Fraction Division with Unlike Denominators
10 Questions
1 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

کدام مرحله برای تبدیل یک کسر به یک کسر معادل با یک مخرج مشترک اشتباه است؟

  • تقسیم کننده و مخرج را در همان عدد تقسیم کنید
  • ضرب کننده و مخرج را در همان عدد ضرب کنید
  • تقسیم کننده را تقسیم کنید توسط مخرج جدید
  • ضرب کننده را تقسیم کنید توسط مخرج جدید (correct)
  • با توجه به متن، چگونه \(rac{2}{5}\) را به یک کسر معادل با مخرج \(rac{10}{3}\) تبدیل می‌کنیم؟

  • \\(rac{2}{5} * rac{3}{10} = rac{6}{50}\\) (correct)
  • \\(rac{2}{5} * rac{10}{3} = rac{20}{15}\\)
  • \\(rac{2}{5} * rac{3}{10} = rac{6}{15}\\)
  • \\(rac{2}{5} * rac{10}{3} = rac{20}{50}\\)
  • با توجه به توضیحات، نتیجه تقسیم \(rac{3}{4}\) بر \(rac{6}{7}\) چیست؟

  • \\(rac{7}{8}\\)
  • \\(rac{21}{24}\\) (correct)
  • \\(rac{1}{2}\\)
  • \\(rac{9}{12}\\)
  • چگونه می‌توان \(rac{5}{6}\) را به یک کسر ساده تقلیل داد؟

    <p>\(rac{5}{6} = rac{3}{4}\)</p> Signup and view all the answers

    در اثر جمعزمان از اثار زیر، چه نتیجه‌ای به دست خواهید آورد؟

    <p>\(rac{1}{2} + rac{3}{4} = rac{7}{8}\)</p> Signup and view all the answers

    برای تقسیم کردن کدامیک از موارد زیر باید ابتدا مطمئن شویم که هر دو اشتراکی در مخرج دارند؟

    <p>کسورهای با مخرج‌های متفاوت</p> Signup and view all the answers

    چگونه می‌توانید گرانده‌های اولیه مخرج‌های کسورهای با مخرج‌های متفاوت را تعیین کنید؟

    <p>با ضرب کردن در تعداد اولین اعداد اول</p> Signup and view all the answers

    چگونه می‌توان تعیین کرد که آیا دو کسر با مخرج‌های مختلف، دارای یک مخرج مشترک هستند یا خیر؟

    <p>با ضرب کردن مخرج‌ها در یکدیگر</p> Signup and view all the answers

    چگونه می‌توانید جمع سودمند فوقانی‌های گرانده شده را تعیین کنید؟

    <p>ضرب نخستین عامل عامل سودمند</p> Signup and view all the answers

    چگونه می‌توانید مخارج تقسیم شده‌ها را با هم بچسبانید؟

    <p>افزودن به هم</p> Signup and view all the answers

    Study Notes

    Fraction Division: Dividing Fractions with Unlike Denominators

    When it comes to solving mathematical problems involving fractions, one of the most common operations is division. However, this operation can become tricky when dealing with fractions that have different denominators, known as unlike fractions. In such cases, you cannot simply divide two numbers because they don't share a common factor. Instead, you need to find a common denominator before performing the division. Let's dive deeper into how to solve fraction divisions with unlike denominators.

    Finding Common Denominators

    Before dividing fractions, you must first ensure that they share a common denominator. A common denominator is a number that appears in both the numerator and the denominator of each fraction. To find the common denominator of unlike fractions, follow these steps:

    1. List all the denominators, including their prime factors.
    2. Identify the greatest common divisor (GCD) of all the denominators. This is your common denominator. It may also be called the lowest common multiple (LCM).

    For example, if we want to find the common denominator of (\frac{1}{3}), (\frac{1}{4}), and (\frac{1}{5}), we would list their denominators: (3), (4), and (5), respectively. Then, we identify their GCD or LCM, which in this case is (12): ((3 * 2)(4 * 1)(1 * 5) = 12). Therefore, the common denominator for these three fractions is (12).

    Converting Fractions to Equivalent Fractions with a Common Denominator

    Once you have found the common denominator, the next step is to convert each fraction into equivalent fractions with the new denominator. An equivalent fraction is a fraction that has the same value as the original fraction, but with different numerators and denominators. To convert a fraction to an equivalent fraction with a given denominator, follow these steps:

    1. Divide the denominator by the new denominator.
    2. Multiply the numerator and the denominator by the same number (the result from step 1).

    For example, let's convert (\frac{1}{3}) to an equivalent fraction with a denominator of (12). We divide (12) by (3), which gives us (4). Then, we multiply the numerator (1) and the denominator (3) by (4): ((1 * 4) + (3 * 4) = 4 + 12 = 16). Therefore, the equivalent fraction of (\frac{1}{3}) with a denominator of (12) is (\frac{16}{12}).

    Performing the Division

    Now that we have equivalent fractions with the same denominator, we can perform the division. To divide two fractions, we simply divide their numerators. For example, to divide (\frac{4}{12}) by (\frac{8}{12}), we can rewrite it as (\frac{4}{12} \div \frac{8}{12}). Then, we divide their numerators: (4) divided by (8), which gives us (\frac{1}{2}). Therefore, (\frac{4}{12} \div \frac{8}{12} = \frac{1}{2}).

    Simplifying the Result

    Finally, to simplify the result, we can reduce the fraction to its simplest form. If the numerator and the denominator have a common factor, we can divide both by that factor to simplify the fraction. For example, if we have (\frac{3}{5}), we can divide both the numerator and the denominator by (3): (\frac{1}{1} = \frac{1}{5}). Therefore, (\frac{3}{5} = \frac{1}{5}).

    In conclusion, dividing fractions with unlike denominators involves finding a common denominator, converting each fraction into equivalent fractions with the common denominator, performing the division, and simplifying the result, if necessary. By following these steps, you can accurately solve fraction division problems with unlike denominators.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Explore the process of dividing fractions with different denominators, also known as unlike fractions. Learn how to find common denominators, convert fractions to equivalent forms, perform the division, and simplify the results. Mastering these steps will help you tackle fraction division problems effortlessly.

    More Like This

    Use Quizgecko on...
    Browser
    Browser