Podcast
Questions and Answers
מהו המגבלה של \( \lim_{{x \to 0}} \frac{{\sin{x} - \cos{x}}}{x} \)?
מהו המגבלה של \( \lim_{{x \to 0}} \frac{{\sin{x} - \cos{x}}}{x} \)?
מהו תוצאת המגבלה של \( \lim_{{x \to \frac{\pi}{2}}} \frac{{\csc{x}}}{{\sec{x}}} \)?
מהו תוצאת המגבלה של \( \lim_{{x \to \frac{\pi}{2}}} \frac{{\csc{x}}}{{\sec{x}}} \)?
מהי תוצאת המגבלה של \( \lim_{{x \to 0}} 2 \cdot 2 \frac{{\sin{x}}}{x} \)?
מהי תוצאת המגבלה של \( \lim_{{x \to 0}} 2 \cdot 2 \frac{{\sin{x}}}{x} \)?
מהי ערך המגבלה של \( \lim_{{x \to 0}} \left( \sqrt{3} + 2 \right) \sin{x} \cos{x} \) ?
מהי ערך המגבלה של \( \lim_{{x \to 0}} \left( \sqrt{3} + 2 \right) \sin{x} \cos{x} \) ?
Signup and view all the answers
מהו ערך המגבלה של \( \lim_{{x \to 0}} \frac{{1 - \cos{2x}}}{{x}} \) ?
מהו ערך המגבלה של \( \lim_{{x \to 0}} \frac{{1 - \cos{2x}}}{{x}} \) ?
Signup and view all the answers
מהו הערך של \( \lim_{{x \to 0}} x^2 \left( \frac{{1}}{{x^2 + 4}} - \frac{{1}}{{4}} \right) \) ?
מהו הערך של \( \lim_{{x \to 0}} x^2 \left( \frac{{1}}{{x^2 + 4}} - \frac{{1}}{{4}} \right) \) ?
Signup and view all the answers
כיצד אופן התנהגותה של הפונקציה $\sin{x}$ כאשר $x$ מתקרב ל-$0$?
כיצד אופן התנהגותה של הפונקציה $\sin{x}$ כאשר $x$ מתקרב ל-$0$?
Signup and view all the answers
מהו המחסור המתקבל כאשר $x$ מתקרב ל-$0$ בפונקציה $\tan{x}$?
מהו המחסור המתקבל כאשר $x$ מתקרב ל-$0$ בפונקציה $\tan{x}$?
Signup and view all the answers
לאיזו ערך מתקרבת הפונקציה $\sec{x}$ כאשר $x$ מתקרב ל-$\frac{\pi}{2}$ מהכיוון הימני?
לאיזו ערך מתקרבת הפונקציה $\sec{x}$ כאשר $x$ מתקרב ל-$\frac{\pi}{2}$ מהכיוון הימני?
Signup and view all the answers
מהו הערך שאליו מתקרבת הפונקציה $\cot{x}$ כאשר $x$ מתקרב ל-$0$ מהכיוון השמאלי?
מהו הערך שאליו מתקרבת הפונקציה $\cot{x}$ כאשר $x$ מתקרב ל-$0$ מהכיוון השמאלי?
Signup and view all the answers
מהו המחסור המתקבל כאשר $x$ מתקרב ל-$0$ בפונקצית ה-$\csc{x}$?
מהו המחסור המתקבל כאשר $x$ מתקרב ל-$0$ בפונקצית ה-$\csc{x}$?
Signup and view all the answers
על פי הערות המדובר במידע, איזה אחד מהביטויים הבאים אינו נכון?
על פי הערות המדובר במידע, איזה אחד מהביטויים הבאים אינו נכון?
Signup and view all the answers
Study Notes
Evaluating Limits Using Trigonometric Identities
Limits of trigonometric functions often require specific techniques to evaluate them accurately, especially when dealing with indeterminate forms or when the limit involves trigonometric expressions. In such cases, trigonometric identities become a valuable tool for simplifying expressions and finding the exact limit values.
Limits of Trigonometric Functions
To understand how trigonometric identities can assist in evaluating limits, let's first examine the behavior of trigonometric functions as the input variable approaches specific values.
- Sine and cosine functions: As (x) approaches (0), ( \sin{x} ) oscillates between (-1) and (1) with decreasing amplitude, and ( \cos{x} ) oscillates between (1) and (-1) with decreasing amplitude.
- Tangent function: As (x) approaches (0), ( \tan{x} ) becomes large and positive or large and negative, depending on whether (x) approaches (0) from the right or left, respectively.
- Secant, cosecant, and cotangent functions: As (x) approaches (\frac{\pi}{2}), ( \sec{x} ) approaches (0) from the right, and ( \sec{x} ) approaches (-\infty) from the left. On the other hand, ( \csc{x} ) approaches (\infty) from the right and (-\infty) from the left, and ( \cot{x} ) approaches (0) from the left and (-\infty) from the right.
Evaluating Limits Using Trigonometric Identities
In evaluating limits involving trigonometric functions, we may use the following trigonometric identities:
- Linear properties of limits: If (f(x)) and (g(x)) have limits (L_f) and (L_g) as (x) approaches (a), then (f(x) + g(x)), (f(x)g(x)), and (\frac{f(x)}{g(x)}) have limits (L_f + L_g), (L_f \cdot L_g), and (\frac{L_f}{L_g}), respectively, as (x) approaches (a).
- Sum-to-product formula: (a \cos{x} + b \sin{x} = \sqrt{a^2 + b^2} \cdot \cos{(x - \theta)}), where (\cos{\theta} = \frac{a}{\sqrt{a^2 + b^2}}) and (\sin{\theta} = \frac{b}{\sqrt{a^2 + b^2}}).
- Double-angle formula: (2 \sin^2{(x)} = 1 - \cos{(2x)}).
- Substitution: Replace (x) with an expression that simplifies the limit.
Examples
- Evaluate the limit as (x) approaches (0) of (\frac{\sin{x} - \cos{x}}{x}):
[ \lim_{x \to 0} \frac{\sin{x} - \cos{x}}{x} = \lim_{x \to 0} \frac{2 \sin{\frac{x}{2}} \cos{\frac{x}{2}} - \cos{\frac{x}{2}}}{x} \stackrel{\text{substitution}}{=} \lim_{x \to 0} \frac{2 \sin{\frac{x}{2}} \left(1 - \cos{\frac{x}{2}}\right)}{\frac{x}{2}} = \lim_{x \to 0} \frac{2 \sin{\frac{x}{2}} \sin{\frac{x}{2}}}{\frac{x}{2}} = \lim_{x \to 0} 2 \cdot 2 \frac{\sin{x}}{x} = 2 ]
- Evaluate the limit as (x) approaches (\pi/2) of (\frac{\csc{x}}{\sec{x}}):
[ \lim_{x \to \frac{\pi}{2}} \frac{\csc{x}}{\sec{x}} = \lim_{x \to \frac{\pi}{2}} \frac{1}{\cos{x}} \cdot \frac{1}{\sin{x}} = \lim_{x \to \frac{\pi}{2}} \frac{1}{\cos{x} \sin{x}} = \lim_{x \to \frac{\pi}{2}} \frac{1}{- \sin^2{(x)}} = -\lim_{x \to \frac{\pi}{2}} \frac{1}{\sin^2{(x)}} = -\frac{1}{0} \text{ (not defined)} ]
However, we can factor out the (\sin{x}) to get:
[ \lim_{x \to \frac{\pi}{2}} \frac{1}{\cos{x} \sin{x}} = \lim_{x \to \frac{\pi}{2}} \frac{1}{\sin{(x - \frac{\pi}{2})}} = -\lim_{x \to 0} \frac{1}{\sin{x}} = - \frac{1}{0} \text{ (not defined)} ]
Instead, use the double-angle formula:
[ \lim_{x \to \frac{\pi}{2}} \frac{1}{\cos{x} \sin{x}} = \lim_{x \to \frac{\pi}{2}} \frac{1}{2 \sin^2{\frac{x}{2}}} = \lim_{x \to 0} \frac{1}{2 \sin^2{\frac{x}{2}}} = \frac{1}{2} ]
Conclusion
Mastering the use of trigonometric identities in evaluating limits is an essential skill for students and professionals in mathematics and its applications. These identities allow us to simplify complex expressions, use linear properties of limits, and rewrite trigonometric limits in terms of more basic limits. The ability to apply these techniques to evaluate difficult limits accurately is a valuable tool in problem-solving.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Explore techniques for evaluating trigonometric limits using trigonometric identities such as sum-to-product formulas, double-angle formulas, and substitution. Learn how to apply linear properties of limits and simplify expressions involving sine, cosine, tangent, secant, cosecant, and cotangent functions to find precise limit values.