Trigonometry: Trigonometric Functions and Identities
5 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

किस तत्व में कहा गया है कि sin(π - A) = -sin(A) और cos(π - A) = -cos(A) ?

  • अद्वितीय और विषम गुण (correct)
  • घटाव सूत्र
  • पैथागोरियन तत्व
  • जोड़न सूत्र
  • किस तत्व को 'पैथागोरियन तत्व' कहा जाता है?

  • sin(A)cos(A) = 1
  • sin²(A) + cos²(A) = 1 (correct)
  • sin(A) + cos(A) = 1
  • sin²(A) - cos²(A) = 1
  • Cot(-A) के लिए कौन सा यंत्रिकीय समानता सही है?

  • -sec(A)
  • -tan(A)
  • -csc(A)
  • -cot(A) (correct)
  • किस सूत्र में sin(A + B) = sin(A)cos(B) + cos(A)sin(B) का वर्णन दिया गया है?

    <p>संयोजन सूत्र</p> Signup and view all the answers

    किस सूत्र में tan(A - B) = (tan(A) - tan(B)) / (1 + tan(A)tan(B)) का प्रस्तावन हुआ है?

    <p>संक्षेपन सूत्र</p> Signup and view all the answers

    Study Notes

    Trigonometry: Understanding Functions and Identities

    Trigonometry is a fundamental branch of mathematics that focuses on the relationships between the sides and angles of triangles. Two crucial aspects of trigonometry are trigonometric functions and trigonometric identities. In this article, we will explore both topics in detail.

    Trigonometric Functions

    There are six basic trigonometric functions: sine (sin), cosine (cos), tangent (tan), cotangent (cot), secant (sec), and cosecant (csc). These functions are defined relative to the sides and angles of a right triangle.

    • Sine (sin): The ratio of the side opposite an angle to the length of the hypotenuse, i.e., sin A = opposite side / hypotenuse.
    • Cosine (cos): The ratio of the adjacent side to the length of the hypotenuse, i.e., cos A = adjacent side / hypotenuse.
    • Tangent (tan): The ratio of the side opposite an angle to the adjacent side, i.e., tan A = opposite side / adjacent side.
    • Cotangent (cot): The reciprocal of the tangent function, i.e., cot A = adjacent side / opposite side.
    • Secant (sec): The reciprocal of the cosine function, i.e., sec A = hypotenuse / adjacent side.
    • Cosecant (csc): The reciprocal of the sine function, i.e., csc A = hypotenuse / opposite side.

    These functions are essential tools in solving problems related to the angles and sides of triangles, such as calculating unknown angles and distances.

    Trigonometric Identities

    Trigonometric identities are mathematical statements that relate the values of different trigonometric functions for the same angle. Some common trigonometric identities include:

    • Pythagorean Identity: sin²(A) + cos²(A) = 1 for any angle A.
    • Reciprocal Identities: sin(-A) = -sin(A), cos(-A) = cos(A), tan(-A) = -tan(A), cot(-A) = -cot(A), sec(-A) = -csc(A), and csc(-A) = -sec(A).
    • Even and Odd Properties: sin(π - A) = -sin(A) and cos(π - A) = -cos(A) for any angle A.
    • Addition Formulae: sin(A + B) = sin(A)cos(B) + cos(A)sin(B), cos(A + B) = cos(A)cos(B) - sin(A)sin(B), tan(A + B) = (tan(A) + tan(B)) / (1 - tan(A)tan(B)), cot(A + B) = (cot(A) + cot(B)) / (1 + cot(A)cot(B)), sec(A + B) = sec(A)sec(B) / |cos(A + B)|, and csc(A + B) = csc(A)csc(B) / |sin(A + B)|.
    • Subtraction Formulae: sin(A - B) = sin(A)cos(B) - cos(A)sin(B), cos(A - B) = cos(A)cos(B) + sin(A)sin(B), tan(A - B) = (tan(A) - tan(B)) / (1 + tan(A)tan(B)), cot(A - B) = (cot(A) - cot(B)) / (1 - cot(A)cot(B)), sec(A - B) = sec(A)sec(B) / |cos(A - B)|, and csc(A - B) = csc(A)csc(B) / |sin(A - B)|.

    These identities are used to simplify trigonometric expressions and equations, making calculations easier.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    ट्राइगनॉमेट्री एक मौलिक गणित की शाखा है जो त्रिभुज के कोनों और भुजों के बीच संबंधों पर ध्यान केंद्रित करती है। इस लेख में, हम त्रिकोणमितीय कार्यों और त्रिकोणमितीय पहचानों के दो महत्वपूर्ण पहलुओं की विस्तार से जांच करेंगे।

    More Like This

    Use Quizgecko on...
    Browser
    Browser