Podcast
Questions and Answers
यदि दो बिंदु P(3, -2) और Q(-1, 4) हैं, तो इन दोनों बिंदुओं के मध्यबिंदु की स्थिति क्या होगी?
यदि दो बिंदु P(3, -2) और Q(-1, 4) हैं, तो इन दोनों बिंदुओं के मध्यबिंदु की स्थिति क्या होगी?
यदि बिंदु A(5, -3) से बिंदु B(-1, 4) की दूरी है 13 units, तो A और B के बीच की दूरी क्या होगी?
यदि बिंदु A(5, -3) से बिंदु B(-1, 4) की दूरी है 13 units, तो A और B के बीच की दूरी क्या होगी?
कार्टेशियन संयत्र में एक बिंदु (-2, 6) किसके करीब है?
कार्टेशियन संयत्र में एक बिंदु (-2, 6) किसके करीब है?
किस समीकरण में x-अक्ष के समानांतर पार होने वाली रेखा है?
किस समीकरण में x-अक्ष के समानांतर पार होने वाली रेखा है?
Signup and view all the answers
समकोणीय प्रकारित कोन हैं?
समकोणीय प्रकारित कोन हैं?
Signup and view all the answers
यदि एक रेखा को प्रत्यांतरण किया जाता है, जिसका केंद्र (4, 5) है और कोण 90 डिग्री है, तो परिणामी रेखा के समीपबिन्दु के निर्धारण के लिए कौन सी सूत्र का प्रयोग किया जाएगा?
यदि एक रेखा को प्रत्यांतरण किया जाता है, जिसका केंद्र (4, 5) है और कोण 90 डिग्री है, तो परिणामी रेखा के समीपबिन्दु के निर्धारण के लिए कौन सी सूत्र का प्रयोग किया जाएगा?
Signup and view all the answers
किस सूत्र में एक रेखा का समीकरण 'मानक-स्पर्श सूत्र' की जानकारी के आधार पर प्रस्तुत होता है?
किस सूत्र में एक रेखा का समीकरण 'मानक-स्पर्श सूत्र' की जानकारी के आधार पर प्रस्तुत होता है?
Signup and view all the answers
कोने (2, 3) और (6, 7) से होने वाली एक रेखा का मध्यबिन्दु निकालने के लिए किस सूत्र का प्रयोग होगा?
कोने (2, 3) और (6, 7) से होने वाली एक रेखा का मध्यबिन्दु निकालने के लिए किस सूत्र का प्रयोग होगा?
Signup and view all the answers
किस सूत्र के आधार पर वर्ग ABCD की विस्तृति की जा सकती है?
किस सूत्र के आधार पर वर्ग ABCD की विस्तृति की जा सकती है?
Signup and view all the answers
किस प्रकार के पुनरावलोकन में आंकलन मापन व्याप्ति में परिवर्तन करने पर आंकलन पहुंचता है?
किस प्रकार के पुनरावलोकन में आंकलन मापन व्याप्ति में परिवर्तन करने पर आंकलन पहुंचता है?
Signup and view all the answers
Study Notes
Coordinate Geometry Basics
In coordinate geometry, we represent points and shapes using numerical values called coordinates within a specified system—usually two-dimensional Cartesian planes, where each point has an (x) value and a corresponding (y) value. This method allows us to analyze and manipulate geometric figures through mathematical equations, providing both precision and flexibility when working with various geometrical problems. Let's explore some fundamental concepts.
Cartesian Coordinates
Each point on a plane is identified by its pair of numbers ((x), (y)) called the Cartesian coordinates. These numbers correspond to the horizontal and vertical positions of the point relative to their origin (0, 0). For example, consider point A located at ((-3), (4)), which means it's three units left of the origin and four units above the origin.
Midpoint Formula
When you have two points, say P((a_{1}), (b_{1})) and Q((a_{2}), (b_{2})), finding the midpoint R can be achieved mathematically by taking the average of these coordinates. That is, (R = \left(\frac{a_{1} + a_{2}}{2}, \frac{b_{1} + b_{2}}{2}\right)).
Distance Formula
The distance between any two points A((x_A),(y_A)) and B((x_B), (y_B)) can be calculated using the Pythagorean theorem applied to the differences in their respective (x) and (y) components, i.e., (d = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}).
Equations of Lines
Lines may be represented in different forms in coordinate geometry:
- Point-Slope form: (y – y_1 = m(x – x_1)), where ((x_1), (y_1)) denotes one point on the line and (m) represents its slope.
- Slope-Intercept form: (y = mx + b), where (b) determines the Y-intercept.
- Two-Point Form: (y – y_1 = \frac{y_2 – y_1}{x_2 – x_1}(x – x_1)), where the equation passes through points ((x_1), (y_1)) and ((x_2), (y_2)).
- Intercept Form: (ax + by = c), where the expression represents the intersection of the line with the axes.
Transformation of Shapes
Using transformational geometry, rectangles, squares, circles, and other shapes may undergo translations, reflections, dilations, and rotations:
- Reflection: Swap the sign of either the (x)-coordinates or the (y)-coordinates to create symmetrical images around, respectively, the (x)-axis or the (y)-axis.
- Rotation: Change all angle measurements from degrees to radians and multiply coordinates accordingly based on the center of rotation and the angle of rotation.
- Dilation: Multiply each coordinate by a specific scaling factor, resulting in uniform size changes.
- Translation: Add fixed amounts to every coordinate, shifting them horizontally or vertically without changing angles or distances between points.
These transformations allow us to explore symmetry, proportionality, and conformal mapping principles in coordinate systems.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Explore fundamental concepts in coordinate geometry including Cartesian coordinates, midpoint formula, distance formula, equations of lines, and transformation of shapes through translations, reflections, dilations, and rotations. Understand how geometric figures are represented and manipulated using mathematical equations on Cartesian planes.