Podcast
Questions and Answers
Quale identitate trigonometric scribe la relation inter $ an 2A$ e $ an A$?
Quale identitate trigonometric scribe la relation inter $ an 2A$ e $ an A$?
- $ an 2A = rac{ an^2 A}{1 + an A}$
- $ an 2A = rac{1 - an^2 A}{2 an A}$
- $ an 2A = rac{ an A - 1}{ an A + 1}$
- $ an 2A = rac{2 an A}{1 - an^2 A}$ (correct)
Quale identitate corresponde al valor de $ ext{sin}(3A)$?
Quale identitate corresponde al valor de $ ext{sin}(3A)$?
- $ ext{sin}(3A) = 2 ext{sin}(2A)$
- $ ext{sin}(3A) = 4 ext{sin}^3 A - 3 ext{sin} A$
- $ ext{sin}(3A) = 3 ext{sin} A - 4 ext{sin}^3 A$ (correct)
- $ ext{sin}(3A) = ext{sin} A + 3 ext{sin}^2 A$
Quale es la formula correcte pro $ ext{cos}(A - B)$?
Quale es la formula correcte pro $ ext{cos}(A - B)$?
- $ ext{cos}(A - B) = ext{cos} A + ext{cos} B$
- $ ext{cos}(A - B) = ext{sin} A + ext{sin} B$
- $ ext{cos}(A - B) = ext{cos} A ext{cos} B - ext{sin} A ext{sin} B$
- $ ext{cos}(A - B) = ext{cos} A ext{cos} B + ext{sin} A ext{sin} B$ (correct)
Quale identitate exprime $ ext{cos}(3A)$?
Quale identitate exprime $ ext{cos}(3A)$?
Quale formate es correcte pro $1 + ext{sin}^2 A$?
Quale formate es correcte pro $1 + ext{sin}^2 A$?
What does the identity $ an{2A}$ equate to?
What does the identity $ an{2A}$ equate to?
Which identity represents $rac{1 - an^2{A}}{1 + an^2{A}}$?
Which identity represents $rac{1 - an^2{A}}{1 + an^2{A}}$?
What is the correct identity for $ an{3A}$?
What is the correct identity for $ an{3A}$?
Which identity expresses $rac{ an{A} + an{B}}{ an{A} an{B}}$?
Which identity expresses $rac{ an{A} + an{B}}{ an{A} an{B}}$?
What is the equivalent of $ an{A} an{B}$ in terms of sine and cosine?
What is the equivalent of $ an{A} an{B}$ in terms of sine and cosine?
Flashcards are hidden until you start studying
Study Notes
Identitates Trigonometricas
- COSA - COSB = -2sin(A+B)sin(A-B): Relacio entre cosenos de A e B.
- sin 2A = 2sinA.COSA: Relacion que exprime sin de un angulo double in terminos de sin e cos del angulo A, complemente con tanA.
- COS2A = COSA - Sin²A: Formula per calcular coseno de un angulo double.
- tan 2A = (2tanA)/(1-tan²A) = (1 + tan²A)/(1 - tan²A) = (2 COS²A-1)/(sin²A): Diverse maneras de exprimer tangente de un angulo double.
- sin 3A = 3 sinA - 4sin³A: Formula per calcular sin de un angulo triple.
- COS 3A = 4COS³A-3COSA: Predicate per calcular coseno de un angulo triple.
- tan 3A = (3tana-tan³A)/(1-3tan²A): Formule pro calcular tangente de un angulo triple.
- COS(A-B) - COS(A+B) = 2sinA.SinB: Relation util pro calcular diferencias e summas de cosenos.
- COSA = cos²(A/2) - sin²(A/2): Relacion intermedie per determinar coseno de un angulo usante angulos half.
- tan A ± tanB = sin(A±B)/(COSA.COSB): Dependencia entre tangentes, seno, e coseno.
- cot A ± cotB = COS(A±B)/(SinA.sinB): Formula correlata per cotangente.
- 1 ± tan A.tanB = cos(A±B)/(COSA.COSB): Relacion util inter tan e cos.
- (1 - tan²A)/(1 + tan²A) = COS2A: Formula utilisante tangente per obtener coseno double.
- (2tana)/(1 + tan²A) = Sin2A: Relacion inter tangente e sin double.
- 1 + sin²A = (COSA + SinA)²: Identitate fundamentale relationante sin e coseno.
- sin(60° - 0) sin(60° + 0) = 1.sin 30: Identitate pro calcular sinum con angulos specific.
- Cos(60° - 0) cos(60° + 0) = 1 + cos30: Relation trigonometric pertinente a coseno in angulos specific.
- a sinθ + b cosθ = √(a²+b²) (sin(θ + φ)): Formula vectorial que combina sin e cos in un format geometric.
Identitates Trigonometric
- Differentiation of Cosines: $\cos{A} - \cos{B} = -2\sin{\left(\frac{A+B}{2}\right)} \cdot \sin{\left(\frac{A-B}{2}\right)}$
- Double Angle Formula for Sine: $\sin{2A} = 2 \sin{A} \cos{A}$
- Double Angle Formula for Cosine: $\cos{2A} = \cos^2{A} - \sin^2{A}$
- Double Angle Formula for Tangent: $\tan{2A} = \frac{2 \tan{A}}{1 - \tan^2{A}}$
- Triple Angle Formula for Sine: $\sin{3A} = 3 \sin{A} - 4 \sin^3{A}$
- Triple Angle Formula for Cosine: $\cos{3A} = 4 \cos^3{A} - 3 \cos{A}$
- Triple Angle Formula for Tangent: $\tan{3A} = \frac{3 \tan{A} - \tan^3{A}}{1 - 3 \tan^2{A}}$
- Difference of Cosines: $\cos{(A+B)} - \cos{(A-B)} = -2 \sin{A} \sin{B}$
- Cosine Half Angle Identity: $\cos{A} = \cos^2{\left(\frac{A}{2}\right)} - \sin^2{\left(\frac{A}{2}\right)}$
- Sum and Difference of Tangents: $\tan{A} \pm \tan{B} = \frac{\sin{(A \pm B)}}{\cos{A} \cos{B}}$
- Sum of Cotangents: $\cot{A} + \cot{B} = \frac{\cos{(A+B)}}{\sin{A} \sin{B}}$
- Sum of Tangents with Cosine: $1 \pm \tan{A} \cdot \tan{B} = \frac{\cos{(A \pm B)}}{\cos{A} \cos{B}}$
- Cosine of Double Angle in Terms of Tangent: $\frac{1-\tan^2{A}}{1 + \tan^2{A}} = \cos{2A}$
- Simplified Tangent Identity: $2 \tan{A} = \frac{1 + \tan^2{A}}{1 + \tan^2{A}}$
- Quadratic Sine Representation: $1 \pm \sin{2A} = (\cos{A} \pm \sin{A})^2$
- Product of Sine Functions: $\sin{\theta} \sin{(60^\circ - \theta)} \sin{(60^\circ + \theta)} = \frac{1}{4} \sin{3 \theta}$
- Product of Cosine Functions: $\cos{\theta} \cos{(60^\circ - \theta)} \cos{(60^\circ + \theta)} = \frac{1}{4} \cos{3 \theta}$
- Linear Combination of Sine and Cosine: $a \sin{\theta} + b \cos{\theta} = \sqrt{a^2 + b^2} \left( \sin{(\theta + \phi)}\right)$
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.