Podcast
Questions and Answers
Which of the following refers to a set where each input corresponds to exactly one output?
Which of the following refers to a set where each input corresponds to exactly one output?
Find the domain of the function $f(x) = \sqrt{(4-x)} + (\frac{1}{\sqrt{(x^2-1)}})$.
Find the domain of the function $f(x) = \sqrt{(4-x)} + (\frac{1}{\sqrt{(x^2-1)}})$.
Find the domain of the function $f(x) = \ln(x^2-5x+6)$.
Find the domain of the function $f(x) = \ln(x^2-5x+6)$.
What is the limit of the function $f(x) = \frac{x^2-5x+6}{x-3}$ as x approaches 3?
What is the limit of the function $f(x) = \frac{x^2-5x+6}{x-3}$ as x approaches 3?
Signup and view all the answers
What is the limit of the function $f(x) = \frac{x^2-5x+6}{x-3}$ as x approaches 5?
What is the limit of the function $f(x) = \frac{x^2-5x+6}{x-3}$ as x approaches 5?
Signup and view all the answers
Find the limit of $ (2 - x) \tan( \pi x) $ as x approaches 1.
Find the limit of $ (2 - x) \tan( \pi x) $ as x approaches 1.
Signup and view all the answers
Find the limit of $\sin(2(x-\frac{\pi}{4}))/ (x-\frac{\pi}{4}) $ as x approaches $\frac{\pi}{4}$.
Find the limit of $\sin(2(x-\frac{\pi}{4}))/ (x-\frac{\pi}{4}) $ as x approaches $\frac{\pi}{4}$.
Signup and view all the answers
Evaluate $\lim_{x \to 0} \frac{1}{x} \int_2^{2+x} (t+\sqrt{t^2+5}) dt$.
Evaluate $\lim_{x \to 0} \frac{1}{x} \int_2^{2+x} (t+\sqrt{t^2+5}) dt$.
Signup and view all the answers
What is the limit of (2-x)tan(πx) as x approaches 1?
What is the limit of (2-x)tan(πx) as x approaches 1?
Signup and view all the answers
Find the limit of sin(2(x-π/4))/(x-π/4) as x approaches π/4.
Find the limit of sin(2(x-π/4))/(x-π/4) as x approaches π/4.
Signup and view all the answers
Evaluate the limit: lim_{x→0} ∫(t+√(t^2+5)) dt/x^2
Evaluate the limit: lim_{x→0} ∫(t+√(t^2+5)) dt/x^2
Signup and view all the answers
Given a linear piecewise function f(x) = {x-4 for x<5, x^2 for x≥5}, solve for lim_{x→5^-} f(x).
Given a linear piecewise function f(x) = {x-4 for x<5, x^2 for x≥5}, solve for lim_{x→5^-} f(x).
Signup and view all the answers
What type of discontinuity is present at x=2 for the function f(x)= (x^2-4)/(x-2)?
What type of discontinuity is present at x=2 for the function f(x)= (x^2-4)/(x-2)?
Signup and view all the answers
Study Notes
Functions and Relations
- A function is a mathematical relation that relates an input from a set called the domain to exactly one output in a set called the range.
- A function can be represented as a relation, equation, or graph.
Domain of Functions
- The domain of a function is the set of input values for which the function is defined.
- The domain of a function can be found by analyzing the function's formula.
Limits of Functions
- The limit of a function as x approaches a certain value is the value that the function approaches as x gets arbitrarily close to that value.
- The limit of a function can be determined using various techniques, such as factoring, canceling, or using trigonometric identities.
Piecewise Functions
- A piecewise function is a function that is defined differently for different intervals of the input variable.
- The limit of a piecewise function can be evaluated by considering the limit of each piece of the function separately.
Continuity of Functions
- A function is continuous at a number a if the function is defined at a and the limit of the function as x approaches a exists and is equal to the value of the function at a.
- The conditions for continuity of a function at a number a are:
- f(a) is defined
- limx→af(x)lim_{x \to a} f(x)limx→af(x) exists
- limx→af(x)=f(a)lim_{x \to a} f(x) = f(a)limx→af(x)=f(a)
Calculus Problems
Problem 6: Limit of (2-x)tan(2) as x approaches 1
- The problem involves finding the limit of an algebraic function multiplied by a trigonometric function
- The function is (2-x)tan(2) and the limit is as x approaches 1
- Possible answers: A. e^2, B. e^2/π, C. 0, D. ∞
Problem 7: Limit of sin(2(x-π/4))/(x-π/4) as x approaches π/4
- The problem involves finding the limit of a trigonometric function
- The function is sin(2(x-π/4))/(x-π/4) and the limit is as x approaches π/4
- Possible answers: A. 0, B. 1, C. 2, D. ½
Problem 8: Evaluating a Limit
- The problem involves evaluating a limit of an integral
- The integral is ∫t+√(t^2+5)t 1/(x^2) dx and the limit is as x approaches 0
- Possible answers: A. 2, B. 3, C. 4, D. 5
Problem 9: Solving for A in a Piecewise Function
- The problem involves solving for a parameter in a piecewise function
- The function is f(x)={x-4, x and the goal is to solve for A
- No possible answers are provided
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
This quiz reviews basic concepts of functions and domain in mathematics, covering topics such as function definitions and finding domain of functions.