Decision Trees and Function Approximation
37 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What does the entropy H(X) of a random variable X represent?

  • The average length of all possible codes for X
  • The maximum number of bits needed for any symbol
  • The expected number of bits needed to encode a randomly drawn value of X (correct)
  • The total probability of all outcomes for X
  • What encoding method was introduced by David Huffman in 1952?

  • Run-length encoding
  • Huffman coding scheme (correct)
  • Arithmetic coding
  • Shannon-Fano coding technique
  • Which of the following statements accurately reflects the assignment of bits in coding according to information theory?

  • Each symbol is assigned 1 bit regardless of its probability
  • More probable symbols receive fewer bits than less probable symbols (correct)
  • All symbols must have equal probabilities to be efficiently encoded
  • Bits assigned are proportional to the square of the symbol's probability
  • What does the expression -log2P(X=i) calculate in information theory?

    <p>The number of bits needed to encode the message X=i</p> Signup and view all the answers

    Which of the following best describes the concept of entropy in the context of encoding?

    <p>Entropy provides a way to measure the uncertainty or impurity of a random variable</p> Signup and view all the answers

    What is represented by the function 'f' in the context of decision trees?

    <p>The function mapping from input to output labels</p> Signup and view all the answers

    Which set denotes the possible function hypotheses in decision trees?

    <p>H</p> Signup and view all the answers

    What does the input 'TnD' consist of in the decision tree process?

    <p>A collection of training examples</p> Signup and view all the answers

    In a decision tree, what is the primary output after processing the training data?

    <p>The hypothesis that best approximates the target function</p> Signup and view all the answers

    Which symbol is used to denote the set of possible instances in decision trees?

    <p>X</p> Signup and view all the answers

    When referring to labeled instances in decision trees, which notation is used?

    <p>y</p> Signup and view all the answers

    What does the set 'E' represent in the context of decision trees?

    <p>Unknown target function</p> Signup and view all the answers

    Which of the following correctly reflects the relationship between the input and output in decision trees?

    <p>Inputs are instances and outputs are labels approximated by hypotheses</p> Signup and view all the answers

    What is the result of the calculation for $I(T)$?

    <p>1</p> Signup and view all the answers

    What does the variable $I(Pat, T)$ represent in this context?

    <p>Information entropy based on patrons</p> Signup and view all the answers

    What does the computation of $I(Type, T)$ equal?

    <p>1</p> Signup and view all the answers

    What is the gain from patrons calculated as $Gain(Pat, T)$?

    <p>0.53</p> Signup and view all the answers

    How is $Gain(Type, T)$ determined?

    <p>By subtracting $I(Type, T)$ from 1</p> Signup and view all the answers

    What is the entropy computation $I(Pat, T)$ simplified expression involving logarithms?

    <p>$- (4/6 log 4/6 + 2/6 log 2/6)$</p> Signup and view all the answers

    Which value is essential in computing the information entropy for $I(T)$?

    <p>Proportion of each category</p> Signup and view all the answers

    In the context provided, what does the $Gain(Type, T)$ of 0 indicate?

    <p>There is no information gain from type.</p> Signup and view all the answers

    What is the entropy of a group where all examples belong to the same class?

    <p>0</p> Signup and view all the answers

    What does the entropy equal for a group with 50% in either class?

    <p>1</p> Signup and view all the answers

    What is the significance of low entropy in a training set?

    <p>It represents a poor training set for learning.</p> Signup and view all the answers

    Which of the following correctly describes the concept of information gain?

    <p>The reduction in uncertainty achieved by splitting a dataset.</p> Signup and view all the answers

    Which attribute would be most useful for distinguishing between classes in a dataset according to information gain?

    <p>An attribute that creates many pure subsets.</p> Signup and view all the answers

    How is entropy mathematically expressed for a given class x?

    <p>H(x) = -Σ P(x=i) log2 P(x=i)</p> Signup and view all the answers

    Which statement is true regarding maximum entropy?

    <p>It occurs when classes are equally represented.</p> Signup and view all the answers

    What does a high level of impurity in a training set suggest?

    <p>The dataset might require pruning.</p> Signup and view all the answers

    How accurate was the decision tree in classifying examples for breast cancer diagnosis compared to human experts?

    <p>72%</p> Signup and view all the answers

    What did the decision tree designed by British Petroleum replace?

    <p>An earlier rule-based expert system</p> Signup and view all the answers

    Which type of data handling is NOT explicitly mentioned as a feature of C4.5?

    <p>Handling of categorical data</p> Signup and view all the answers

    What is one potential advantage of using decision trees over human experts in decision making?

    <p>Elimination of human bias</p> Signup and view all the answers

    In the context of the content provided, which method is used for experimental validation of performance?

    <p>Cross-validation</p> Signup and view all the answers

    How many attributes were used by Cessna in their airplane flight controller decision tree?

    <p>90,000 examples</p> Signup and view all the answers

    What is one feature for handling noisy data in decision trees mentioned in the content?

    <p>Overfitting prevention</p> Signup and view all the answers

    Which of the following best describes the extension C4.5 in relation to ID3?

    <p>It introduces real-valued data handling.</p> Signup and view all the answers

    Study Notes

    Decision Trees and Function Approximation

    • Decision trees function as a model to approximate an unknown target function ( f: X \rightarrow Y ).
    • Possible instances are represented by set ( X ) and possible labels by set ( Y ).
    • A collection of function hypotheses to approximate ( f ) is denoted as ( H = { h | h: X \rightarrow Y } ).
    • Input consists of training examples ( {(x_i, y_i)}_{i=1}^n ) for learning the target function.

    Entropy in Information Theory

    • Entropy ( H(X) ) measures the impurity of a random variable ( X ).
    • It quantifies the average number of bits required to encode a value from ( X ) using optimal coding.
    • Entropy is defined by the formula ( H(X) = -\sum_{i=1}^{n} P(x=i) \log_2 P(x=i) ).
    • A group where all instances belong to the same class has ( H = 0 ) (minimum impurity), making it ineffective for training.
    • A balanced group (50-50 distribution across classes) achieves maximum impurity with ( H = 1 ), ideal for training.

    Sample Entropy and Information Gain

    • Sample entropy is a specific instance of entropy based on available data.
    • Information gain is a metric for determining the usefulness of attributes in classifying instances.
    • Gain is calculated as the difference between prior entropy and conditional entropy after splitting on an attribute.

    Huffman Coding

    • In 1952, David Huffman introduced an optimal coding scheme that minimizes average code length.
    • This scheme is particularly effective when symbol probabilities are powers of ( 1/2 ).

    Applications and Performance of Decision Trees

    • Decision trees are competitive with human experts in specific domains, such as medical diagnosis.
    • A study found decision trees classified breast cancer cases correctly 72% of the time, compared to 65% for human experts.
    • British Petroleum employed decision trees for gas-oil separation on offshore platforms, replacing earlier rule-based systems.

    Extensions of ID3 Algorithm

    • ID3 algorithm enhancements include handling real-valued and noisy data, pruning trees, and rule generation.
    • C4.5 is a notable extension that allows for missing values, continuous attribute ranges, and better validation through cross-validation methods.

    Practical Example of Information Gain Calculation

    • For a set of training instances, calculations yield specific information gains for different attributes:
      • ( I(Type, T) = 1 ) indicates full information retention through the attribute.
      • Other attributes yield gains demonstrating less information retention and thus lesser efficacy in discrimination between classes.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Related Documents

    Decision Trees PDF

    Description

    This quiz covers the concepts of decision trees and their application in function approximation. It focuses on problem setting, including possible instances and target functions. You'll explore how to classify data points effectively using the theory behind decision trees.

    More Like This

    Decision Trees in AI and ML Quiz
    3 questions
    Decision Trees in Machine Learning
    21 questions

    Decision Trees in Machine Learning

    MesmerizingGyrolite5380 avatar
    MesmerizingGyrolite5380
    Use Quizgecko on...
    Browser
    Browser