually</p> Signup and view all the answers

    What are the different types of media used to grow fungal cultures?

    <p>General-purpose, selective, and differential agars</p> Signup and view all the answers

    What are some direct examination methods used to identify fungi?

    <p>Saline wet mounts, lactophenol cotton blue wet mounts, potassium hydroxide (KOH) mounts, gram stains, India ink, and calcofluor white stains</p> Signup and view all the answers

    Where can fungal pathogens infect the body?

    <p>Various body sites, including blood, cerebrospinal fluid, hair, nails, skin, lungs, throat, urine, and genital tract</p> Signup and view all the answers

    What is systemic mycosis?

    <p>A multiorgan infection caused by fungi</p> Signup and view all the answers

    What are dimorphic fungi?

    <p>Fungi that can show both a yeast and a mold phase</p> Signup and view all the answers

    What is the target of antifungal medications?

    <p>Ergosterol synthesis or binding to ergosterol in the fungal membrane</p> Signup and view all the answers

    Which of the following is NOT a common fungal pathogen found in various body sites?

    <p>Streptococcus pyogenes</p> Signup and view all the answers

    Fungi are prokaryotic organisms.

    <p>False</p> Signup and view all the answers

    The study of fungi is known as mycology.

    <p>True</p> Signup and view all the answers

    Fungal structure includes hyphae that come together to form the mycelium.

    <p>True</p> Signup and view all the answers

    Conidia are sexual reproductive structures in fungi.

    <p>False</p> Signup and view all the answers

    Fungal cultures can only be grown on general-purpose agar.

    <p>False</p> Signup and view all the answers

    Direct examination methods for fungi include gram staining.

    <p>True</p> Signup and view all the answers

    Fungal infections can only affect the skin and nails.

    <p>False</p> Signup and view all the answers

    Systemic mycosis is a fungal infection that affects only one organ.

    <p>False</p> Signup and view all the answers

    Dimorphic fungi can exist as both yeast and mold.

    <p>True</p> Signup and view all the answers

    Saprobes are fungi that live on living organic material.

    <p>False</p> Signup and view all the answers

    Antifungal medications can target ergosterol synthesis or bind to ergosterol in the fungal membrane.

    <p>True</p> Signup and view all the answers

    Opportunistic mycosis primarily affects immunocompetent patients.

    <p>False</p> Signup and view all the answers

    What is mycology?

    <p>Mycology is the study of fungi, including molds, yeasts, and mushrooms.</p> Signup and view all the answers

    What are the characteristics of fungi?

    <p>Fungi are eukaryotic organisms with complex carbohydrate cell walls and ergosterol as a major membrane sterol.</p> Signup and view all the answers

    What is the structure of fungi?

    <p>Fungi structure includes hyphae that come together to form the mycelium, which can be classified as vegetative or aerial.</p> Signup and view all the answers

    What are conidia?

    <p>Conidia are spore-like asexual reproductive structures that are important for fungal identification and classification.</p> Signup and view all the answers

    How do fungi reproduce?

    <p>Fungi can reproduce sexually or asexually, with different types of spores produced in each case.</p> Signup and view all the answers

    What are the different types of media that fungal cultures can be grown on?

    <p>Fungal cultures can be grown on different types of media, including general-purpose, selective, and differential agars.</p> Signup and view all the answers

    What are the direct examination methods used for fungal identification?

    <p>Direct examination methods include saline wet mounts, lactophenol cotton blue wet mounts, potassium hydroxide (KOH) mounts, gram stains, India ink, and calcofluor white stains.</p> Signup and view all the answers

    What body sites can fungal pathogens infect?

    <p>Fungal pathogens can infect various body sites, including blood, cerebrospinal fluid, hair, nails, skin, lungs, throat, urine, and genital tract.</p> Signup and view all the answers

    What are some common fungal pathogens found in various body sites?

    <p>Candida spp., Aspergillus, Histoplasma capsulatum, and Cryptococcus neoformans are among the common fungal pathogens found in these body sites.</p> Signup and view all the answers

    What is the difference between systemic and opportunistic mycosis?

    <p>Systemic mycosis is a multiorgan infection caused by fungi, while opportunistic mycosis occurs primarily in immunocompromised patients.</p> Signup and view all the answers

    What are dimorphic fungi and saprobes?

    <p>Dimorphic fungi can show both a yeast and a mold phase, while saprobes can live on decaying organic material.</p> Signup and view all the answers

    How can fungal infections be treated?

    <p>Fungal infections can be treated with antifungal medications that target ergosterol synthesis or bind to ergosterol in the fungal membrane.</p> Signup and view all the answers

    • ______ is the study of fungi, including molds, yeasts, and mushrooms.

    <p>Mycology</p> Signup and view all the answers

    Fungi are ______ organisms with complex carbohydrate cell walls and ergosterol as a major membrane sterol.

    <p>eukaryotic</p> Signup and view all the answers

    Fungal structure includes hyphae that come together to form the ______, which can be classified as vegetative or aerial.

    <p>mycelium</p> Signup and view all the answers

    ______ are spore-like asexual reproductive structures that are important for fungal identification and classification.

    <p>Conidia</p> Signup and view all the answers

    Fungi can reproduce ______ or asexually, with different types of spores produced in each case.

    <p>sexually</p> Signup and view all the answers

    Fungal cultures can be grown on different types of media, including general-purpose, selective, and differential ______.

    <p>agars</p> Signup and view all the answers

    Direct examination methods include saline wet mounts, lactophenol cotton blue wet mounts, potassium hydroxide (KOH) mounts, gram stains, India ink, and calcofluor white ______.

    <p>stains</p> Signup and view all the answers

    Fungal pathogens can infect various body sites, including blood, cerebrospinal fluid, hair, nails, skin, lungs, throat, urine, and ______ tract.

    <p>genital</p> Signup and view all the answers

    ______ capsulatum, and Cryptococcus neoformans are among the common fungal pathogens found in these body sites.

    <p>Histoplasma</p> Signup and view all the answers

    Systemic mycosis is a multiorgan infection caused by fungi, while ______ mycosis occurs primarily in immunocompromised patients.

    <p>opportunistic</p> Signup and view all the answers

    Dimorphic fungi can show both a ______ and a mold phase, while saprobes can live on decaying organic material.

    <p>yeast</p> Signup and view all the answers

    Fungal infections can be treated with antifungal medications that target ______ synthesis or bind to ergosterol in the fungal membrane.

    <p>ergosterol</p> Signup and view all the answers

    09/08/1444 Most common cause of yeast infections is ______

    <p>Candida albicans</p> Signup and view all the answers

    09/08/1444 Yeasts are discovered in routine ______

    <p>urinalysis</p> Signup and view all the answers

    09/08/1444 India ink preparations are used to show the ______ surrounding (Cryptococcus neoformans )

    <p>capsule</p> Signup and view all the answers

    09/08/1444 Yeasts are grown on Sabouraud-brain heart infusion agar at ______°C

    <p>22-30</p> Signup and view all the answers

    09/08/1444 Cornmeal agar with Tween 80 is used to differentiate ______ spp. by enhancing the formation of fungal elements such as hyphae, pseudohyphae, and conidia

    <p>Candida</p> Signup and view all the answers

    09/08/1444 Candida tropicalis typically produces ______-branched pseudohyphae. Blastoconidia are produced singly or in short chains. This species does not produce chlamydospores.

    <p>long</p> Signup and view all the answers

    09/08/1444 Germ tubes are hyphae like extensions of young yeast cells showing parallel sides, are non - septate (showing no cell wall division), and will not constrict at their point of origin. Pseudohyphae look like germ tubes but are ______ and constricted at their point of origin.

    <p>septate</p> Signup and view all the answers

    09/08/1444 Yeasts are incubated with serum at 37°C for up to 3 hours and examined for ______ production

    <p>germ tube</p> Signup and view all the answers

    09/08/1444 Assimilation tests determine the aerobic utilization of ______

    <p>carbohydrates</p> Signup and view all the answers

    09/08/1444 Agar slants containing various ______ are inoculated with yeast suspended in saline

    <p>carbohydrates</p> Signup and view all the answers

    09/08/1444 CHROMagars allow for the identification of several species of ______

    <p>yeasts</p> Signup and view all the answers

    09/08/1444 Used to identify Cryptococcus spp., which are ______ positive.

    <p>urease</p> Signup and view all the answers

    What is the most common cause of yeast infections?

    <p>Candida albicans</p> Signup and view all the answers

    What is the purpose of using Sabouraud-brain heart infusion agar for culturing yeasts?

    <p>To form cream-colored colonies</p> Signup and view all the answers

    What is the difference between germ tubes and pseudohyphae?

    <p>Germ tubes are septate and constricted at their point of origin, while pseudohyphae are non-septate and do not constrict at their point of origin</p> Signup and view all the answers

    What is the purpose of the carbohydrate assimilation test?

    <p>To determine the aerobic utilization of carbohydrates</p> Signup and view all the answers

    What is the purpose of the urease test?

    <p>To identify Cryptococcus spp.</p> Signup and view all the answers

    What is the purpose of CHROMagars?

    <p>To differentiate Candida spp.</p> Signup and view all the answers

    What is the appearance of Candida tropicalis on cornmeal agar?

    <p>It typically produces long-branched pseudohyphae</p> Signup and view all the answers

    What is the appearance of Candida albicans on cornmeal agar?

    <p>It produces chlamydospores with clusters of blastoconidia along the hyphae</p> Signup and view all the answers

    What is the method used to identify yeasts in routine urinalysis?

    <p>Microscopic appearance</p> Signup and view all the answers

    What is the method used to differentiate Candida spp. on cornmeal agar?

    <p>Enhanced formation of fungal elements</p> Signup and view all the answers

    What is the appearance of yeast colonies on blood agar?

    <p>They resemble Staphylococcus colonies</p> Signup and view all the answers

    What is the method used to examine yeast cells for germ tube production?

    <p>Germ tube procedure</p> Signup and view all the answers

    What is the most common cause of yeast infections?

    <p>Candida albicans</p> Signup and view all the answers

    What is the purpose of the germ tube procedure?

    <p>To differentiate Candida spp.</p> Signup and view all the answers

    What is the difference between germ tubes and pseudohyphae?

    <p>Germ tubes are non-septate and do not constrict at their point of origin while pseudohyphae are septate and constricted at their point of origin.</p> Signup and view all the answers

    What is the purpose of CHROMagars?

    <p>To differentiate Candida spp.</p> Signup and view all the answers

    What is the purpose of the carbohydrate assimilation test?

    <p>To differentiate Candida spp.</p> Signup and view all the answers

    What is the purpose of the urease test?

    <p>To identify Cryptococcus spp.</p> Signup and view all the answers

    What is the most common cause of yeast infections?

    <p>Candida albicans</p> Signup and view all the answers

    What is the purpose of using Sabouraud-brain heart infusion agar when culturing yeasts?

    <p>To form cream-colored colonies</p> Signup and view all the answers

    What is the purpose of using cornmeal agar with Tween 80 when culturing yeasts?

    <p>To differentiate Candida spp.</p> Signup and view all the answers

    What is the difference between germ tubes and pseudohyphae?

    <p>Germ tubes are non-septate and do not constrict at their point of origin, while pseudohyphae are septate and constricted at their point of origin.</p> Signup and view all the answers

    What is the procedure for testing germ tube production in yeasts?

    <p>Incubate with serum at 37°C for up to 3 hours and examine for germ tube production.</p> Signup and view all the answers

    What is the purpose of the carbohydrate assimilation test?

    <p>To determine the aerobic utilization of carbohydrates.</p> Signup and view all the answers

    What is the purpose of the pH indicator bromcresol purple in the carbohydrate assimilation test?

    <p>To indicate the utilization of carbohydrates.</p> Signup and view all the answers

    What is the purpose of the urease test?

    <p>To identify Cryptococcus spp.</p> Signup and view all the answers

    What is the purpose of CHROMagars?

    <p>To differentiate Candida spp.</p> Signup and view all the answers

    What is the purpose of India ink preparations?

    <p>To visualize the capsule surrounding Cryptococcus neoformans.</p> Signup and view all the answers

    What is the morphology of Candida tropicalis on cornmeal agar?

    <p>Long-branched pseudohyphae with blastoconidia produced singly or in short chains.</p> Signup and view all the answers

    What is the morphology of Candida albicans on cornmeal agar?

    <p>Chlamydospores with clusters of blastoconidia along the hyphae.</p> Signup and view all the answers

    What is the morphology of Candida tropicalis on blood agar?

    <p>Cream-colored, mucoid to smooth colonies resembling Staphylococcus colonies.</p> Signup and view all the answers

    What are the common diseases caused by yeasts?

    <p>Yeasts can cause vaginitis, urinary tract infections, newborn infections, meningitis and other diseases in healthy and immunosuppressed individuals.</p> Signup and view all the answers

    What is the most common cause of yeast infections?

    <p>The most common cause of yeast infections is Candida albicans.</p> Signup and view all the answers

    What are the methods used for identification of yeasts?

    <p>Microscopic appearance, culturing, germ tube production, carbohydrate assimilation test, urease test, and CHROMagars are used for identification of yeasts.</p> Signup and view all the answers

    How are yeasts cultured on Sabouraud-brain heart infusion agar?

    <p>Yeasts are grown on Sabouraud-brain heart infusion agar at 22-30°C. They will form cream-colored, mucoid to smooth colonies within several days.</p> Signup and view all the answers

    What is the difference between germ tubes and pseudohyphae?

    <p>Germ tubes are hyphae like extensions of young yeast cells showing parallel sides, are non-septate, and will not constrict at their point of origin. Pseudohyphae look like germ tubes but are septate and constricted at their point of origin.</p> Signup and view all the answers

    What is the purpose of CHROMagars in identifying yeasts?

    <p>CHROMagars allow for the identification of several species of yeasts by containing a variety of substrates. The ability to metabolize different substrates results in the production of colonies of different colors.</p> Signup and view all the answers

    Study Notes

    Overview of Leukocytes and their Types

    • Leukocytes develop from pluripotential stem cells in the bone marrow.
    • Hematopoietic growth factors influence stem cells to mature into terminally differentiated cells.
    • Leukocytes circulate for only a few hours in the peripheral blood before migrating to tissues.
    • Leukocytes defend the body against foreign invaders and are attracted to sites of inflammation, infection, or tissue injury by chemoattractants.
    • There are three main types of hematopoietic cells: stem cells, progenitor cells, and precursor cells.
    • Myeloblasts differentiate into promyelocytes, myelocytes, metamyelocytes, and finally, neutrophils.
    • The five types of human leukocytes are neutrophils, lymphocytes, monocytes, eosinophils, and basophils.
    • Neutrophils constitute 40-60% of circulatory leukocytes and have a segmented nucleus with two to four lobes.
    • Eosinophils spend very little time in peripheral blood before migrating to tissues and are associated with allergic reactions, parasite infection, and chronic inflammation.
    • Basophils constitute less than 1% of total leukocytes, have a bilobed nucleus, and large purple-black granules containing histamine and heparin.
    • Monocytes are the largest cells in peripheral blood and function as phagocytes, ingesting and killing microorganisms.
    • Lymphocytes are classified as T and B lymphocytes and are responsible for cell-mediated and humoral immunity, respectively.

    Overview of Leukocytes and their Types

    • Leukocytes develop from pluripotential stem cells in the bone marrow.
    • Hematopoietic growth factors influence stem cells to mature into terminally differentiated cells.
    • Leukocytes circulate for only a few hours in the peripheral blood before migrating to tissues.
    • Leukocytes defend the body against foreign invaders and are attracted to sites of inflammation, infection, or tissue injury by chemoattractants.
    • There are three main types of hematopoietic cells: stem cells, progenitor cells, and precursor cells.
    • Myeloblasts differentiate into promyelocytes, myelocytes, metamyelocytes, and finally, neutrophils.
    • The five types of human leukocytes are neutrophils, lymphocytes, monocytes, eosinophils, and basophils.
    • Neutrophils constitute 40-60% of circulatory leukocytes and have a segmented nucleus with two to four lobes.
    • Eosinophils spend very little time in peripheral blood before migrating to tissues and are associated with allergic reactions, parasite infection, and chronic inflammation.
    • Basophils constitute less than 1% of total leukocytes, have a bilobed nucleus, and large purple-black granules containing histamine and heparin.
    • Monocytes are the largest cells in peripheral blood and function as phagocytes, ingesting and killing microorganisms.
    • Lymphocytes are classified as T and B lymphocytes and are responsible for cell-mediated and humoral immunity, respectively.

    Overview of Leukocyte Development and Function

    • Leukocytes develop from pluripotential stem cells in the bone marrow under the influence of hematopoietic growth factors.
    • Stem cells mature into terminally differentiated cells that circulate for a few hours in peripheral blood before migrating to tissues.
    • Leukocytes serve as defenders of the body against foreign invaders and are attracted to sites of inflammation, infection, or tissue injury by chemoattractants.
    • Hematopoietic cells differentiate into stem cells, lymphoid and myeloid multipotential cells, progenitor cells, colony-forming cells, precursor cells, and mature cells.
    • Myelopoiesis involves the differentiation of myeloblasts into promyelocytes, myelocytes, metamyelocytes, and mature neutrophils with segmented nuclei.
    • The five types of human leukocytes include neutrophils, lymphocytes, monocytes, eosinophils, and basophils.
    • Neutrophils constitute the majority of circulatory leukocytes and have an average lifespan of 10 hours before moving to tissues through the blood vessel wall.
    • Eosinophils have a concentration in peripheral blood from 1-3% and are associated with allergic reactions, parasite infection, and chronic inflammation.
    • Basophils constitute less than 1% of leukocytes and function as mediators of inflammatory responses, especially those of hypersensitivity and allergic reactions.
    • Monocytes are the largest cells in the peripheral blood, leave the blood and enter the tissues, where they mature into macrophages, and function as phagocytes.
    • Lymphocytes generally classified as large and mature lymphocytes with two types, T and B lymphocytes, account for 20-40% of leukocytes and are responsible for cell-mediated and humoral immunity.
    • WBC count, types, and function can be obtained from CBC, DLC, and PBF, and normal range for total leukocyte count is 4,000-11,000/mm3 in adults, with a lower count than RBCs due to a shorter lifespan.

    Overview of Leukocyte Development and Function

    • Leukocytes develop from pluripotential stem cells in the bone marrow under the influence of hematopoietic growth factors.
    • Stem cells mature into terminally differentiated cells that circulate for a few hours in peripheral blood before migrating to tissues.
    • Leukocytes serve as defenders of the body against foreign invaders and are attracted to sites of inflammation, infection, or tissue injury by chemoattractants.
    • Hematopoietic cells differentiate into stem cells, lymphoid and myeloid multipotential cells, progenitor cells, colony-forming cells, precursor cells, and mature cells.
    • Myelopoiesis involves the differentiation of myeloblasts into promyelocytes, myelocytes, metamyelocytes, and mature neutrophils with segmented nuclei.
    • The five types of human leukocytes include neutrophils, lymphocytes, monocytes, eosinophils, and basophils.
    • Neutrophils constitute the majority of circulatory leukocytes and have an average lifespan of 10 hours before moving to tissues through the blood vessel wall.
    • Eosinophils have a concentration in peripheral blood from 1-3% and are associated with allergic reactions, parasite infection, and chronic inflammation.
    • Basophils constitute less than 1% of leukocytes and function as mediators of inflammatory responses, especially those of hypersensitivity and allergic reactions.
    • Monocytes are the largest cells in the peripheral blood, leave the blood and enter the tissues, where they mature into macrophages, and function as phagocytes.
    • Lymphocytes generally classified as large and mature lymphocytes with two types, T and B lymphocytes, account for 20-40% of leukocytes and are responsible for cell-mediated and humoral immunity.
    • WBC count, types, and function can be obtained from CBC, DLC, and PBF, and normal range for total leukocyte count is 4,000-11,000/mm3 in adults, with a lower count than RBCs due to a shorter lifespan.

    Introduction to Hematology: Characteristics and Functions of Blood

    • Hematology is the study of blood and blood-forming tissues, including their formation, function, and associated diseases.
    • Blood is composed of plasma and cellular elements, including leukocytes, platelets, and erythrocytes.
    • Plasma makes up approximately 55% of the blood volume, while erythrocytes make up 45%, and leukocytes and platelets make up 1%.
    • The principal component of plasma is water, which contains various dissolved ions, proteins, carbohydrates, fats, hormones, vitamins, and enzymes.
    • The main protein constituent of plasma is albumin, which acts as a carrier molecule for compounds such as bilirubin and heme.
    • Other blood proteins carry vitamins, minerals, and lipids, while immunoglobulins and complements are involved in immune defense.
    • Erythrocytes contain hemoglobin, which is responsible for transporting oxygen and carbon dioxide between the lungs and body tissues.
    • Leukocytes defend the body against foreign antigens, such as bacteria and viruses.
    • Platelets are necessary for maintaining hemostasis.
    • Blood comprises 8% of the body weight, with a volume of 4-5 L in females and 5-6 L in males.
    • The temperature of blood is 37-38°C, with a pH of 7.35-7.45 and a viscosity of 4.5-5.5 relative to water.
    • Blood is composed of plasma (90% water and 10% other substances) and formed elements (red blood cells, white blood cells, and platelets), with plasma containing various proteins such as albumin, globulins, and fibrinogen.

    Erythrocyte: Formation, Maturation, and Membrane

    • Erythrocyte refers to the formation of red blood cells, which have a circulating lifespan of approximately 120 ± 10 days.
    • Erythroid progenitor cells begin with hematopoietic stem cells (HSC) and differentiate into committed erythroid progenitor cells, consisting of burst-forming unit-erythroid(BFU-E) and colony-forming unit-erythroid(CFU-E).
    • The process of erythroid maturing cells formation includes six morphologically defined stages: Basophilic Normoblast, Polychromatic Normoblast, Orthochromatic Normoblast, Reticulocyte, and Erythrocyte.
    • Normoblasts spend from 5 to 7 days in the proliferating and maturing compartment of the bone marrow, and after reaching the reticulocyte stage, there is an additional 2-3 days of maturation before it is released to the peripheral blood.
    • Reticulocytes are immature RBCs that do not contain a nucleus but contain residual ribosomal RNA and remain in the bone marrow for 1-2 days before being released into circulation.
    • Erythrocytes are flat biconcave discs, non-nucleated, have a diameter of 7-8 µm, and a flexible structure. Females have 4.8 million erythrocytes, while males have 5.5 million erythrocytes.
    • Erythropoietin (EPO) is the only cytokine important in regulating the final stages of erythroid maturation, and androgen appears to stimulate EPO secretion.
    • Erythropoiesis is stimulated by Erythropoietin hormone produced by the kidney in response to hypoxia, which can be caused by low RBC count (anemia), hemorrhage, high altitude, exercise, prolonged heart failure, and lung disease.
    • The erythrocyte membrane is a phospholipid bilayer-protein complex composed of 52% protein, 40% lipid, and 8% carbohydrate.
    • The erythrocyte membrane has two types of proteins: integral and peripheral. Integral proteins include transport proteins and glycophorins, while peripheral proteins include spectrin and ankyrin, which serve as skeletal support for the membrane lipid bilayer.
    • The deformability of the red cell is due to its biconcave shape, the viscosity of hemoglobin, and the viscoelastic properties of erythrocyte membrane.
    • The function of the RBC membrane is to maintain erythrocyte's biconcave shape, provide deformability, elasticity, permeability, and contain blood group antigens.

    Erythrocyte: Formation, Maturation, and Membrane

    • Erythrocyte refers to the formation of red blood cells, which have a circulating lifespan of approximately 120 ± 10 days.
    • Erythroid progenitor cells begin with hematopoietic stem cells (HSC) and differentiate into committed erythroid progenitor cells, consisting of burst-forming unit-erythroid(BFU-E) and colony-forming unit-erythroid(CFU-E).
    • The process of erythroid maturing cells formation includes six morphologically defined stages: Basophilic Normoblast, Polychromatic Normoblast, Orthochromatic Normoblast, Reticulocyte, and Erythrocyte.
    • Normoblasts spend from 5 to 7 days in the proliferating and maturing compartment of the bone marrow, and after reaching the reticulocyte stage, there is an additional 2-3 days of maturation before it is released to the peripheral blood.
    • Reticulocytes are immature RBCs that do not contain a nucleus but contain residual ribosomal RNA and remain in the bone marrow for 1-2 days before being released into circulation.
    • Erythrocytes are flat biconcave discs, non-nucleated, have a diameter of 7-8 µm, and a flexible structure. Females have 4.8 million erythrocytes, while males have 5.5 million erythrocytes.
    • Erythropoietin (EPO) is the only cytokine important in regulating the final stages of erythroid maturation, and androgen appears to stimulate EPO secretion.
    • Erythropoiesis is stimulated by Erythropoietin hormone produced by the kidney in response to hypoxia, which can be caused by low RBC count (anemia), hemorrhage, high altitude, exercise, prolonged heart failure, and lung disease.
    • The erythrocyte membrane is a phospholipid bilayer-protein complex composed of 52% protein, 40% lipid, and 8% carbohydrate.
    • The erythrocyte membrane has two types of proteins: integral and peripheral. Integral proteins include transport proteins and glycophorins, while peripheral proteins include spectrin and ankyrin, which serve as skeletal support for the membrane lipid bilayer.
    • The deformability of the red cell is due to its biconcave shape, the viscosity of hemoglobin, and the viscoelastic properties of erythrocyte membrane.
    • The function of the RBC membrane is to maintain erythrocyte's biconcave shape, provide deformability, elasticity, permeability, and contain blood group antigens.

    Erythrocyte: Formation, Maturation, and Membrane

    • Erythrocyte refers to the formation of red blood cells, which have a circulating lifespan of approximately 120 ± 10 days.
    • Erythroid progenitor cells begin with hematopoietic stem cells (HSC) and differentiate into committed erythroid progenitor cells, consisting of burst-forming unit-erythroid(BFU-E) and colony-forming unit-erythroid(CFU-E).
    • The process of erythroid maturing cells formation includes six morphologically defined stages: Basophilic Normoblast, Polychromatic Normoblast, Orthochromatic Normoblast, Reticulocyte, and Erythrocyte.
    • Normoblasts spend from 5 to 7 days in the proliferating and maturing compartment of the bone marrow, and after reaching the reticulocyte stage, there is an additional 2-3 days of maturation before it is released to the peripheral blood.
    • Reticulocytes are immature RBCs that do not contain a nucleus but contain residual ribosomal RNA and remain in the bone marrow for 1-2 days before being released into circulation.
    • Erythrocytes are flat biconcave discs, non-nucleated, have a diameter of 7-8 µm, and a flexible structure. Females have 4.8 million erythrocytes, while males have 5.5 million erythrocytes.
    • Erythropoietin (EPO) is the only cytokine important in regulating the final stages of erythroid maturation, and androgen appears to stimulate EPO secretion.
    • Erythropoiesis is stimulated by Erythropoietin hormone produced by the kidney in response to hypoxia, which can be caused by low RBC count (anemia), hemorrhage, high altitude, exercise, prolonged heart failure, and lung disease.
    • The erythrocyte membrane is a phospholipid bilayer-protein complex composed of 52% protein, 40% lipid, and 8% carbohydrate.
    • The erythrocyte membrane has two types of proteins: integral and peripheral. Integral proteins include transport proteins and glycophorins, while peripheral proteins include spectrin and ankyrin, which serve as skeletal support for the membrane lipid bilayer.
    • The deformability of the red cell is due to its biconcave shape, the viscosity of hemoglobin, and the viscoelastic properties of erythrocyte membrane.
    • The function of the RBC membrane is to maintain erythrocyte's biconcave shape, provide deformability, elasticity, permeability, and contain blood group antigens.

    Erythrocyte: Formation, Maturation, and Membrane

    • Erythrocyte refers to the formation of red blood cells, which have a circulating lifespan of approximately 120 ± 10 days.
    • Erythroid progenitor cells begin with hematopoietic stem cells (HSC) and differentiate into committed erythroid progenitor cells, consisting of burst-forming unit-erythroid(BFU-E) and colony-forming unit-erythroid(CFU-E).
    • The process of erythroid maturing cells formation includes six morphologically defined stages: Basophilic Normoblast, Polychromatic Normoblast, Orthochromatic Normoblast, Reticulocyte, and Erythrocyte.
    • Normoblasts spend from 5 to 7 days in the proliferating and maturing compartment of the bone marrow, and after reaching the reticulocyte stage, there is an additional 2-3 days of maturation before it is released to the peripheral blood.
    • Reticulocytes are immature RBCs that do not contain a nucleus but contain residual ribosomal RNA and remain in the bone marrow for 1-2 days before being released into circulation.
    • Erythrocytes are flat biconcave discs, non-nucleated, have a diameter of 7-8 µm, and a flexible structure. Females have 4.8 million erythrocytes, while males have 5.5 million erythrocytes.
    • Erythropoietin (EPO) is the only cytokine important in regulating the final stages of erythroid maturation, and androgen appears to stimulate EPO secretion.
    • Erythropoiesis is stimulated by Erythropoietin hormone produced by the kidney in response to hypoxia, which can be caused by low RBC count (anemia), hemorrhage, high altitude, exercise, prolonged heart failure, and lung disease.
    • The erythrocyte membrane is a phospholipid bilayer-protein complex composed of 52% protein, 40% lipid, and 8% carbohydrate.
    • The erythrocyte membrane has two types of proteins: integral and peripheral. Integral proteins include transport proteins and glycophorins, while peripheral proteins include spectrin and ankyrin, which serve as skeletal support for the membrane lipid bilayer.
    • The deformability of the red cell is due to its biconcave shape, the viscosity of hemoglobin, and the viscoelastic properties of erythrocyte membrane.
    • The function of the RBC membrane is to maintain erythrocyte's biconcave shape, provide deformability, elasticity, permeability, and contain blood group antigens.

    Erythrocyte: Formation, Maturation, and Membrane

    • Erythrocyte refers to the formation of red blood cells, which have a circulating lifespan of approximately 120 ± 10 days.
    • Erythroid progenitor cells begin with hematopoietic stem cells (HSC) and differentiate into committed erythroid progenitor cells, consisting of burst-forming unit-erythroid(BFU-E) and colony-forming unit-erythroid(CFU-E).
    • The process of erythroid maturing cells formation includes six morphologically defined stages: Basophilic Normoblast, Polychromatic Normoblast, Orthochromatic Normoblast, Reticulocyte, and Erythrocyte.
    • Normoblasts spend from 5 to 7 days in the proliferating and maturing compartment of the bone marrow, and after reaching the reticulocyte stage, there is an additional 2-3 days of maturation before it is released to the peripheral blood.
    • Reticulocytes are immature RBCs that do not contain a nucleus but contain residual ribosomal RNA and remain in the bone marrow for 1-2 days before being released into circulation.
    • Erythrocytes are flat biconcave discs, non-nucleated, have a diameter of 7-8 µm, and a flexible structure. Females have 4.8 million erythrocytes, while males have 5.5 million erythrocytes.
    • Erythropoietin (EPO) is the only cytokine important in regulating the final stages of erythroid maturation, and androgen appears to stimulate EPO secretion.
    • Erythropoiesis is stimulated by Erythropoietin hormone produced by the kidney in response to hypoxia, which can be caused by low RBC count (anemia), hemorrhage, high altitude, exercise, prolonged heart failure, and lung disease.
    • The erythrocyte membrane is a phospholipid bilayer-protein complex composed of 52% protein, 40% lipid, and 8% carbohydrate.
    • The erythrocyte membrane has two types of proteins: integral and peripheral. Integral proteins include transport proteins and glycophorins, while peripheral proteins include spectrin and ankyrin, which serve as skeletal support for the membrane lipid bilayer.
    • The deformability of the red cell is due to its biconcave shape, the viscosity of hemoglobin, and the viscoelastic properties of erythrocyte membrane.
    • The function of the RBC membrane is to maintain erythrocyte's biconcave shape, provide deformability, elasticity, permeability, and contain blood group antigens.

    Erythrocyte: Formation, Maturation, and Membrane

    • Erythrocyte refers to the formation of red blood cells, which have a circulating lifespan of approximately 120 ± 10 days.
    • Erythroid progenitor cells begin with hematopoietic stem cells (HSC) and differentiate into committed erythroid progenitor cells, consisting of burst-forming unit-erythroid(BFU-E) and colony-forming unit-erythroid(CFU-E).
    • The process of erythroid maturing cells formation includes six morphologically defined stages: Basophilic Normoblast, Polychromatic Normoblast, Orthochromatic Normoblast, Reticulocyte, and Erythrocyte.
    • Normoblasts spend from 5 to 7 days in the proliferating and maturing compartment of the bone marrow, and after reaching the reticulocyte stage, there is an additional 2-3 days of maturation before it is released to the peripheral blood.
    • Reticulocytes are immature RBCs that do not contain a nucleus but contain residual ribosomal RNA and remain in the bone marrow for 1-2 days before being released into circulation.
    • Erythrocytes are flat biconcave discs, non-nucleated, have a diameter of 7-8 µm, and a flexible structure. Females have 4.8 million erythrocytes, while males have 5.5 million erythrocytes.
    • Erythropoietin (EPO) is the only cytokine important in regulating the final stages of erythroid maturation, and androgen appears to stimulate EPO secretion.
    • Erythropoiesis is stimulated by Erythropoietin hormone produced by the kidney in response to hypoxia, which can be caused by low RBC count (anemia), hemorrhage, high altitude, exercise, prolonged heart failure, and lung disease.
    • The erythrocyte membrane is a phospholipid bilayer-protein complex composed of 52% protein, 40% lipid, and 8% carbohydrate.
    • The erythrocyte membrane has two types of proteins: integral and peripheral. Integral proteins include transport proteins and glycophorins, while peripheral proteins include spectrin and ankyrin, which serve as skeletal support for the membrane lipid bilayer.
    • The deformability of the red cell is due to its biconcave shape, the viscosity of hemoglobin, and the viscoelastic properties of erythrocyte membrane.
    • The function of the RBC membrane is to maintain erythrocyte's biconcave shape, provide deformability, elasticity, permeability, and contain blood group antigens.

    Haematopoiesis: The Process of Blood Cell Production

    • Haematopoiesis is the production of different types of blood cells.
    • This process depends on the proliferation of precursor cells that retain mitotic capability and is regulated by cytokines.
    • The replacement of circulating mature blood cells depends on the function of hematopoietic precursor cells.
    • There are three types of hematopoiesis: erythropoiesis, leukopoiesis, and thrombopoiesis.
    • Haematopoiesis takes place in hematopoietic organs, primarily in bone marrow in adults.
    • The process of haematopoiesis involves careful balance between cellular proliferation, differentiation, and cell death.
    • Hematopoietic precursor cells are divided into three cellular compartments: stem cells, progenitor cells, and maturing cells.
    • Stem cells are pluripotential and give rise to all lineages of blood cells.
    • Progenitor cells have restricted development potential and include colony-forming units (CFUs) that produce different types of blood cells.
    • Maturing cells constitute more than 95% of total hematopoietic cells and are morphologically recognizable.
    • Hematopoietic precursor cell survival, self-renewal, proliferation, and differentiation are regulated by hematopoietic growth factors or cytokines.
    • The hematopoietic microenvironment, which includes stromal cells and extracellular matrix, is crucial for the development of hematopoietic cells.

    Haematopoiesis: The Process of Blood Cell Production

    • Haematopoiesis is the production of different types of blood cells.
    • This process depends on the proliferation of precursor cells that retain mitotic capability and is regulated by cytokines.
    • The replacement of circulating mature blood cells depends on the function of hematopoietic precursor cells.
    • There are three types of hematopoiesis: erythropoiesis, leukopoiesis, and thrombopoiesis.
    • Haematopoiesis takes place in hematopoietic organs, primarily in bone marrow in adults.
    • The process of haematopoiesis involves careful balance between cellular proliferation, differentiation, and cell death.
    • Hematopoietic precursor cells are divided into three cellular compartments: stem cells, progenitor cells, and maturing cells.
    • Stem cells are pluripotential and give rise to all lineages of blood cells.
    • Progenitor cells have restricted development potential and include colony-forming units (CFUs) that produce different types of blood cells.
    • Maturing cells constitute more than 95% of total hematopoietic cells and are morphologically recognizable.
    • Hematopoietic precursor cell survival, self-renewal, proliferation, and differentiation are regulated by hematopoietic growth factors or cytokines.
    • The hematopoietic microenvironment, which includes stromal cells and extracellular matrix, is crucial for the development of hematopoietic cells.

    Introduction to Hematology: Characteristics and Functions of Blood

    • Hematology is the study of blood and blood-forming tissues, including their formation, function, and associated diseases.
    • Blood is composed of plasma and cellular elements, including leukocytes, platelets, and erythrocytes.
    • Plasma makes up approximately 55% of the blood volume, while erythrocytes make up 45%, and leukocytes and platelets make up 1%.
    • The principal component of plasma is water, which contains various dissolved ions, proteins, carbohydrates, fats, hormones, vitamins, and enzymes.
    • The main protein constituent of plasma is albumin, which acts as a carrier molecule for compounds such as bilirubin and heme.
    • Other blood proteins carry vitamins, minerals, and lipids, while immunoglobulins and complements are involved in immune defense.
    • Erythrocytes contain hemoglobin, which is responsible for transporting oxygen and carbon dioxide between the lungs and body tissues.
    • Leukocytes defend the body against foreign antigens, such as bacteria and viruses.
    • Platelets are necessary for maintaining hemostasis.
    • Blood comprises 8% of the body weight, with a volume of 4-5 L in females and 5-6 L in males.
    • The temperature of blood is 37-38°C, with a pH of 7.35-7.45 and a viscosity of 4.5-5.5 relative to water.
    • Blood is composed of plasma (90% water and 10% other substances) and formed elements (red blood cells, white blood cells, and platelets), with plasma containing various proteins such as albumin, globulins, and fibrinogen.

    Introduction to Hematology: Characteristics and Functions of Blood

    • Hematology is the study of blood and blood-forming tissues, including their formation, function, and associated diseases.
    • Blood is composed of plasma and cellular elements, including leukocytes, platelets, and erythrocytes.
    • Plasma makes up approximately 55% of the blood volume, while erythrocytes make up 45%, and leukocytes and platelets make up 1%.
    • The principal component of plasma is water, which contains various dissolved ions, proteins, carbohydrates, fats, hormones, vitamins, and enzymes.
    • The main protein constituent of plasma is albumin, which acts as a carrier molecule for compounds such as bilirubin and heme.
    • Other blood proteins carry vitamins, minerals, and lipids, while immunoglobulins and complements are involved in immune defense.
    • Erythrocytes contain hemoglobin, which is responsible for transporting oxygen and carbon dioxide between the lungs and body tissues.
    • Leukocytes defend the body against foreign antigens, such as bacteria and viruses.
    • Platelets are necessary for maintaining hemostasis.
    • Blood comprises 8% of the body weight, with a volume of 4-5 L in females and 5-6 L in males.
    • The temperature of blood is 37-38°C, with a pH of 7.35-7.45 and a viscosity of 4.5-5.5 relative to water.
    • Blood is composed of plasma (90% water and 10% other substances) and formed elements (red blood cells, white blood cells, and platelets), with plasma containing various proteins such as albumin, globulins, and fibrinogen.

    Introduction to Hematology: Characteristics and Functions of Blood

    • Hematology is the study of blood and blood-forming tissues, including their formation, function, and associated diseases.
    • Blood is composed of plasma and cellular elements, including leukocytes, platelets, and erythrocytes.
    • Plasma comprises approximately 55% of the blood volume, while erythrocytes comprise 45%, and leukocytes and platelets comprise 1%.
    • The principal component of plasma is water, which contains ions, proteins, carbohydrates, fats, hormones, vitamins, and enzymes necessary for normal cell function.
    • The main protein constituent of plasma is albumin, which acts as a carrier molecule for compounds such as bilirubin and heme.
    • Immunoglobulins and complements are specialized blood proteins involved in immune defense, while coagulation proteins maintain normal hemostasis.
    • Erythrocytes contain hemoglobin, which is responsible for transporting oxygen and carbon dioxide between the lungs and body tissues.
    • Leukocytes defend the body against foreign antigens such as bacteria and viruses.
    • Platelets are necessary for maintaining hemostasis.
    • Whole blood is bright dark red, comprises 8% of body weight, and has a volume of 4-5 L in females and 5-6 L in males, with a temperature of 37-38C and pH of 7.35-7.45.
    • Plasma is the liquid part of blood, comprising 90% water and 10% other substances, including plasma proteins (albumin, globulins, fibrinogen) and inorganic substances (Na, K, HCO3, Ca).
    • The functions of blood include transporting oxygen, nutrients, hormones, and waste products; maintaining normal acid-base balance, body temperature, and water balance; delivering specialized cells for tissue protection; and preventing leakage by closing holes in blood vessels.

    Introduction to Hematology: Characteristics and Functions of Blood

    • Hematology is the study of blood and blood-forming tissues, including their formation, function, and associated diseases.
    • Blood is composed of plasma and cellular elements, including leukocytes, platelets, and erythrocytes.
    • Plasma comprises approximately 55% of the blood volume, while erythrocytes comprise 45%, and leukocytes and platelets comprise 1%.
    • The principal component of plasma is water, which contains ions, proteins, carbohydrates, fats, hormones, vitamins, and enzymes necessary for normal cell function.
    • The main protein constituent of plasma is albumin, which acts as a carrier molecule for compounds such as bilirubin and heme.
    • Immunoglobulins and complements are specialized blood proteins involved in immune defense, while coagulation proteins maintain normal hemostasis.
    • Erythrocytes contain hemoglobin, which is responsible for transporting oxygen and carbon dioxide between the lungs and body tissues.
    • Leukocytes defend the body against foreign antigens such as bacteria and viruses.
    • Platelets are necessary for maintaining hemostasis.
    • Whole blood is bright dark red, comprises 8% of body weight, and has a volume of 4-5 L in females and 5-6 L in males, with a temperature of 37-38C and pH of 7.35-7.45.
    • Plasma is the liquid part of blood, comprising 90% water and 10% other substances, including plasma proteins (albumin, globulins, fibrinogen) and inorganic substances (Na, K, HCO3, Ca).
    • The functions of blood include transporting oxygen, nutrients, hormones, and waste products; maintaining normal acid-base balance, body temperature, and water balance; delivering specialized cells for tissue protection; and preventing leakage by closing holes in blood vessels.

    Overview of Leukocyte Development and Function

    • Leukocytes develop from pluripotential stem cells in the bone marrow.
    • Hematopoietic growth factors influence stem cells to mature into terminally differentiated cells.
    • Leukocytes circulate in the peripheral blood for only a few hours before migrating to the tissues.
    • Leukocytes serve as defenders of the body against foreign invaders.
    • Hematopoietic cells differentiate into stem cells, progenitor cells, precursor cells, and mature cells.
    • Myelopoiesis is the process of granulocytic cell differentiation.
    • There are five types of human leukocytes: neutrophils, lymphocytes, monocytes, eosinophils, and basophils.
    • Neutrophils are the majority of circulatory leukocytes and have a segmented nucleus with two to four lobes.
    • Eosinophils have a concentration in peripheral blood from 1-3% and are associated with allergic reactions, parasite infection, and chronic inflammation.
    • Basophils constitute from 0-1% of the total leukocyte and function as mediators of inflammatory responses, especially those of hypersensitivity and allergic reactions.
    • Monocytes are the largest cells in the peripheral blood and function as phagocytes.
    • Lymphocytes generally classified as large and mature lymphocyte and account between 20-40% function of lymphocyte.

    Erythrocyte: Formation, Maturation, and Membrane

    • Erythrocyte refers to the formation of red blood cells, which have a circulating lifespan of approximately 120 ± 10 days.
    • Erythroid progenitor cells begin with hematopoietic stem cells (HSC) and differentiate into committed erythroid progenitor cells, consisting of burst-forming unit-erythroid(BFU-E) and colony-forming unit-erythroid(CFU-E).
    • The process of erythroid maturing cells formation includes six morphologically defined stages: Basophilic Normoblast, Polychromatic Normoblast, Orthochromatic Normoblast, Reticulocyte, and Erythrocyte.
    • Normoblasts spend from 5 to 7 days in the proliferating and maturing compartment of the bone marrow, and after reaching the reticulocyte stage, there is an additional 2-3 days of maturation before it is released to the peripheral blood.
    • Reticulocytes are immature RBCs that do not contain a nucleus but contain residual ribosomal RNA and remain in the bone marrow for 1-2 days before being released into circulation.
    • Erythrocytes are flat biconcave discs, non-nucleated, have a diameter of 7-8 µm, and a flexible structure. Females have 4.8 million erythrocytes, while males have 5.5 million erythrocytes.
    • Erythropoietin (EPO) is the only cytokine important in regulating the final stages of erythroid maturation, and androgen appears to stimulate EPO secretion.
    • Erythropoiesis is stimulated by Erythropoietin hormone produced by the kidney in response to hypoxia, which can be caused by low RBC count (anemia), hemorrhage, high altitude, exercise, prolonged heart failure, and lung disease.
    • The erythrocyte membrane is a phospholipid bilayer-protein complex composed of 52% protein, 40% lipid, and 8% carbohydrate.
    • The erythrocyte membrane has two types of proteins: integral and peripheral. Integral proteins include transport proteins and glycophorins, while peripheral proteins include spectrin and ankyrin, which serve as skeletal support for the membrane lipid bilayer.
    • The deformability of the red cell is due to its biconcave shape, the viscosity of hemoglobin, and the viscoelastic properties of erythrocyte membrane.
    • The function of the RBC membrane is to maintain erythrocyte's biconcave shape, provide deformability, elasticity, permeability, and contain blood group antigens.

    Haematopoiesis: The Process of Blood Cell Production

    • Haematopoiesis is the production of different types of blood cells.
    • This process depends on the proliferation of precursor cells that retain mitotic capability and is regulated by cytokines.
    • The replacement of circulating mature blood cells depends on the function of hematopoietic precursor cells.
    • There are three types of hematopoiesis: erythropoiesis, leukopoiesis, and thrombopoiesis.
    • Haematopoiesis takes place in hematopoietic organs, primarily in bone marrow in adults.
    • The process of haematopoiesis involves careful balance between cellular proliferation, differentiation, and cell death.
    • Hematopoietic precursor cells are divided into three cellular compartments: stem cells, progenitor cells, and maturing cells.
    • Stem cells are pluripotential and give rise to all lineages of blood cells.
    • Progenitor cells have restricted development potential and include colony-forming units (CFUs) that produce different types of blood cells.
    • Maturing cells constitute more than 95% of total hematopoietic cells and are morphologically recognizable.
    • Hematopoietic precursor cell survival, self-renewal, proliferation, and differentiation are regulated by hematopoietic growth factors or cytokines.
    • The hematopoietic microenvironment, which includes stromal cells and extracellular matrix, is crucial for the development of hematopoietic cells.

    Overview of Leukocyte Development and Function

    • Leukocytes develop from pluripotential stem cells in the bone marrow.
    • Hematopoietic growth factors influence stem cells to mature into terminally differentiated cells.
    • Leukocytes circulate in the peripheral blood for only a few hours before migrating to the tissues.
    • Leukocytes serve as defenders of the body against foreign invaders.
    • Hematopoietic cells differentiate into stem cells, progenitor cells, precursor cells, and mature cells.
    • Myelopoiesis is the process of granulocytic cell differentiation.
    • There are five types of human leukocytes: neutrophils, lymphocytes, monocytes, eosinophils, and basophils.
    • Neutrophils are the majority of circulatory leukocytes and have a segmented nucleus with two to four lobes.
    • Eosinophils have a concentration in peripheral blood from 1-3% and are associated with allergic reactions, parasite infection, and chronic inflammation.
    • Basophils constitute from 0-1% of the total leukocyte and function as mediators of inflammatory responses, especially those of hypersensitivity and allergic reactions.
    • Monocytes are the largest cells in the peripheral blood and function as phagocytes.
    • Lymphocytes generally classified as large and mature lymphocyte and account between 20-40% function of lymphocyte.

    Overview of Leukocyte Development and Function

    • Leukocytes develop from pluripotential stem cells in the bone marrow.
    • Hematopoietic growth factors influence stem cells to mature into terminally differentiated cells.
    • Leukocytes circulate in the peripheral blood for only a few hours before migrating to the tissues.
    • Leukocytes serve as defenders of the body against foreign invaders.
    • Hematopoietic cells differentiate into stem cells, progenitor cells, precursor cells, and mature cells.
    • Myelopoiesis is the process of granulocytic cell differentiation.
    • There are five types of human leukocytes: neutrophils, lymphocytes, monocytes, eosinophils, and basophils.
    • Neutrophils are the majority of circulatory leukocytes and have a segmented nucleus with two to four lobes.
    • Eosinophils have a concentration in peripheral blood from 1-3% and are associated with allergic reactions, parasite infection, and chronic inflammation.
    • Basophils constitute from 0-1% of the total leukocyte and function as mediators of inflammatory responses, especially those of hypersensitivity and allergic reactions.
    • Monocytes are the largest cells in the peripheral blood and function as phagocytes.
    • Lymphocytes generally classified as large and mature lymphocyte and account between 20-40% function of lymphocyte.

    Overview of Leukocyte Development and Function

    • Leukocytes develop from pluripotential stem cells in the bone marrow.
    • Hematopoietic growth factors influence stem cells to mature into terminally differentiated cells.
    • Leukocytes circulate in the peripheral blood for only a few hours before migrating to the tissues.
    • Leukocytes serve as defenders of the body against foreign invaders.
    • Hematopoietic cells differentiate into stem cells, progenitor cells, precursor cells, and mature cells.
    • Myelopoiesis is the process of granulocytic cell differentiation.
    • There are five types of human leukocytes: neutrophils, lymphocytes, monocytes, eosinophils, and basophils.
    • Neutrophils are the majority of circulatory leukocytes and have a segmented nucleus with two to four lobes.
    • Eosinophils have a concentration in peripheral blood from 1-3% and are associated with allergic reactions, parasite infection, and chronic inflammation.
    • Basophils constitute from 0-1% of the total leukocyte and function as mediators of inflammatory responses, especially those of hypersensitivity and allergic reactions.
    • Monocytes are the largest cells in the peripheral blood and function as phagocytes.
    • Lymphocytes generally classified as large and mature lymphocyte and account between 20-40% function of lymphocyte.

    Overview of Leukocyte Development and Function

    • Leukocytes develop from pluripotential stem cells in the bone marrow.
    • Hematopoietic growth factors influence stem cells to mature into terminally differentiated cells.
    • Leukocytes circulate in the peripheral blood for only a few hours before migrating to the tissues.
    • Leukocytes serve as defenders of the body against foreign invaders.
    • Hematopoietic cells differentiate into stem cells, progenitor cells, precursor cells, and mature cells.
    • Myelopoiesis is the process of granulocytic cell differentiation.
    • There are five types of human leukocytes: neutrophils, lymphocytes, monocytes, eosinophils, and basophils.
    • Neutrophils are the majority of circulatory leukocytes and have a segmented nucleus with two to four lobes.
    • Eosinophils have a concentration in peripheral blood from 1-3% and are associated with allergic reactions, parasite infection, and chronic inflammation.
    • Basophils constitute from 0-1% of the total leukocyte and function as mediators of inflammatory responses, especially those of hypersensitivity and allergic reactions.
    • Monocytes are the largest cells in the peripheral blood and function as phagocytes.
    • Lymphocytes generally classified as large and mature lymphocyte and account between 20-40% function of lymphocyte.

    Overview of Enteroviruses and Poliovirus

    • Enteroviruses belong to the Picornaviridae family and are RNA viruses of group IV Baltimore.
    • The four categories of enteroviruses are polioviruses, Coxsackie A viruses, Coxsackie B viruses, and echoviruses.
    • Coxsackie A, Coxsackie B, and echoviruses are non-polio enteroviruses that can cause mild to severe illnesses in people, especially those with weak immune systems.
    • Enteroviruses spread through the fecal-oral route and can cause hand, foot, and mouth disease, myocarditis, meningitis, and pancreatitis.
    • Poliovirus is a rare paralytic illness caused by a virus that infects nerve cells in the spinal cord, brain stem, or motor cortex.
    • Poliovirus transmission occurs mainly through the feces of infected people, and symptoms include fever, headache, and sore throat.
    • The immune response to poliovirus includes an initial IgM response followed by IgG, which helps prevent re-infection.
    • There are two forms of poliovirus vaccine: live attenuated (OPV) and inactivated (IPV).
    • OPV induces blood and mucosal immune response against all three serotypes of poliovirus and is safe and effective.
    • IPV is administered through injection and induces a stronger protective immune response than OPV, but it is more expensive and requires qualified health workers and sterile equipment.
    • The lab diagnosis of poliovirus can be done through electron microscope, cell culture, or PCR, and serology can be useful in determining if a patient has paralytic poliomyelitis.
    • Vaccine-derived polioviruses and rare cases of vaccine-associated paralytic polio are potential disadvantages of poliovirus vaccination.

    Overview of Enteroviruses and Poliovirus

    • Enteroviruses belong to the Picornaviridae family and are RNA viruses of group IV Baltimore.
    • The four categories of enteroviruses are polioviruses, Coxsackie A viruses, Coxsackie B viruses, and echoviruses.
    • Coxsackie A, Coxsackie B, and echoviruses are non-polio enteroviruses that can cause mild to severe illnesses in people, especially those with weak immune systems.
    • Enteroviruses spread through the fecal-oral route and can cause hand, foot, and mouth disease, myocarditis, meningitis, and pancreatitis.
    • Poliovirus is a rare paralytic illness caused by a virus that infects nerve cells in the spinal cord, brain stem, or motor cortex.
    • Poliovirus transmission occurs mainly through the feces of infected people, and symptoms include fever, headache, and sore throat.
    • The immune response to poliovirus includes an initial IgM response followed by IgG, which helps prevent re-infection.
    • There are two forms of poliovirus vaccine: live attenuated (OPV) and inactivated (IPV).
    • OPV induces blood and mucosal immune response against all three serotypes of poliovirus and is safe and effective.
    • IPV is administered through injection and induces a stronger protective immune response than OPV, but it is more expensive and requires qualified health workers and sterile equipment.
    • The lab diagnosis of poliovirus can be done through electron microscope, cell culture, or PCR, and serology can be useful in determining if a patient has paralytic poliomyelitis.
    • Vaccine-derived polioviruses and rare cases of vaccine-associated paralytic polio are potential disadvantages of poliovirus vaccination.

    Overview of Enteroviruses and Poliovirus

    • Enteroviruses belong to the Picornaviridae family and are RNA viruses of group IV Baltimore.
    • The four categories of enteroviruses are polioviruses, Coxsackie A viruses, Coxsackie B viruses, and echoviruses.
    • Coxsackie A, Coxsackie B, and echoviruses are non-polio enteroviruses that can cause mild to severe illnesses in people, especially those with weak immune systems.
    • Enteroviruses spread through the fecal-oral route and can cause hand, foot, and mouth disease, myocarditis, meningitis, and pancreatitis.
    • Poliovirus is a rare paralytic illness caused by a virus that infects nerve cells in the spinal cord, brain stem, or motor cortex.
    • Poliovirus transmission occurs mainly through the feces of infected people, and symptoms include fever, headache, and sore throat.
    • The immune response to poliovirus includes an initial IgM response followed by IgG, which helps prevent re-infection.
    • There are two forms of poliovirus vaccine: live attenuated (OPV) and inactivated (IPV).
    • OPV induces blood and mucosal immune response against all three serotypes of poliovirus and is safe and effective.
    • IPV is administered through injection and induces a stronger protective immune response than OPV, but it is more expensive and requires qualified health workers and sterile equipment.
    • The lab diagnosis of poliovirus can be done through electron microscope, cell culture, or PCR, and serology can be useful in determining if a patient has paralytic poliomyelitis.
    • Vaccine-derived polioviruses and rare cases of vaccine-associated paralytic polio are potential disadvantages of poliovirus vaccination.

    Overview of Enteroviruses and Poliovirus

    • Enteroviruses belong to the Picornaviridae family and are RNA viruses of group IV Baltimore.
    • The four categories of enteroviruses are polioviruses, Coxsackie A viruses, Coxsackie B viruses, and echoviruses.
    • Coxsackie A, Coxsackie B, and echoviruses are non-polio enteroviruses that can cause mild to severe illnesses in people, especially those with weak immune systems.
    • Enteroviruses spread through the fecal-oral route and can cause hand, foot, and mouth disease, myocarditis, meningitis, and pancreatitis.
    • Poliovirus is a rare paralytic illness caused by a virus that infects nerve cells in the spinal cord, brain stem, or motor cortex.
    • Poliovirus transmission occurs mainly through the feces of infected people, and symptoms include fever, headache, and sore throat.
    • The immune response to poliovirus includes an initial IgM response followed by IgG, which helps prevent re-infection.
    • There are two forms of poliovirus vaccine: live attenuated (OPV) and inactivated (IPV).
    • OPV induces blood and mucosal immune response against all three serotypes of poliovirus and is safe and effective.
    • IPV is administered through injection and induces a stronger protective immune response than OPV, but it is more expensive and requires qualified health workers and sterile equipment.
    • The lab diagnosis of poliovirus can be done through electron microscope, cell culture, or PCR, and serology can be useful in determining if a patient has paralytic poliomyelitis.
    • Vaccine-derived polioviruses and rare cases of vaccine-associated paralytic polio are potential disadvantages of poliovirus vaccination.

    Overview of Enteroviruses and Poliovirus

    • Enteroviruses belong to the Picornaviridae family and are RNA viruses of group IV Baltimore.
    • The four categories of enteroviruses are polioviruses, Coxsackie A viruses, Coxsackie B viruses, and echoviruses.
    • Coxsackie A, Coxsackie B, and echoviruses are non-polio enteroviruses that can cause mild to severe illnesses in people, especially those with weak immune systems.
    • Enteroviruses spread through the fecal-oral route and can cause hand, foot, and mouth disease, myocarditis, meningitis, and pancreatitis.
    • Poliovirus is a rare paralytic illness caused by a virus that infects nerve cells in the spinal cord, brain stem, or motor cortex.
    • Poliovirus transmission occurs mainly through the feces of infected people, and symptoms include fever, headache, and sore throat.
    • The immune response to poliovirus includes an initial IgM response followed by IgG, which helps prevent re-infection.
    • There are two forms of poliovirus vaccine: live attenuated (OPV) and inactivated (IPV).
    • OPV induces blood and mucosal immune response against all three serotypes of poliovirus and is safe and effective.
    • IPV is administered through injection and induces a stronger protective immune response than OPV, but it is more expensive and requires qualified health workers and sterile equipment.
    • The lab diagnosis of poliovirus can be done through electron microscope, cell culture, or PCR, and serology can be useful in determining if a patient has paralytic poliomyelitis.
    • Vaccine-derived polioviruses and rare cases of vaccine-associated paralytic polio are potential disadvantages of poliovirus vaccination.

    Introduction to Fungal Pathogens and Their Characteristics

    • Mycology is the study of fungi, including molds, yeasts, and mushrooms.
    • Fungi are eukaryotic organisms with complex carbohydrate cell walls and ergosterol as a major membrane sterol.
    • Fungal structure includes hyphae that come together to form the mycelium, which can be classified as vegetative or aerial.
    • Conidia are spore-like asexual reproductive structures that are important for fungal identification and classification.
    • Fungi can reproduce sexually or asexually, with different types of spores produced in each case.
    • Fungal cultures can be grown on different types of media, including general-purpose, selective, and differential agars.
    • Direct examination methods include saline wet mounts, lactophenol cotton blue wet mounts, potassium hydroxide (KOH) mounts, gram stains, India ink, and calcofluor white stains.
    • Fungal pathogens can infect various body sites, including blood, cerebrospinal fluid, hair, nails, skin, lungs, throat, urine, and genital tract.
    • Candida spp., Aspergillus, Histoplasma capsulatum, and Cryptococcus neoformans are among the common fungal pathogens found in these body sites.
    • Systemic mycosis is a multiorgan infection caused by fungi, while opportunistic mycosis occurs primarily in immunocompromised patients.
    • Dimorphic fungi can show both a yeast and a mold phase, while saprobes can live on decaying organic material.
    • Fungal infections can be treated with antifungal medications that target ergosterol synthesis or bind to ergosterol in the fungal membrane.

    Introduction to Fungal Pathogens and Their Characteristics

    • Mycology is the study of fungi, including molds, yeasts, and mushrooms.
    • Fungi are eukaryotic organisms with complex carbohydrate cell walls and ergosterol as a major membrane sterol.
    • Fungal structure includes hyphae that come together to form the mycelium, which can be classified as vegetative or aerial.
    • Conidia are spore-like asexual reproductive structures that are important for fungal identification and classification.
    • Fungi can reproduce sexually or asexually, with different types of spores produced in each case.
    • Fungal cultures can be grown on different types of media, including general-purpose, selective, and differential agars.
    • Direct examination methods include saline wet mounts, lactophenol cotton blue wet mounts, potassium hydroxide (KOH) mounts, gram stains, India ink, and calcofluor white stains.
    • Fungal pathogens can infect various body sites, including blood, cerebrospinal fluid, hair, nails, skin, lungs, throat, urine, and genital tract.
    • Candida spp., Aspergillus, Histoplasma capsulatum, and Cryptococcus neoformans are among the common fungal pathogens found in these body sites.
    • Systemic mycosis is a multiorgan infection caused by fungi, while opportunistic mycosis occurs primarily in immunocompromised patients.
    • Dimorphic fungi can show both a yeast and a mold phase, while saprobes can live on decaying organic material.
    • Fungal infections can be treated with antifungal medications that target ergosterol synthesis or bind to ergosterol in the fungal membrane.

    Introduction to Fungal Pathogens and Their Characteristics

    • Mycology is the study of fungi, including molds, yeasts, and mushrooms.
    • Fungi are eukaryotic organisms with complex carbohydrate cell walls and ergosterol as a major membrane sterol.
    • Fungal structure includes hyphae that come together to form the mycelium, which can be classified as vegetative or aerial.
    • Conidia are spore-like asexual reproductive structures that are important for fungal identification and classification.
    • Fungi can reproduce sexually or asexually, with different types of spores produced in each case.
    • Fungal cultures can be grown on different types of media, including general-purpose, selective, and differential agars.
    • Direct examination methods include saline wet mounts, lactophenol cotton blue wet mounts, potassium hydroxide (KOH) mounts, gram stains, India ink, and calcofluor white stains.
    • Fungal pathogens can infect various body sites, including blood, cerebrospinal fluid, hair, nails, skin, lungs, throat, urine, and genital tract.
    • Candida spp., Aspergillus, Histoplasma capsulatum, and Cryptococcus neoformans are among the common fungal pathogens found in these body sites.
    • Systemic mycosis is a multiorgan infection caused by fungi, while opportunistic mycosis occurs primarily in immunocompromised patients.
    • Dimorphic fungi can show both a yeast and a mold phase, while saprobes can live on decaying organic material.
    • Fungal infections can be treated with antifungal medications that target ergosterol synthesis or bind to ergosterol in the fungal membrane.

    Introduction to Fungal Pathogens and Their Characteristics

    • Mycology is the study of fungi, including molds, yeasts, and mushrooms.
    • Fungi are eukaryotic organisms with complex carbohydrate cell walls and ergosterol as a major membrane sterol.
    • Fungal structure includes hyphae that come together to form the mycelium, which can be classified as vegetative or aerial.
    • Conidia are spore-like asexual reproductive structures that are important for fungal identification and classification.
    • Fungi can reproduce sexually or asexually, with different types of spores produced in each case.
    • Fungal cultures can be grown on different types of media, including general-purpose, selective, and differential agars.
    • Direct examination methods include saline wet mounts, lactophenol cotton blue wet mounts, potassium hydroxide (KOH) mounts, gram stains, India ink, and calcofluor white stains.
    • Fungal pathogens can infect various body sites, including blood, cerebrospinal fluid, hair, nails, skin, lungs, throat, urine, and genital tract.
    • Candida spp., Aspergillus, Histoplasma capsulatum, and Cryptococcus neoformans are among the common fungal pathogens found in these body sites.
    • Systemic mycosis is a multiorgan infection caused by fungi, while opportunistic mycosis occurs primarily in immunocompromised patients.
    • Dimorphic fungi can show both a yeast and a mold phase, while saprobes can live on decaying organic material.
    • Fungal infections can be treated with antifungal medications that target ergosterol synthesis or bind to ergosterol in the fungal membrane.

    Introduction to Fungal Pathogens and Their Characteristics

    • Mycology is the study of fungi, including molds, yeasts, and mushrooms.
    • Fungi are eukaryotic organisms with complex carbohydrate cell walls and ergosterol as a major membrane sterol.
    • Fungal structure includes hyphae that come together to form the mycelium, which can be classified as vegetative or aerial.
    • Conidia are spore-like asexual reproductive structures that are important for fungal identification and classification.
    • Fungi can reproduce sexually or asexually, with different types of spores produced in each case.
    • Fungal cultures can be grown on different types of media, including general-purpose, selective, and differential agars.
    • Direct examination methods include saline wet mounts, lactophenol cotton blue wet mounts, potassium hydroxide (KOH) mounts, gram stains, India ink, and calcofluor white stains.
    • Fungal pathogens can infect various body sites, including blood, cerebrospinal fluid, hair, nails, skin, lungs, throat, urine, and genital tract.
    • Candida spp., Aspergillus, Histoplasma capsulatum, and Cryptococcus neoformans are among the common fungal pathogens found in these body sites.
    • Systemic mycosis is a multiorgan infection caused by fungi, while opportunistic mycosis occurs primarily in immunocompromised patients.
    • Dimorphic fungi can show both a yeast and a mold phase, while saprobes can live on decaying organic material.
    • Fungal infections can be treated with antifungal medications that target ergosterol synthesis or bind to ergosterol in the fungal membrane.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Related Documents

    Lecture 1 Hematology PDF
    Lecture 3 Erythrocyte PDF
    Haematology Lecture 2 PDF
    Virology 2 PDF
    Yeasts Lecture Notes PDF

    Description

    Test your knowledge of leukocytes with this informative quiz! From stem cells to the five types of human leukocytes, this quiz covers it all. See if you can identify the different types and understand their roles in defending the body against foreign invaders. With questions about differentiation, circulation, and function, this quiz is perfect for students or anyone interested in the fascinating world of leukocytes.

    More Like This

    Leukocyte Development and Functions
    45 questions
    Blood Cell Development Quiz
    10 questions
    Blood Cell Development Quiz
    10 questions
    Stages of Blood Cell Development
    10 questions
    Use Quizgecko on...
    Browser
    Browser