Compound Interest Calculation Quiz

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

What is the difference between the amount compounded annually and the amount compounded semi-annually after 4.5 years?

  • $8000 \left(1 + \frac{10}{100}\right)^{4.5} - 8000 \left(1 + \frac{10}{100}\right)^{2 \times 4.5}$
  • $8000 \left(1 + \frac{10}{2 \times 100}\right)^{4.5} - 8000 \left(1 + \frac{10}{100}\right)^{2 \times 4.5}$
  • $8000 \left(1 + \frac{10}{2 \times 100}\right)^{4.5} - 8000 \left(1 + \frac{10}{2 \times 100}\right)^{2 \times 4.5}$
  • $8000 \left(1 + \frac{10}{100}\right)^{4.5} - 8000 \left(1 + \frac{10}{2 \times 100}\right)^{2 \times 4.5}$ (correct)

What is the effective annual rate when the interest is compounded semi-annually at 10%?

  • $\left(1 + \frac{0.10}{2}\right)^2 - 1$ (correct)
  • $\left(1 + 0.10\right)^2 - 1$
  • $\left(1 + \frac{0.10}{2}\right) - 1$
  • $\left(1 + 0.10\right) - 1$

What is the future value of an investment of $8000 after 3 years when the interest is compounded annually at 8%?

  • $8000\left(1 + \frac{8}{100}\right)^3$ (correct)
  • $8000\left(1 + \frac{8}{3\times100}\right)^3$
  • $8000\left(1 + \frac{8}{100}\right)^{3/12}$
  • $8000\left(1 + \frac{8}{12\times100}\right)^3$

Flashcards are hidden until you start studying

More Like This

Use Quizgecko on...
Browser
Browser