Diffraction of Light Concepts
13 Questions
3 Views

Diffraction of Light Concepts

Created by
@NicerConnemara6918

Podcast Beta

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What phenomenon describes the bending of light rays around sharp corners?

  • Refraction
  • Interference
  • Reflection
  • Diffraction (correct)
  • According to the conditions for dark fringes in a single slit diffraction experiment, what is the equation used?

  • a sin θ_n = n λ
  • a sin θ_n = m λ (correct)
  • a sin θ_n = (2n + 1) λ
  • a sin θ_n = (2n + 1) λ/2
  • What is the relationship between path difference and fringe visibility in diffraction patterns?

  • Path difference needs to be zero for dark fringes.
  • A path difference of λ results in bright fringes.
  • Path difference must be λ or its integral multiple for dark fringes. (correct)
  • Path difference must be a fraction of λ for bright fringes.
  • In a double slit diffraction experiment, what results from the interference of rays from the two slits?

    <p>A pattern that combines both diffraction and interference.</p> Signup and view all the answers

    What distinguishes bright fringes from dark fringes in terms of their path difference conditions in diffraction patterns?

    <p>Bright fringes occur at (2n + 1)λ/2, dark fringes occur at mλ.</p> Signup and view all the answers

    Which equation represents the condition for nth order interference maximum?

    <p>(a + b) sin 𝜽n = n λ</p> Signup and view all the answers

    What is the path difference for two corresponding rays diffracted at angle 𝜽?

    <p>x = (a + b) sin 𝜽</p> Signup and view all the answers

    What happens if the nth order interference maximum coincides with the mth order diffraction minimum?

    <p>Interference fringes will be absent from the resultant pattern.</p> Signup and view all the answers

    If a = b, which order of interference will be missing?

    <p>All even orders (n = 2, 4, 6, ...)</p> Signup and view all the answers

    How many lines can typically be ruled on a diffraction grating per inch?

    <p>About 12,000 to 30,000 lines</p> Signup and view all the answers

    What do the ruled lines on a diffraction grating represent?

    <p>Opaque regions</p> Signup and view all the answers

    What is the grating constant in a diffraction grating defined as?

    <p>The combined width of opaque and transparent regions (a + b)</p> Signup and view all the answers

    If b = 0, what is the relationship between n and m?

    <p>n = m</p> Signup and view all the answers

    Study Notes

    Diffraction of Light

    • Diffraction refers to the bending of light rays around sharp edges, allowing light to enter areas that would otherwise be in shadow.
    • This phenomenon is explained by the wave nature of light and is based on Huygen’s theory.

    Fraunhofer Diffraction at Single Slit

    • Key path difference for two rays diffracted at angle θ is given by ( x = a \sin \theta ).
    • Dark fringes occur when the path difference equals ( \lambda ) or its integral multiple, altering the conditions for bright and dark fringes.
    • For bright fringes, the equation is ( a \sin \theta_n = \frac{(2n+1) \lambda}{2} ).
    • For dark fringes, the condition is ( a \sin \theta_m = m \lambda ).

    Fraunhofer Diffraction at Double Slit

    • Intensity distribution on the screen results from both diffraction and interference:
      • Individual slit diffraction patterns that overlap.
      • Interference patterns from superposition of rays from two slits.

    Diffraction Pattern

    • Bright fringes for single slits follow: ( a \sin \theta_n = \frac{(2n+1) \lambda}{2} ).
    • Dark fringes maintain: ( a \sin \theta_m = m \lambda ).

    Interference Pattern

    • Path difference for rays at angle θ is: ( x = (a + b) \sin \theta ).
    • For nth order interference maximum: ( (a + b) \sin \theta_n = n \lambda ).
    • For nth order interference minimum: ( (a + b) \sin \theta_n = \frac{(2n+1) \lambda}{2} ).

    Missing Orders of Interference

    • Interference maxima occurring at the same angular position as diffraction minima results in absence of those fringes.
    • Equations depict the condition:
      • ( (a + b) \sin \theta = n \lambda ) for maximum.
      • ( a \sin \theta = m \lambda ) for minimum.
    • Dividing leads to ( \frac{a + b}{a} = \frac{n}{m} ), showing relationships:
      • If ( a = b ): ( n = 2m ) — even orders of interference are missing.
      • If ( 2a = b ): ( n = 3m ) — multiples of three are missing.
      • If ( b = 0 ): all interference fringes are absent.

    Intensity Distribution on Screen

    • The resulting intensity distribution combines the interference pattern within the diffraction fringes.

    Diffraction Grating/Plane Transmission Grating

    • A diffraction grating consists of numerous parallel slits with equal spacing and widths, separated by opaque regions.
    • Constructed by ruling lines with a fine diamond point on a glass plate, typically containing 12,000 to 30,000 lines per inch.
    • Each slit has a width ( a ) (transparent) and opaque portions have width ( b ).
    • Grating constant is ( a + b ), with its reciprocal defining the number of lines per unit length on the grating.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    This quiz covers the intricate phenomena of light diffraction, focusing on the bending of light rays around sharp edges and how they enter shadow regions. It emphasizes understanding through Huygen’s theory and explores the Fraunhofer diffraction at a single slit.

    More Like This

    Use Quizgecko on...
    Browser
    Browser