Podcast
Questions and Answers
$\sigma(t)$ $P(x=0)$
$\sigma(t)$ $P(x=0)$
$\sigma(t) = \sigma_0 cos(wt)$
$\overrightarrow{E}(\vec{r},t)$ $ $\overrightarrow{E}$ $ *$\overrightarrow{E}$
$\overrightarrow{E}(\vec{r},t)$ $ $\overrightarrow{E}$ $ *$\overrightarrow{E}$
$\overrightarrow{E}(\vec{r},t) = \frac{\sigma_0}{\epsilon_0}cos(wt) $
$\sigma_0$
$\sigma_0$
$\sigma_0$ t = 0.
Study Notes
Exercise 2
- A Cartesian coordinate system R(O, ex, ey, ez) is used, where σ(t) = σ₀δ(ωt) represents a surface charge density.
- The electric field E(r, t) is generated by this surface charge distribution.
- In the quasi-stationary approximation (ARQS), the electric field is assumed to have the form E(r,t) = E(x,t) ex for all (r, t)
- The property E(-x, t) = -E(x, t) is valid for x > 0 and x < 0 .
- The electric field E(r,t) on the plane P(x = 0) needs to be determined.
Exercise 3
- A Cartesian coordinate system R(O, ex, ey, ez) is used for a cylindrical bar of infinite height and radius R.
- A current density j(t) = j₀cos(ωt) ez flows along the z-axis of the cylinder.
- The electric current density is considered a function of time.
- The magnetic field B is generated by this current.
- Questions about this cylindrical bar are to be answered.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Related Documents
Description
يتناول هذا الاختبار مسائل حول الكثافة السطحية للشفوف الكهربائية والحقل الكهربائي الناتج عنها. كما يتناول التغيرات الزمنية للتيار الكهربائي في أسطوانة ذات ارتفاع غير محدود. ستحتاج إلى تطبيق المفاهيم لفهم سلوك المجالات الكهربائية والمغناطيسية.