Podcast
Questions and Answers
Animals are considered a ______ hotspot, comprising approximately 77.5% of Earth's marine species.
Animals are considered a ______ hotspot, comprising approximately 77.5% of Earth's marine species.
biodiversity
Cells are organized differently in levels to give each species a ______ structure.
Cells are organized differently in levels to give each species a ______ structure.
unique
Metazoa are the ______ whose blastula is a hollow ball of cells & infolds for digestion.
Metazoa are the ______ whose blastula is a hollow ball of cells & infolds for digestion.
blastula
The production of seeds inside cones is characteristic of certain plant groups, specifically ______, conifers, and pollen.
The production of seeds inside cones is characteristic of certain plant groups, specifically ______, conifers, and pollen.
[Blank] is the mushroom capital of Canada more closely related to animals than plants, and require oxygen.
[Blank] is the mushroom capital of Canada more closely related to animals than plants, and require oxygen.
Some parasitic fungi can cause around 70% of plant diseases by forming a web called ______ – grows up to 1km/day is creating structure.
Some parasitic fungi can cause around 70% of plant diseases by forming a web called ______ – grows up to 1km/day is creating structure.
Protists have ancient petals evolved by unfolding membrane + ______ theory.
Protists have ancient petals evolved by unfolding membrane + ______ theory.
Viruses have a protein ______ (capsid) to protect their genetic info and recognize a host cell.
Viruses have a protein ______ (capsid) to protect their genetic info and recognize a host cell.
In the lytic cycle of viruses, the final step is ______, where the cell is broken open to release the newly produced viruses..
In the lytic cycle of viruses, the final step is ______, where the cell is broken open to release the newly produced viruses..
[Blank] are prokaryotes that acted like eukaryotes live in extreme environments and are thought to be the first life on earth.
[Blank] are prokaryotes that acted like eukaryotes live in extreme environments and are thought to be the first life on earth.
Flashcards
Genetic Biodiversity
Genetic Biodiversity
Sum of all the different genes in a species; low diversity leaves it more susceptible.
Species Biodiversity
Species Biodiversity
Variety of species in an area; more species indicates a healthier and complex ecosystem.
Ecosystem Biodiversity
Ecosystem Biodiversity
Range of habitats and organisms, and the connections between them.
Study Notes
Homeostasis: The Body's Steady State
Homeostasis
- Refers to the body's capability to keep its internal environment stable, despite external changes.
Homeostatic Control Mechanisms
- There are five crucial components of homeostatic control
- Stimulus: Causes a change in a variable.
- Receptor: Detects the change.
- Input: Sends information along an afferent pathway to the control center.
- Output: Sends information along an efferent pathway to the effector.
- Response: The effector reduces the stimulus's effect, bringing the variable back to a homeostatic level.
- The afferent pathway goes from receptor to the control center.
- The efferent pathway goes from the control center to the effector.
- Homeostasis is vital, and any disruptions can lead to illness.
Levels of Structural Organization
- Chemical Level: Atoms join to form molecules.
- Cellular Level: Molecules form organelles such as nuclei and mitochondria.
- Tissue Level: Similar cells and surrounding materials form tissues.
- Organ Level: Different tissues combine into organs.
- Organ System Level: Organs cooperate to form organ systems.
- Organismal Level: Organ systems combine to create an organism.
Anatomical Terminology
Body Orientation and Direction
- Superior (cranial): Towards the head or upper part of the body; above. Example: The head is superior to the abdomen.
- Inferior (caudal): Away from the head or towards the lower body; below. Example: The navel is inferior to the chin.
- Anterior (ventral): The front of the body; in front of. Example: The breastbone is anterior to the spine.
- Posterior (dorsal): The back of the body; behind. Example: The heart is posterior to the breastbone.
- Medial: Towards the midline of the body; on the inner side. Example: The heart is medial to the arm.
- Lateral: Away from the midline of the body; on the outer side. Example: The arms are lateral to the chest.
- Intermediate: Between medial and lateral structures. Example: The collarbone is intermediate between the breastbone and shoulder.
- Proximal: Closer to the origin of a body part or the attachment point of a limb. Example: The elbow is proximal to the wrist.
- Distal: Further from the origin of a body part or the attachment point of a limb. Example: The knee is distal to the thigh.
- Superficial (external): Towards the body's surface. Example: Skin is superficial to skeletal muscles.
- Deep (internal): Away from the body's surface; more internal. Example: The lungs are deep to the skin.
Regional Terms
- Axillary: Armpit.
- Brachial: Arm.
- Buccal: Cheek.
- Carpal: Wrist.
- Cervical: Neck.
- Coxal: Hip.
- Crural: Leg.
- Femoral: Thigh.
- Inguinal: Groin.
- Nasal: Nose.
- Orbital: Eye.
- Patellar: Anterior knee.
- Pelvic: Pelvis.
- Sternal: Breastbone.
- Tarsal: Ankle.
- Thoracic: Chest.
- Umbilical: Navel.
Body Planes
- Sagittal Plane: Divides the body into right and left parts.
- Midsagittal (median) plane is a sagittal plane that lies exactly in the midline.
- Frontal (coronal) Plane: Divides the body into anterior and posterior parts.
- Transverse (horizontal) Plane: Divides the body into superior and inferior parts.
- Oblique Section: Cuts made diagonally.
Body Cavities
- Dorsal Body Cavity: Houses the brain (Cranial Cavity) and spinal cord (Vertebral Cavity).
- Ventral Body Cavity: Includes the Thoracic Cavity (heart and lungs including Pleural Cavities, Mediastinum, Pericardial Cavity) and the Abdominopelvic Cavity (abdominal and pelvic organs including Abdominal Cavity and Pelvic Cavity).
Serous Membranes of the Ventral Body Cavity
- Parietal Serosa: Lines internal body walls.
- Visceral Serosa: Covers the internal organs.
- Serous Fluid: Separates the serosae.
- Cavity and its corresponding membrane includes: Pericardium and Parietal & Visceral Pericardium, Pleura and Parietal & Visceral Pleura, Peritoneum and Parietal & Visceral Peritoneum.
Bernoulli's Principle
- Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in pressure or a decrease in the fluid's potential energy.
- Formula for Bernoulli's Principle: $\Delta P + \frac{1}{2} \rho v^2 + \rho g \Delta h = 0$
- Where:
- $\Delta P$ is the change in pressure
- $\rho$ is the density of the fluid
- $v$ is the fluid velocity
- $g$ is the acceleration due to gravity
- $\Delta h$ is the change in elevation
- Where:
Hypothesis Testing
Statistical Hypothesis
- A statistical hypothesis is an assertion or conjecture concerning one or more populations.
- Steps when performing hypothesis testing:
- Define a null hypothesis $H_0$
- Define an alternative hypothesis $H_1$
- Calculate a test statistic
- Define a rejection region
Hypothesis Concerning One Mean
-
Variance Known
- Random sample $X_1,..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ where $\sigma^2$ is known.
- Test the hypothesis: $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$ where $\mu_0$ is a constant.
- Test statistic: $Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$
- Define the rejection region: $|Z| > Z_{\alpha / 2}$
- Meaning: Reject $H_0$ if $|Z| > Z_{\alpha / 2}$
-
Type I and II errors
- A Type I error is rejecting $H_0$ when it is true.
- $\alpha = P(\text{Type I error}) = P(\text{reject } H_0 | H_0 \text{ is true})$
- $\alpha$ is also called the significance level.
- A Type II error is failing to reject $H_0$ when it is false.
- $\beta = P(\text{Type II error}) = P(\text{fail to reject } H_0 | H_0 \text{ is false})$
- $1 - \beta$ is called the power of the test.
-
Variance Unknown
- Suppose we have a random sample $X_1,..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ where $\sigma^2$ is unknown.
- We want to test the hypothesis: $H_0: \mu = \mu_0$ and $H_1: \mu \neq \mu_0$ where $\mu_0$ is a constant.
- Test statistic: $T = \frac{\bar{X} - \mu_0}{S / \sqrt{n}} \sim t_{n-1}$
- $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$
- Define the rejection region to be: $|T| > t_{\alpha / 2, n-1}$
- Meaning: Reject $H_0$ if $|T| > t_{\alpha / 2, n-1}$
Hypothesis Concerning One Proportion
- Random sample $X_1,..., X_n \stackrel{iid}{\sim} \text{Bernoulli}(p)$.
- Test the hypothesis: $H_0: p = p_0$ and $H_1: p \neq p_0$. Where $p_0$ is a constant.
- Test statistic: $Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \approx N(0, 1)$
- where $\hat{p} = \frac{1}{n} \sum_{i=1}^n X_i$
- Define the rejection region to be: $|Z| > Z_{\alpha / 2}$. Meaning: reject $H_0$ if $|Z| > Z_{\alpha / 2}$
Thermodynamics
Introduction
- Thermodynamics studies energy, its transformations, and its relation to matter, governed by laws defining energy and entropy behavior.
Key Concepts
- System: Defined region or matter.
- Surroundings: Everything outside the system.
- Boundary: Separates the system from surroundings.
- Types of Systems:
- Isolated: No mass or energy exchange.
- Closed: Energy exchange, no mass exchange.
- Open: Both mass and energy exchange.
- Properties of a System:
- Intensive: Independent of amount (e.g., temperature, pressure).
- Extensive: Dependent on amount (e.g., volume, mass).
- State of a System: Defined by its properties.
- Process: Change from one state to another.
- Cyclic Process: Returns the system to its initial state.
- Thermodynamic Equilibrium: No property changes with time.
- Quasi-static Process: Slow enough to maintain equilibrium.
Laws of Thermodynamics
- Zeroth Law: If two systems are in thermal equilibrium with a third, they are in thermal equilibrium with each other.
- First Law: Change in internal energy ($\Delta U$) equals heat added ($Q$) minus work done ($W$). Formula is: $\Delta U = Q - W$.
- A statement of the conservation of energy.
- Second Law: Total entropy of an isolated system can only increase, expressed as $\Delta S \geq 0$. Introduces entropy ($S$), a measure of disorder.
- Third Law: As temperature approaches absolute zero, entropy approaches a minimum or zero.
Thermodynamic Processes
- Isothermal Process: Constant temperature ($\Delta T = 0$).
- Isobaric Process: Constant pressure ($\Delta P = 0$).
- Isochoric (Isometric) Process: Constant volume ($\Delta V = 0$).
- Adiabatic Process: No heat exchange ($Q = 0$).
Applications
- Engineering: Engine, refrigerator, and power plant design.
- Chemistry: Understanding reactions and equilibrium.
- Materials Science: Studying properties at different temperatures.
- Environmental Science: Climate change and energy use analysis.
Planar Kinematics of a Rigid Body
- Has six degrees of freedom.
- Three degrees to define the position of a point.
- Three degrees to define the orientation of the body.
Position
- Position of point B: $\overrightarrow{r_B} = \overrightarrow{r_A} + \overrightarrow{r_{B/A}}$
- $\overrightarrow{r_{B/A}} = x' \hat{i}' + y' \hat{j}'$
- $\overrightarrow{r_{B/A}} = x' (cos\theta \hat{i} - sin\theta \hat{j}) + y'(sin\theta \hat{i} + cos\theta \hat{j})$
- $\overrightarrow{r_B} = r_{Ax} \hat{i} + r_{Ay} \hat{j} + x' (cos\theta \hat{i} - sin\theta \hat{j}) + y'(sin\theta \hat{i} + cos\theta \hat{j})$
Velocity
- $\overrightarrow{v_B} = \overrightarrow{v_A} + \overrightarrow{v_{B/A}}$
- $\overrightarrow{v_{B/A}} = \dot{\overrightarrow{r_{B/A}}} = \frac{d}{dt} (x' \hat{i}' + y' \hat{j}')$
- $\overrightarrow{v_{B/A}} = \dot{x}' \hat{i}' + x' \dot{\hat{i}'} + \dot{y}' \hat{j}' + y' \dot{\hat{j}'}$
- $\overrightarrow{v_{B/A}} = \dot{x}' \hat{i}' + x' \omega \hat{k} \times \hat{i}' + \dot{y}' \hat{j}' + y' \omega \hat{k} \times \hat{j}'$
Relative velocity
-
$\overrightarrow{v_{B/A}} = \dot{x}' \hat{i}' + x' \omega \hat{j}' + \dot{y}' \hat{j}' - y' \omega \hat{i}'$
-
$\overrightarrow{v_{B/A}} = (\dot{x}' - y'\omega) \hat{i}' + (\dot{y}' + x'\omega) \hat{j}'$
-
If B is fixed:
-
$\overrightarrow{v_{B/A}} = - y'\omega \hat{i}' + x'\omega \hat{j}'$
-
$\overrightarrow{v_{B/A}} = \omega \hat{k} \times \overrightarrow{r_{B/A}}$
-
$\overrightarrow{v_B} = \overrightarrow{v_A} + \omega \hat{k} \times \overrightarrow{r_{B/A}}$
Acceleration
-
$\overrightarrow{a_B} = \overrightarrow{a_A} + \overrightarrow{a_{B/A}}$
-
$\overrightarrow{a_{B/A}} = \ddot{\overrightarrow{r_{B/A}}} = \frac{d}{dt} (\dot{x}' - y'\omega) \hat{i}' + (\dot{y}' + x'\omega) \hat{j}'$
-
$\overrightarrow{a_{B/A}} = (\ddot{x}' - \dot{y}'\omega - y' \alpha) \hat{i}' + (\dot{y}' - y' \omega) \hat{j}' + (\ddot{y}' + \dot{x}'\omega + x' \alpha) \hat{j}' + (x' \omega) \hat{i}'$
-
$\overrightarrow{a_{B/A}} = (\ddot{x}' - 2\dot{y}'\omega - y' \alpha - x' \omega^2) \hat{i}' + (\ddot{y}' + 2\dot{x}'\omega + x' \alpha - y' \omega^2) \hat{j}'$
-
If B is fixed
-
$\overrightarrow{a_{B/A}} = ( - y' \alpha - x' \omega^2) \hat{i}' + ( x' \alpha - y' \omega^2) \hat{j}'$
-
$\overrightarrow{a_{B/A}} = \alpha \hat{k} \times \overrightarrow{r_{B/A}} - \omega^2 \overrightarrow{r_{B/A}}$
-
$\overrightarrow{a_B} = \overrightarrow{a_A} + \alpha \hat{k} \times \overrightarrow{r_{B/A}} - \omega^2 \overrightarrow{r_{B/A}}$
Química General Referencia Rápida
Nomenclatura de compuestos iónicos
- Compuestos binarios:
- Escribe el nombre del catión (ion positivo).
- Escribe el nombre del anión (ion negativo) con la terminación -uro.
- Ejemplos:
- $NaCl$ cloruro de sodio
- $MgBr_2$ bromuro de magnesio
- $Al_2O_3$ óxido de aluminio
- Compuestos poliatómicos
- Escribe el nombre del catión (ion positivo).
- Escribe el nombre del anión poliatómico (ion negativo).
- Ejemplos:
- $NaOH$ hidróxido de sodio
- $KMnO_4$ permanganato de potasio
- $(NH_4)_2SO_4$ sulfato de amonio
Nomenclatura de compuestos moleculares
- Escribe el nombre del elemento más electropositivo primero.
- Escribe el nombre del elemento más electronegativo con la terminación -uro.
- Utiliza los prefijos (mono-, di-, tri-, tetra-, etc.) para indicar el número de átomos de cada elemento.
- Ejemplos:
- $CO_2$ dióxido de carbono
- $N_2O_4$ tetróxido de dinitrógeno
- $SF_6$ hexafluoruro de azufre
Nomenclatura de ácidos
-
Ácidos binarios
- Escribe el prefijo hidro-.
- Escribe el nombre del no metal con la terminación -ico.
- Escribe la palabra "ácido" después del nombre.
- Ejemplos:
- $HCl$ ácido clorhídrico
- $HBr$ ácido bromhídrico
- $HF$ ácido fluorhídrico
-
Oxácidos
- Identifica el anión poliatómico.
- Si el anión termina en -ato, cambia la terminación a -ico.
- Si el anión termina en -ito, cambia la terminación a -oso.
- Escribe la palabra "ácido" después del nombre.
- Ejemplos:
- $HNO_3$ ácido nítrico (de $NO_3^-$, nitrato)
- $H_2SO_4$ ácido sulfúrico (de $SO_4^{2-}$, sulfato)
- $HClO_2$ ácido cloroso (de $ClO_2^-$, clorito)
Reacciones químicas
-
Tipos de reacciones
- Combinación (Síntesis): $A + B \rightarrow AB$
- Descomposición: $AB \rightarrow A + B$
- Sustitución simple: $A + BC \rightarrow AC + B$
- Doble sustitución (Metátesis): $AB + CD \rightarrow AD + CB$
- Combustión: Reacción con $O_2$, produciendo luz y calor.
-
Ecuaciones químicas
- Las ecuaciones químicas deben estar balanceadas para cumplir con la ley de conservación de la masa.
- Utiliza coeficientes para balancear las ecuaciones.
- Verifica que el número de átomos de cada elemento sea el mismo en ambos lados de la ecuación.
- Ejemplo:
- $2H_2 + O_2 \rightarrow 2H_2O$
Estequiometría
-
Mol
- Un mol es la cantidad de sustancia que contiene tantas entidades elementales como átomos hay en exactamente 12 gramos de carbono-12.
- Número de Avogadro ($N_A$): $6.022 \times 10^{23}$ entidades/mol
- Un mol es la cantidad de sustancia que contiene tantas entidades elementales como átomos hay en exactamente 12 gramos de carbono-12.
-
Masa molar
- La masa molar es la masa de un mol de una sustancia.
- Se expresa en gramos por mol (g/mol).
- Para calcular la masa molar de un compuesto, suma las masas atómicas de todos los átomos en la fórmula química
- Ejemplo:
- $H_2O$: $(2 \times 1.008) + 16.00 = 18.016 g/mol$
-
Cálculos estequiométricos
- Escribe la ecuación química balanceada.
- Convierte las cantidades dadas a moles.
- Utiliza la relación molar de la ecuación balanceada para calcular los moles del producto o reactivo deseado.
- Convierte los moles del producto o reactivo deseado a la unidad de masa apropiada.
Gases
- Leyes de los gases
- Ley de Boyle: $P_1V_1 = P_2V_2$ (a temperatura constante)
- Ley de Charles: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ (a presión constante)
- Ley de Avogadro: $\frac{V_1}{n_1} = \frac{V_2}{n_2}$ (a temperatura y presión constantes)
- Ley de los gases ideales: $PV = nRT$
- Donde:
- $P$ = presión
- $V$ = volumen
- $n$ = número de moles
- $R$ = constante de los gases ideales ($0.0821 \frac{L \cdot atm}{mol \cdot K}$ o $8.314 \frac{J}{mol \cdot K}$)
- $T$ = temperatura (en Kelvin)
- Presión parcial
- Ley de Dalton: La presión total de una mezcla de gases es igual a la suma de las presiones parciales de cada gas.
- $P_{total} = P_1 + P_2 + P_3 +...$
Termoquímica
-
Entalpía (H)
- La entalpía es una medida del calor intercambiado a presión constante.
- $\Delta H = H_{productos} - H_{reactivos}$
- Reacción exotérmica: $\Delta H < 0$ (libera calor)
- Reacción endotérmica: $\Delta H > 0$ (absorbe calor)
-
Ley de Hess
- El cambio de entalpía para una reacción es el mismo, independientemente de si la reacción se produce en un paso o en varios pasos.
- $\Delta H_{total} = \Delta H_1 + \Delta H_2 + \Delta H_3 +...$
Concentración de soluciones
-
Molaridad (M)
- Moles de soluto por litro de solución.
- $M = \frac{moles \ de \ soluto}{litros \ de \ solución}$
-
Molalidad (m)
- Moles de soluto por kilogramo de solvente.
- $m = \frac{moles \ de \ soluto}{kilogramos \ de \ solvente}$
-
Fracción molar (X)
- Relación entre los moles de un componente y los moles totales de todos los componentes en la solución.
- $X_A = \frac{moles \ de \ A}{moles \ totales}$
Equilibrio químico
-
Constante de equilibrio (K)
- Relación entre las concentraciones de los productos y los reactivos en equilibrio.
- $aA + bB \rightleftharpoons cC + dD$
- $K = \frac{[C]^c[D]^d}{[A]^a[B]^b}$
-
Principio de Le Chatelier: Si se aplica un cambio de condición a un sistema en equilibrio, el sistema se desplazará en una dirección que alivie el estrés.
- Estrés: Cambio en concentración, presión, temperatura.
Ácidos y bases
- Teorías ácido-base
- Arrhenius:
- Ácido: Sustancia que aumenta la concentración de $H^+$ en agua.
- Base: Sustancia que aumenta la concentración de $OH^-$ en agua.
- Brønsted-Lowry:
- Ácido: Donador de protones ($H^+$).
- Base: Aceptor de protones ($H^+$).
- Lewis:
- Ácido: Aceptor de pares de electrones.
- Base: Donador de pares de electrones.
- pH
- El pH es una medida de la acidez o basicidad de una solución.
- $pH = -log[H^+]$
- $pOH = -log[OH^-]$
- $pH + pOH = 14$ (a $25^\circ C$)
- Titulación
- Proceso para determinar la concentración de una solución utilizando una solución de concentración conocida (estándar).
- Punto de equivalencia: El punto en el que el ácido y la base se han neutralizado completamente.
Electroquímica
- Celdas galvánicas (voltaicas)
- Dispositivo que convierte la energía química en energía eléctrica a través de reacciones redox espontáneas.
- Ánodo: Electrodo donde ocurre la oxidación (pérdida de electrones).
- Cátodo: Electrodo donde ocurre la reducción (ganancia de electrones).
- Potencial estándar de reducción ($E^\circ$)
- Medida de la tendencia de una especie química a adquirir electrones y reducirse.
- Se mide en voltios (V).
- Ecuación de Nernst: Utilizada para calcular el potencial de celda en condiciones no estándar.
- $E = E^\circ - \frac{RT}{nF}lnQ$
- Donde:
- $E$ = potencial de celda
- $E^\circ$ = potencial estándar de celda
- $R$ = constante de los gases ideales
- $T$ = temperatura (en Kelvin)
- $n$ = número de moles de electrones transferidos
- $F$ = constante de Faraday ($96485 C/mol$)
- $Q$ = cociente de reacción
Economía
- Introducción a la Economía
- Definición:
- La economía analiza how societies allocate scarce resources to produce valuable goods and services, and how they distribute them among individuals.
- Microeconomía y Macroeconomía
- Microeconomía: concentrates on markets and behaviours of individual agents.
- Macroeconomía: Deals with the overall performance of economics.
- Scarcity and Choice
- Scarcity shows the limitations between resources versus the unlimited wishes.
- Choice shows making decisions due to scarcity.
- Opportunity Cost
- Shows the value of the next possible best alternative when making a decision
Economic Systems
-
Market Economy
- Resources are allocated through prices and markets are created by supply and demand.
-
Centrally Planned Economy
- The government takes all key production and distribution decisions.
-
Mixed Economy
- Combines characteristics from a market economy and a centrally planned economy.
The Supply and Demand
-
Demand
- Shows that quantity the customer is prepared to purchase at varied cost, and the other criteria remained constant.
-
Law of Demand
- When a products costs increases the quantity demand decreases.
-
Factors that Affect the Demand
- Income, Tastes, Price, and Expectations
-
Supply
- Show the quantity provided from selling at varied cost and other requirements remeained steady.
-
Law of Supply
- When products cost increases then the quantity delivered also increases.
-
Factors that Affect the Supply
- Expectations, Cost of productions, Technologies
-
Market Equilibrium
- Equilibrium occurred between supply and demand.
-
Equilibrium Pricing
- The demand supply were equal
-
Equilibrium Quantity
- The sum bought or sold during the equilibrium price.
####Elasticity####
-
Price Elasticity of the Demand
- The evaluation measure is sensitive for the change in its price with quantity demand.
-
Elastic
- The cost is sensitive with change in their price quantity demand (E>1).
-
Inelastic
- The changing is not sensitive with price related quantity demand (E<1)
-
Unitarity
- Equal to quantity demand change in their price (E=1).
-
Income Inelasticity of Demand
- Sensitive measurement for the income or the quantity with its demand.
-
Normal Goods
- Demand increase with an increase in income demand (E>0).
-
Interior Goods
- Low demand increase and demand increases with the income demands increasing (E<0).
####Production and Cost####
-
Production Function
- The bond is a sign between total number of input (work, capital) compared total amounts of production.
-
Cost
- Cost fixed is the total number is without productions
- Variable cost shows the products.
- Total Cost
-
Total cost is sum of cost variables
Marginal Cost
- Sum is cost of product plus
- Economies of scale
- Ocurred when ever the mean cost decreases as production.
Market structures
- Perfect competition
- Number many firms
- Similar product
- Freedom of sales that make company is low
- The price makers is small
- Monopoly
- One firm
- Unique product
- No Entry in to barrier
- Price maker firm
- Monopolist Competition
- Firms is many
- Product is varied and product brand is free
- Oligopoly
- Big number of company
- Product differentiation is small
- Sales freedom is small
- Company is interdependences
Market Failies
-
Externalities
- Third party cost and benefit
-
Externalities negative
- A cost is caused (pollution).
-
Externalities positive
- Benefit that is cost vaccinated.
-
Public Goods
- People consumption that can be taken advantage of but the amount is low (small).
-
Asymmetrical Public
- The agent may have an information than another third party.
National Accounting
-
Domestic gross unit (PIB)
- All products is finished and the money spend in that country.
-
PIB NOMINAL
- Price is measured per second PIB REAL
- Change for inflation.
METHOD OF CAPUTING THE PIB
-
Expended point:
- Sum up consumption, government costs, investment , and network exports
-
Pib: C+I+ G+ (X-M)
-
- Incomes Point: The sum of incomes: wagers, grants, rentals, cost.
ECONOMIC GROWTH
- Factors that inflect the Growth
- Capital growth
- Technological advancement
- Natural resources
- Human capital
MONEYY AND BANDING
- Function og Money
- Exchange medium
- Value safe
- Income point
- Banding System
- Commercial band make deposits, but also sales in lenders for.
Central band
-
Control income or financial and supervising banding system.
-
Money policy
-
Influences form actions from the cost and lenders.
INFLATION
-
Increases and supports products value.
-
Cause to Inflations
- High cost, for demanded
- Costs inflation, increasing point of the production cost.
-
Effect inflations
- Costs is high for buyers.
- Income is difficult
-
Redistribution for profit
Unemployment
- Type of unemployment
- Structural
- Is a slow term employment workers that are on their own search from workers
- Systematic
- Skill is low with the works Cyclic
- The economy cost will be lower.
######Unemployment taxes
- Sum is lower with amount of sold jobs.
FISCAL POLICY
- Expenses
- A income level to stimulate the company economy.
Tools for the policy to fiscal
- Public cost: -Goverment purchasings for the income
- Impact
- Effect for policy fiscal
ANACONDA
-
Guide for initial setup
-
First set of step
-
Download form the setup
-
Form this websites here : //www.anaconda.com/priducts/distrubution
-
Installation of Anaconda
-
Anaconda enviroment - The user graphic face setup for desktop which also let people start to start manage packages or Anaconda Enviroment channel also commands lines - Finding to setup for Anaconda in the windows button also press it.
-
Creating Enviroment - Making a safe Enviroment for a project.
-
Press botton to create enviroment in Aaconda Navigation push
-
Choose a envirnoment also select thepython Also chose to create one. ####Installing packages#####
-
For installing package for enviroment you need to activate it.
-
Search the setup that you want it in the Anaconda web or Navigation
-
Also you can use command conda install when you want to setup package command activate: condas install numpy
Jupiter setting####
- In the web you can sharing product living
- Setting button form web
Executing code
- Can use cells For code execute cell shift button Also cells Markdown for instruction sets
#####Other Setup:#####
- DOCUMENTATION FOR SETUP: HTTPS//DOCS.ANOCONDA.COME
- SETTING UP JUPITER: HTTPS// JUPYTER NOTEBOOK.READ
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.