Krebs Cycle: Citric Acid Cycle

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

¿Cuál es la función del oxígeno en el metabolismo oxidativo?

  • Donar protones
  • Donar electrones.
  • Aceptar electrones. (correct)
  • Aceptar protones.

¿En qué parte de la célula eucariota se localiza el ciclo de Krebs?

  • Retículo endoplasmático.
  • Mitocondria. (correct)
  • Citoplasma.
  • Núcleo.

¿Cuál es el producto inicial del ciclo de Krebs que se forma por la condensación del acetil-CoA y el oxalacetato?

  • Fumarato.
  • Citrato. (correct)
  • Succinato.
  • Malato.

¿Cuántas moléculas de CO2 se liberan por cada molécula de acetil-CoA que entra en el ciclo de Krebs?

<p>2 (C)</p> Signup and view all the answers

¿Cuál de las siguientes enzimas cataliza la conversión de isocitrato a α-cetoglutarato en el ciclo de Krebs?

<p>Isocitrato deshidrogenasa. (A)</p> Signup and view all the answers

¿Qué molécula se produce durante el ciclo de Krebs mediante fosforilación a nivel de sustrato?

<p>GTP. (B)</p> Signup and view all the answers

¿Cuál de las siguientes coenzimas se reduce durante la conversión de α-cetoglutarato a succinil-CoA en el ciclo de Krebs?

<p>NAD+. (A)</p> Signup and view all the answers

¿Cuál de las siguientes enzimas del ciclo de Krebs está unida a la membrana mitocondrial interna?

<p>Succinato deshidrogenasa. (A)</p> Signup and view all the answers

¿Cuál es el producto de la hidratación del fumarato en el ciclo de Krebs?

<p>Malato. (B)</p> Signup and view all the answers

¿Qué compuesto se regenera en la última reacción del ciclo de Krebs, permitiendo que el ciclo continúe?

<p>Oxalacetato. (D)</p> Signup and view all the answers

¿Cuál es el número total de moléculas de NADH + H+ producidas directamente por cada molécula de acetil-CoA que atraviesa el ciclo de Krebs?

<p>3 (D)</p> Signup and view all the answers

¿Cuántas moléculas de FADH2 se producen por cada molécula de acetil-CoA en el ciclo de Krebs?

<p>1 (A)</p> Signup and view all the answers

En el contexto del ciclo de Krebs, ¿cuál es la importancia de las reacciones anapleróticas?

<p>Reponer los intermediarios del ciclo. (D)</p> Signup and view all the answers

¿Cómo afecta un alto nivel de ATP al complejo piruvato deshidrogenasa (PDH), que produce acetil-CoA?

<p>Lo inhibe. (B)</p> Signup and view all the answers

¿Qué efecto tiene el citrato sobre la glucólisis?

<p>Inhibe la glucólisis. (A)</p> Signup and view all the answers

Además de la producción de energía, ¿qué otro papel importante desempeña el ciclo de Krebs en la célula?

<p>Producción de precursores para la biosíntesis. (D)</p> Signup and view all the answers

¿Cuantos ATPs puede generar aproximadamente la energía potencial de cada NADH?

<p>2.5 (D)</p> Signup and view all the answers

¿Cuál de las siguientes afirmaciones describe mejor el término 'carácter anfibólico' del ciclo de Krebs?

<p>Es tanto anabólico como catabólico. (D)</p> Signup and view all the answers

¿En qué organismo se produce el ciclo de glioxilato?

<p>Hongos. (D)</p> Signup and view all the answers

Durante la regulación del ciclo de Krebs, ¿cuál de las siguientes enzimas es inhibida por el ATP?

<p>Isocitrato deshidrogenasa (C)</p> Signup and view all the answers

Durante la regulación del ciclo de Krebs, ¿cuál de los siguientes metabolitos es inhibido por el NADH + H+?

<p>Citrato sintasa (A)</p> Signup and view all the answers

¿Cuál de estos elementos participa en la primera etapa del ciclo de Krebs(Formación del citrato)?

<p>Acetil-CoA (D)</p> Signup and view all the answers

¿Cuántos NADH+ H+ se producen cuando el ISOCITRATO se transforma en α-cetoglutarato?

<p>Uno (B)</p> Signup and view all the answers

¿En que se convierte el α-CETOGLUTARATO durante la segunda etapa de descarboxilación oxidativa??

<p>Succinil-CoA (D)</p> Signup and view all the answers

¿Cuál es el resultado de que el GTP le transfiera un grupo fosforilo a una molécula de ADP?

<p>ATP (B)</p> Signup and view all the answers

¿Cuál de las siguientes opciones no ocurre durante la oxidación del succinato a fumarato?

<p>Añadir hidrógeno al centro de la molécula de succinato (A)</p> Signup and view all the answers

¿Cuál es la enzima que cataliza la hidratación del doble enlace en trans del fumarato?

<p>Fumarasa. (B)</p> Signup and view all the answers

¿Cuál de las siguientes enzimas se encarga de oxidar el L-MALATO al OXALACETATO?

<p>L-malato deshidrogenasa (D)</p> Signup and view all the answers

¿Que se hace con el oxalacetato que se regenera en la última etapa del ciclo de Krebs??

<p>Se utiliza para generar citrato. (D)</p> Signup and view all the answers

¿Cual era la cantidad de vueltas completa que necesitaba una molécula de Acetil-CoA?

<p>Una (A)</p> Signup and view all the answers

¿Cual de las siguientes NO es una molécula que se genera durante la degradación de acetil-CoA?

<p>Ribosa (A)</p> Signup and view all the answers

¿Cuantos acetil-CoA se necesitan por cada glucosa?

<p>2 (A)</p> Signup and view all the answers

¿Cual NO es un enzima del ciclo de Krebs?

<p>Piruvato quinasa (B)</p> Signup and view all the answers

¿Cuál NO es una reacción del ciclo de Krebs?

<p>Replicación (B)</p> Signup and view all the answers

¿Durante qué ciclo se fijan los átomos de carbono de los acidos grasos en glucosa

<p>Ciclo del glioxilato (B)</p> Signup and view all the answers

¿Cuales son las dos enzimas exclusivas del ciclo del glioxilato?

<p>Isocitrato liasa y Malato Sintasa (D)</p> Signup and view all the answers

Durante el ciclo de glioxilano, ¿Qué ocurre con el succinato?

<p>Sale del glioxisoma y forma oxalacetato (D)</p> Signup and view all the answers

Flashcards

¿Ciclo de Krebs?

Also known as the citric acid cycle, it's part of cellular respiration in aerobic organisms.

Etapa I del metabolismo oxidativo

Fragmentation into smaller molecules, degradation into Acetyl-CoA; includes glycolysis.

Etapa II del metabolismo oxidativo

Oxidation of Acetyl-CoA atoms, producing CO2 and energy.

Etapa III del metabolismo oxidativo

Chain uses Krebs-generated reducing power (ATP synthesis).

Signup and view all the flashcards

Ubicación del ciclo de Krebs

Occuring in the mitochondria's matrix it is a key metabolic pathway in cellular respiration.

Signup and view all the flashcards

Formación de Citrato

Molecule receives acetyl transfers.

Signup and view all the flashcards

Del citrato al isocitrato

Two-step transformation involving dehydration and hydration.

Signup and view all the flashcards

Primera descarboxilación oxidativa

Irreversible transformation into α-Ketoglutarato, reducing NAD+ to NADH + H+.

Signup and view all the flashcards

Segunda descarboxilación

Transforms α-CETOGLUTARATO to SUCCINYL-CoA resulting in CO2 elimination.

Signup and view all the flashcards

Fosforilación a nivel de sustrato

High-energy SUCCINYL-coA promotes the production of an ATP ó GTP

Signup and view all the flashcards

Oxidación del Succinato

Succinato transformed into fumarato via succinato deshidrogenasa.

Signup and view all the flashcards

Hidratación de Fumarato

Fumarato Turns into L-Malato with fumarato hidratasa.

Signup and view all the flashcards

Oxidación Del Malato

Process that regenerates oxalacetate usign L-malato deshidrogenasa.

Signup and view all the flashcards

Energía conservada en Krebs

The pathway regenerates, not creates ATP

Signup and view all the flashcards

What happens each Krebs Cycle

Each turn consumes Acetyl-CoA, yielding CO2

Signup and view all the flashcards

Sola molecula posible

The cycle runs with Oxalacetato

Signup and view all the flashcards

Availability of Krebs Cycle

When concentrations are high enough, Krebs is promoted.

Signup and view all the flashcards

Modulators of Enzymes

Enzymes regulating cell

Signup and view all the flashcards

Reacciones Anapleróticas

Produce a range of things cell is able to use

Signup and view all the flashcards

Carácter anfibólico.

A double acting action and catabolic.

Signup and view all the flashcards

El ciclo de glioxilato

The cycle can occur in plants.

Signup and view all the flashcards

Study Notes

  • The topic is the Krebs cycle, also known as the citric acid cycle.

Krebs Cycle Overview

  • Oxygen is used by cells as an electron acceptor in the Krebs cycle.
  • The oxidative metabolism of biomolecules occurs in three stages.
  • The first stage involves breaking down macromolecules into smaller pyruvate molecules, which are then broken down into Acetyl-CoA molecules; this stage includes glycolysis.
  • The second stage is the Krebs cycle, which involves fully oxidizing the carbon atoms from Acetyl-CoA into CO2 molecules, releasing energy in the form of nucleotide triphosphates (GTP) and reducing molecules (FADH2 and NADH2).
  • The third stage involves the electron transport chain and oxidative phosphorylation, where the reducing power generated in the Krebs cycle synthesizes ATP.
  • Polysaccharides, monosaccharides, proteins, amino acids, and lipids can be oxidized completely in the Krebs cycle.
  • It also involves amino acids being converted to pyruvate or Acetyl-CoA.
  • It takes place within the mitochondria matrix.
  • For prokaryotes, the reactions of the Krebs cycle occur in the cytosol.

Krebs Cycle Steps

  • The Krebs cycle involves eight fundamental steps that release CO2 and redox agents (NADH + H+ and FADH2).
  • Eight enzymes are involved in the Krebs cycle: citrate synthase, aconitase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinyl-CoA synthetase, succinate dehydrogenase, fumarase, and malate dehydrogenase.
  • The eight reaction steps are: condensation, dehydration and hydration, the first oxidative decarboxylation, the second oxidative decarboxylation, substrate-level phosphorylation, oxidation, hydration, and oxidation.

Formation of Citrate

  • The Krebs cycle begins when Acetyl-CoA donates its two-carbon acetyl group to the 4-carbon oxaloacetate, resulting in condensation.
  • The enzyme citrate synthase catalyzes this reaction, producing citrate (6C), which is an irreversible reaction.

Transformation of Citrate into Isocitrate

  • Transformation of citrate into isocitrate occurs in two steps: dehydration that forms cis-aconitate and hydration that forms isocitrate.
  • The enzyme aconitase catalyzes this reversible reaction.

First Oxidative Decarboxylation

  • In this irreversible reaction, isocitrato (6C) becomes α-ketoglutarate (5C) by reducing NAD+ to NADH + H+ and removing a carbon atom as CO2.
  • The enzyme isocitrate dehydrogenase catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate.

Second Decarboxylation

  • The step is the oxidative decarboxylation of α-ketoglutarate (5C) into succinyl-CoA (4C) along with the release of a carbon atom in the form of CO2.
  • The α-ketoglutarate dehydrogenase multi-enzyme complex carries out this irreversible reaction. α-ketoglutarate dehydrogenase is virtually identical to the pyruvate dehydrogenase (PDH) enzyme complex.
  • NAD+ acts as an electron acceptor, producing NADH + H+.
  • CoA-SH acts as a transporter of a succinyl group.

Phosphorylation

  • A succinyl-CoA molecule with a high-energy thioester bond converts an ATP or GTP molecule in this step.
  • A molecule of GTP is synthesized from GDP and Pi, releasing succinate and free coenzyme A (CoA-SH) where succinyl-CoA synthetase is the enzyme to facilitate the reaction.

Succinate Oxidation

  • Succinate is transformed into fumarate by the flavoprotein succinate dehydrogenase.
  • In a dehydrogenation reaction, the oxidation of the single bond at the center of the succinate molecule leads to a double trans bond, where the hydrogen eliminated couples to the synthesis of a molecule of FADH2 originating from FAD.
  • All Krebs cycle enzymes are found in the mitochondrial matrix, except succinate dehydrogenase, which is found in the inner mitochondrial membrane.

Hydration of Fumarate

  • Fumarase performs the reversible hydration of fumarate to L-malate.
  • The enzyme is stereospecific and catalyzes the hydration of the double bond in trans of fumarate but not with the cis fumarate.

Oxidation of Malate

  • L-malate dehydrogenase oxidizes L-malate to oxaloacetate, with NAD+ participation that results in the reduction of a third molecule of NAD+ to NADH + H+.
  • The oxaloacetate is regenerated for use in the generation of citrate.

Energy Produced

  • Oxidation reactions conserve energy in the form of NADH + H+ and FADH2, along with ATP or GTP formation.
  • The ATP generated is only one ATP per cycle, however, redox reactions in the form of NADH + H+ and FADH2 enter the electron transport chain and produce a large number of ATP molecules during oxidative phosphorylation.

Balance

  • One molecule of Acetyl-CoA is consumed and two molecules of CO2 are obtained in the complete cycle's turn.
  • Acetyl-CoA + 3NAD+ +FAD GDP + Pi + 2H2O becomes 2CO2 + 3NADH + 3H+ +FADH2 + GTP + CoA-SH
  • The breakdown of one molecule of Acetyl-CoA in the Krebs cycle generates three molecules of NADH + H+, one molecule of FADH2, one molecule of GTP, and two molecules of CO2.
  • Starting with two molecules of Acetyl-CoA from two pyruvates generates six molecules of NADH + H+, two molecules of FADH2, two molecules of GTP, and four molecules of CO2.
  • The last reactions prepare preparation for another cycle by regenerating oxaloacetate.
  • The Krebs cycle can occur with a single molecule of oxaloacetate.

Regulation

  • The Krebs cycle is strongly regulated to meet the cell's needs and is a source of precursors for biomolecules.
  • Regulation primarily occurs at two levels: substrate availability and modulation of key enzymes.

Substrate Availability

  • AcetylCoA and oxaloacetate exist in low concentrations in the mitochondria relative to citrate synthase. Availability of these stimulates citrate synthesis and the Krebs cycle.
  • Acetyl-CoA availability affects pyruvate dehydrogenase (PDH)
  • Inhibited by ATP, AcetylCoA, and NADH and activated by AMP, CoA-SH, and NAD.
  • Oxalacetate's complex acts through pyruvate carboxylase.

Key Enzyme Modulation

  • The key enzymes are citrate synthase, isocitrate dehydrogenase, and α-ketoglutarate dehydrogenase.
  • Citrate synthase is inhibited by succinyl CoA and NADH + H+.
  • Isocitrate dehydrogenase is inhibited by ATP and NADH + H+.
  • α-cetoglutarate dehydrogenase is inhibited by succinyl CoA and NADH + H+.

Additional Key Points

  • Only glucose needed to supply the cycle is metabolized to pyruvate to meet energy needs.
  • Glycolysis couples to the Krebs cycle through ATP and NADH but is also affected by citrate that inhibits PFK-1.

Anaplerotic Reactions and Amphibolic Character

  • Krebs cycle molecules can be used by the cell for other purposes.
  • Catabolic routes meet in the Krebs cycle and replenish the intermediates in the cycle.
  • Anaplerotic reactions allow the cycle to continue functioning
  • Citrate can be used in the biosynthesis of lipids.
  • ATP-citrate lyase converts cytoplasmic citrate into Acetyl-CoA to obtain fatty acids.
  • α-ketoglutarate is used in amino acid biosynthesis.
  • Succinyl-CoA is a precursor in porphyrin synthesis to obtain hem groups and cytochromes.
  • Oxalacetate is used in gluconeogenesis and to synthesize amino acids like aspartate.

Anaplerótic Reactions

  • Pyruvate carboxylase enables the carboxylation of pyruvate from glycosis to oxalacetate and requires ATP.
  • Malic enzyme involves CO2 carboxylation with the production of malate from pyruvate that enters the Krebs cycle, converting to oxalacetate.
  • PEP carboxykinase involves the carboxylation of phosphoenolpyruvate in oxalacetate.
  • Transaminases replenish oxalacetate and α-ketoglutarate.

Glyoxylate Cycle

  • An alternative route is the metabolism of acetyl-CoA to obtain succinate that causes oxalacetate. It can produce glucose from oxalacetate.
  • Allows the net fixation of carbon atoms from fatty acids into glucose.
  • Animals cannot perform this conversion.
  • Involves the cycle of Krebs enzymes (citrate synthase and aconitase) and enzymes exclusive to the glyoxylate cycle (isocitrate lyase and malate synthase).
  • The oxaloacetate condenses with acetyl-CoA to citrate.
  • The citrate is transformed to isocitrate.
  • The isocitrate splits to succinate with glyoxylate. The enzyme is isocitrate lyase.
  • The glyoxylate condenses with acetyl-CoA forming malate by the enzyme malate synthase.
  • The succinate exits the forming oxalacetate that can be converted to glucose.
  • Malate regenerates oxalacetate.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

More Like This

Use Quizgecko on...
Browser
Browser