Podcast
Questions and Answers
Selon le dogme central de la biologie moléculaire, quel est le flux d'information génétique généralement observé?
Selon le dogme central de la biologie moléculaire, quel est le flux d'information génétique généralement observé?
- Protéines → ADN → ARN
- ARN → ADN → Protéines
- ADN → ARN → Protéines (correct)
- Protéines → ARN → ADN
Parmi les types d'ARN suivants, lequel représente le pourcentage le plus élevé dans une cellule?
Parmi les types d'ARN suivants, lequel représente le pourcentage le plus élevé dans une cellule?
- ARNt (ARN de transfert)
- ARNnc (ARN non codant)
- ARNr (ARN ribosomique) (correct)
- ARNm (ARN messager)
Quelle est la fonction principale de l'ARN polymérase ADN-dépendante?
Quelle est la fonction principale de l'ARN polymérase ADN-dépendante?
- Catalyser la réplication de l'ADN
- Catalyser l'épissage de l'ARN
- Catalyser la transcription des gènes (correct)
- Catalyser la traduction des protéines
Parmi les affirmations suivantes concernant la fidélité de la synthèse d'ARN par l'ARN polymérase, laquelle est correcte?
Parmi les affirmations suivantes concernant la fidélité de la synthèse d'ARN par l'ARN polymérase, laquelle est correcte?
Dans quel sens les ribonucléotides sont-ils ajoutés au brin matrice lors de la transcription?
Dans quel sens les ribonucléotides sont-ils ajoutés au brin matrice lors de la transcription?
Quelle est la principale différence entre la réplication et la transcription en termes de portion du génome copiée?
Quelle est la principale différence entre la réplication et la transcription en termes de portion du génome copiée?
Concernant le brin matrice et le brin codant, quel est leur rôle dans la transcription?
Concernant le brin matrice et le brin codant, quel est leur rôle dans la transcription?
Parmi les propositions suivantes, laquelle décrit correctement l'ARN polymérase II chez les eucaryotes?
Parmi les propositions suivantes, laquelle décrit correctement l'ARN polymérase II chez les eucaryotes?
Quel est le rôle de la sous-unité ω (oméga) dans le cœur de l'ARN polymérase bactérienne?
Quel est le rôle de la sous-unité ω (oméga) dans le cœur de l'ARN polymérase bactérienne?
Quelle est la fonction principale du facteur σ (sigma) lors de l'initiation de la transcription chez lesbactéries?
Quelle est la fonction principale du facteur σ (sigma) lors de l'initiation de la transcription chez lesbactéries?
Dans le contexte de la transcription bactérienne, qu'est-ce que l'holoenzyme?
Dans le contexte de la transcription bactérienne, qu'est-ce que l'holoenzyme?
Comment la variabilité des facteurs σ (sigma) chez les bactéries influence-t-elle la transcription?
Comment la variabilité des facteurs σ (sigma) chez les bactéries influence-t-elle la transcription?
En général, quels éléments sont nécessaires pour un promoteur bactérien reconnu par σ70?
En général, quels éléments sont nécessaires pour un promoteur bactérien reconnu par σ70?
Comment un changement d'une seule paire de bases dans le promoteur peut-il affecter la transcription?
Comment un changement d'une seule paire de bases dans le promoteur peut-il affecter la transcription?
Quelle est la conséquence de la présence d'un élément UP dans un promoteur bactérien?
Quelle est la conséquence de la présence d'un élément UP dans un promoteur bactérien?
Parmi les étapes suivantes de l'initiation de la transcription chez les bactéries, laquelle est déterminante et hautement régulée?
Parmi les étapes suivantes de l'initiation de la transcription chez les bactéries, laquelle est déterminante et hautement régulée?
Quelles sont les trois principales étapes de la transcription
Quelles sont les trois principales étapes de la transcription
Quelle est la vitesse approximative de l'élongation lors de la transcription
Quelle est la vitesse approximative de l'élongation lors de la transcription
Quelle est la structure de coeur de l'ARN polymérase d'E.coli
Quelle est la structure de coeur de l'ARN polymérase d'E.coli
Lors de l'élongation, quelles sont les actions de l'ARN polymérase
Lors de l'élongation, quelles sont les actions de l'ARN polymérase
Flashcards
Central Dogma of Biology
Central Dogma of Biology
DNA is transcribed into RNA, then RNA is translated into protein.
Types of RNA
Types of RNA
mRNA (messenger RNA): 3% of cellular RNA, carries genetic code from DNA to ribosomes. ARNr (ribosomal RNA): 80% of cellular RNA, forms ribosomes. ARNt (transfer RNA): 15% of cellular RNA, brings amino acids to ribosomes during translation.
Transcription
Transcription
The process of copying DNA into RNA.
Translation
Translation
Signup and view all the flashcards
RNA Polymerase
RNA Polymerase
Signup and view all the flashcards
Transcription Initiation
Transcription Initiation
Signup and view all the flashcards
Transcription Elongation
Transcription Elongation
Signup and view all the flashcards
Transcription Termination
Transcription Termination
Signup and view all the flashcards
Promoter
Promoter
Signup and view all the flashcards
Terminator
Terminator
Signup and view all the flashcards
Sigma (σ) Factor
Sigma (σ) Factor
Signup and view all the flashcards
Holoenzyme
Holoenzyme
Signup and view all the flashcards
Upstream Element (UP)
Upstream Element (UP)
Signup and view all the flashcards
Study Notes
Introduction
- Reminders about the exam content
Exam 2
- The exam is on Thursday, March 20
- The content includes structure of the genome, chromatin and nucleosome
- The content includes mechanisms of transcription
Exam 3
- The exam is on Thursday, April 24
- The content includes RNA splicing
- The content includes regulation of transcription
- The content includes non-coding RNAs
Central Dogma
- Central dogma exception: retrotranscription (AIDS virus)
- ADN is copied into ADN m, then ADN m is translated into proteins
- Includes transcription and translation
Types of RNA
- Ribosomal RNAs (rRNA) constitute 80% of cellular RNAs
- Transfer RNAs (tRNA) make up 15% of cellular RNAs
- Messenger RNAs (mRNA) account for 3% of cellular RNAs
- Non-coding RNAs are never translated
RNA polymerase and Transcription: General Information
- RNA polymerases are key enzymes in transcription
- RNA polymerases are ADN-dependent
- RNA polymerase catalyzes gene transcription
- Uses one of the two ADN strands as a template
- Uses ribonucleotides (ATP, UTP, GTP, and CTP) as starting substrates
- Recognizes specific sites (promoter/terminator) that indicate the start and end of transcription
- The synthesis of RNA by RNA polymerase is quite accurate
Error rate
- The error rate is 1 error per 10,000 added nucleotides, important for speed
- ADN polymerase is 1000 times more accurate
- ADN polymerase has 1 error per 10 million added nucleotides
- ADN polymerase synthesizes ADN during replication
Genes to the to be transcribed
- Genes to be transcribed vary from cell to cell
- Genes to be transcribed vary based on the cell cycle
- Genes to be transcribed vary based on the environment
- Transcription is highly regulated to ensure the right amount, at the right place, at the right time
- Replication copies the entire genome, replication is not selective
- Transcription selectively copies certain parts of the genome at the right time
RNA strands
- Ribonucleotides are added to the template strand in the 5' to 3' direction
- An ARN-ADN hybrid is formed
- Bases are added according to their complementarity
- Chargaff’s rule applies
- Strands are antiparallel and complementary
- Ribonucleotide U replaces T
Coding Strand
- Identical to the ARN (except T vs. U)
- The newly synthesized ARN does not remain paired to the ADN template
- The ARN is released as the transcription bubble progresses
Matrix Strand
- Complementary and antiparallel
Promoters
- The template strand is not always the same
RNA Polymerases and Transcription: Structure, Homologies, and Distribution
- RNA polymerases are ubiquitous
- RNA polymerases are enormous protein complexes composed of multiple subunits
- The number of subunits varies by organism
- Exception: viral RNA polymerase (only one subunit)
- Five core subunits are conserved and directly involved in synthesis
Prokaryotes
- Have only one type of RNA polymerase
Eukaryotes
- Have three main RNA polymerases found in every eukaryote
- ARN pol I (rARN; except small 5s rARN)
- ARN pol II (mARN; most ncARNs except rARN and tARN)
- ARN pol III (tARN, 5s rARN, and certain ncARNs)
- Some groups have additional polymerases
Viruses
- Viruses also have RNA polymerases
- Viral RNA polymerases are simpler versions compared to those in other organisms
RNA Polymerase core
- The RNA Polymerase core of E. coli consists of 5 subunits
- Its quaternary structure has a molecular weight of approximately 400 kDa
- About 10 times larger than the average protein
- The lobe of the claw is stabilized by alpha 1 and 2, and by omega
Active Site
- The active site (shown in yellow) contains an essential Mg++ ion for catalysis
- Homologies in structural areas are particularly pronounced in internal portions
- Crab claws are formed by the two largest subunits
RNA Polymerases and Transcription Stages
- The three stages of transcription include: Initiation, Elongation, and Termination
Transcription Initiation Stage
- This step is critical for regulation and involves:
- Recognition of the promoter by the holoenzyme
- Complex closed formation
- Transcription bubble opening
- Complex open formation
- Initial transcription complex formation
- Aborted transcriptions
- Promoter evasion
- The initiation step is crucial and heavily regulated
Transcription Elongation Stage
- During elongation and synthesis, ARN polymerase:
- Unwinds double-stranded ADN ahead of the transcription bubble
- Winding single-stranded ADN behind
- Dissociates ARN transiently paired to the template strand
- Corrects transcription errors ('proofreading')
- About 14 bp are unwound to form the transcription bubble (open complex)
- Requires two Mg++ ions for the addition of nucleotides
- Only one magnesium is always associated with the polymerase to stabilize the intermediate phase of the nucleotide
- Speed is 50 to 90 nucleotides/s
Transcription Termination Stage
- Terminates with very specific sequences (terminator site]
- Includes synthesis arrest,
- Undocking of the ARN, ARN polymerase, and ADN,
- The final step is transcription bubble closure
Transcription in Bacteria
- The best studied model is Escherichia coli
RNA Polymerase Heart Role
- Role of Subunits
- Contains 2 alpha subunits:
- They are necessary for assembly of the core
- Necessary for recognition of the UP promoter CHEZ LES BACTERIES
- Contains 2 beta subunits:
- Forms a crab claw to form the active site
- Undergoes Stabilization and Assembly by omega subunit
- Associates with sigma (σ) factor
Bacterial Transcription
- Bacterial Transcription occurs with an additional subunit Necessary for the Initiation sub-stage
Core Subunits
- The core synthesized ARN is not recognised by the Promotor
sigma Subunit
- Recongnition of the Promotor
- Is the Inititiation factor
- Undergoing transient association as part of the core, solely during the initiation step and phases, not the eongation phases
Holoenzyme Transcription
- Sigma Subunit requires Association with Cores subunits
- Transcribed as a non-functional transcription if not associated with the Apoenzyme
- Transcribed as Functional transcription because it recognises the Promotor
Transcriptional Variation
- In this step bacteria possesses different σ factors variation
Species Gene Recognition
- Specific recognitiion dependent on sigma factor variation of each species.
- Depending ont he Promotor sequences they favour transcription in different conditions
Genetic processes
- Genetic and Role regulation can occur via different sigma factiors.
- These processes are dependant on similar conditions with coordination
Bacterial Promotors
- Consists of:
- Region of -10
- Bacterial Promotors most frequently contains : -35 regions
- And UP elements Upstream Promotor Element
- Non recognised by the factor σ which is soleley recognised by sub-unit σ
Bacterial Sites frequencey
- The -10 region, lacking -35 region
- Has a discriminating quality
Promotor and Sigma bacterial action
- Differing regions interact different Promotor elements.
Elements of Promoter
- Key elements of the promotor:
- Sigma 1, Sigma 2,2/3,4 Domain, σ1, σ2, σ2/σ3 and σ4
- Each factor promotes promoter assembly
Bacterial Upstream sites
- Bacterial Promoters contain strong expressins for upstream presence
- This Upstream presence contains great concentration of A and T
Promoter sequence
- Spacing is important, presence of UP, important for recombination.
- Single Pair alteration can decreases efficancy.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.