Podcast
Questions and Answers
ResNet 아키텍처에서 잔차 연결(skip connection)을 도입한 주된 이유는 무엇인가?
ResNet 아키텍처에서 잔차 연결(skip connection)을 도입한 주된 이유는 무엇인가?
- 메모리 사용량을 줄이기 위해
- 과적합을 방지하기 위해
- 매우 깊은 네트워크에서 발생하는 기울기 소실 문제를 해결하기 위해 (correct)
- 네트워크의 파라미터 수를 줄이기 위해
GoogLeNet(Inception)은 네트워크의 마지막 부분에 완전 연결 계층을 사용하여 최종 분류를 수행한다.
GoogLeNet(Inception)은 네트워크의 마지막 부분에 완전 연결 계층을 사용하여 최종 분류를 수행한다.
False (B)
EfficientNet은 네트워크의 깊이, 너비, 해상도를 조정하기 위해 어떤 방법을 사용하는가?
EfficientNet은 네트워크의 깊이, 너비, 해상도를 조정하기 위해 어떤 방법을 사용하는가?
합성 스케일링(compound scaling)
MobileNet은 계산 비용을 줄이기 위해 ______(을)를 사용한다.
MobileNet은 계산 비용을 줄이기 위해 ______(을)를 사용한다.
다음 CNN 아키텍처를 그 특징과 연결하시오:
다음 CNN 아키텍처를 그 특징과 연결하시오:
Convolutional layer 내에서 filter의 주요 기능은 무엇인가?
Convolutional layer 내에서 filter의 주요 기능은 무엇인가?
Pooling layer는 항상 feature map의 공간적 크기를 증가시킨다.
Pooling layer는 항상 feature map의 공간적 크기를 증가시킨다.
Batch Normalization layer의 주요 목적은 무엇인가?
Batch Normalization layer의 주요 목적은 무엇인가?
Dropout layer는 훈련 시간 동안 입력 유닛의 일부를 무작위로 ______으로 설정하여 과적합을 방지한다.
Dropout layer는 훈련 시간 동안 입력 유닛의 일부를 무작위로 ______으로 설정하여 과적합을 방지한다.
다음 활성화 함수를 그 특징과 연결하시오:
다음 활성화 함수를 그 특징과 연결하시오:
CNN 훈련 시 데이터 증강(data augmentation)을 사용하는 주요 이유는 무엇인가?
CNN 훈련 시 데이터 증강(data augmentation)을 사용하는 주요 이유는 무엇인가?
전이 학습(transfer learning)은 항상 무작위로 초기화된 가중치를 사용하여 CNN 모델을 훈련하는 것을 포함한다.
전이 학습(transfer learning)은 항상 무작위로 초기화된 가중치를 사용하여 CNN 모델을 훈련하는 것을 포함한다.
가중치 초기화 방법 중 Xavier 초기화는 어떤 원리에 기반하는가?
가중치 초기화 방법 중 Xavier 초기화는 어떤 원리에 기반하는가?
최적화 알고리즘 중 Adam은 ______ 및 ______의 아이디어를 결합한 것이다.
최적화 알고리즘 중 Adam은 ______ 및 ______의 아이디어를 결합한 것이다.
다음 평가 지표를 그 정의와 연결하시오:
다음 평가 지표를 그 정의와 연결하시오:
CNN에서 'valid' padding은 출력 feature map의 크기에 어떤 영향을 미치는가?
CNN에서 'valid' padding은 출력 feature map의 크기에 어떤 영향을 미치는가?
CNN 레이어에서 stride가 1보다 크면 이미지 크기가 증가한다.
CNN 레이어에서 stride가 1보다 크면 이미지 크기가 증가한다.
이미지 데이터 세트를 normalization 할 때 일반적으로 사용하는 방법 두 가지를 쓰시오.
이미지 데이터 세트를 normalization 할 때 일반적으로 사용하는 방법 두 가지를 쓰시오.
손실 함수는 예측된 출력과 ______ 간의 차이를 정량화한다.
손실 함수는 예측된 출력과 ______ 간의 차이를 정량화한다.
다음 CNN 아키텍처를 목표 애플리케이션과 연결하세요:
다음 CNN 아키텍처를 목표 애플리케이션과 연결하세요:
Flashcards
CNN이란?
CNN이란?
시각적 이미지를 분석하는 데 가장 일반적으로 사용되는 심층 신경망 클래스입니다.
CNN 설계 목적
CNN 설계 목적
입력 이미지에서 특징의 공간적 계층을 자동으로, 적응적으로 학습하도록 설계되었습니다.
LeNet-5 특징
LeNet-5 특징
합성곱 계층, 서브샘플링 계층 및 완전 연결 계층을 특징으로 합니다.
AlexNet
AlexNet
Signup and view all the flashcards
VGGNet
VGGNet
Signup and view all the flashcards
GoogLeNet (Inception)
GoogLeNet (Inception)
Signup and view all the flashcards
ResNet
ResNet
Signup and view all the flashcards
DenseNet
DenseNet
Signup and view all the flashcards
MobileNet
MobileNet
Signup and view all the flashcards
EfficientNet
EfficientNet
Signup and view all the flashcards
합성곱 계층
합성곱 계층
Signup and view all the flashcards
활성화 함수
활성화 함수
Signup and view all the flashcards
풀링 계층
풀링 계층
Signup and view all the flashcards
배치 정규화 계층
배치 정규화 계층
Signup and view all the flashcards
완전 연결 계층
완전 연결 계층
Signup and view all the flashcards
드롭아웃 계층
드롭아웃 계층
Signup and view all the flashcards
패딩
패딩
Signup and view all the flashcards
스트라이드
스트라이드
Signup and view all the flashcards
데이터 준비
데이터 준비
Signup and view all the flashcards
하이퍼파라미터 튜닝
하이퍼파라미터 튜닝
Signup and view all the flashcards
Study Notes
- Convolutional Neural Networks (CNNs) are a class of deep neural networks, most commonly applied to analyzing visual imagery.
- CNNs are designed to automatically and adaptively learn spatial hierarchies of features from input images.
- CNNs are used in various applications, including image and video recognition, image classification, object detection, and medical image analysis.
CNN Architectures
- LeNet-5: One of the earliest CNN architectures, designed for handwritten digit recognition.
- Featured convolutional layers, subsampling layers, and fully connected layers.
- AlexNet: Significantly deeper than LeNet-5, it achieved breakthrough performance in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012.
- Used ReLU activation functions and dropout for regularization.
- VGGNet: Explored the impact of network depth, using very small (3x3) convolutional filters uniformly throughout the entire architecture.
- VGGNet comes in variants such as VGG16 and VGG19, where the number indicates the weight layers in the network.
- GoogLeNet (Inception): Introduced the Inception module, designed to allow for more efficient use of computing resources and enable deeper networks.
- Used parallel convolutional pathways with varying filter sizes.
- Did not employ fully connected layers at the end, relying instead on average pooling.
- ResNet: Introduced residual connections (skip connections) to address the vanishing gradient problem in very deep networks.
- Allows training of networks with hundreds or even thousands of layers.
- DenseNet: Further extends the idea of ResNet by connecting each layer to every other layer in a feed-forward fashion.
- Enhances feature reuse and reduces the number of parameters.
- MobileNet: Designed for mobile and embedded vision applications, focusing on efficiency.
- Uses depthwise separable convolutions to reduce the computational cost.
- EfficientNet: Employs a compound scaling method to uniformly scale all dimensions of depth/width/resolution with a set of scaling coefficients.
- Achieves better accuracy and efficiency than previous models.
CNN Layers
- Convolutional Layer: The core building block of a CNN.
- Performs a convolution operation on the input, using a set of learnable filters.
- Filters detect specific features in the input, such as edges, corners, or textures.
- Multiple filters are applied to each location in the input, creating a feature map.
- Activation Function: Applies a non-linear transformation to the output of each convolutional layer.
- Examples include ReLU (Rectified Linear Unit), sigmoid, and tanh.
- ReLU is commonly used due to its simplicity and effectiveness in overcoming the vanishing gradient problem.
- Pooling Layer: Reduces the spatial size of the feature maps, reducing the number of parameters and computational complexity.
- Max pooling selects the maximum value from each patch of the feature map.
- Average pooling computes the average value from each patch.
- Batch Normalization Layer: Normalizes the activations of the previous layer for each mini-batch.
- Helps to accelerate training and reduce sensitivity to network initialization.
- Fully Connected Layer: Connects every neuron in one layer to every neuron in the next layer.
- Typically used in the final layers of a CNN for classification tasks.
- Maps the learned features into the final output classes.
- Dropout Layer: Randomly sets a fraction of input units to 0 at each update during training time.
- Prevents overfitting by reducing the interdependence of neurons.
- Padding: Adding layers of zeros to the border of the images
- Used for controlling the spatial size of the output features.
- Types of padding: Valid, Same, Full
- Strides: Determines how many pixels the filter will move over at a time.
- Strides of greater than 1 will downsize the image
CNN Training
- Data Collection and Preparation: Gathering a large and diverse dataset of images.
- Preprocessing the images, including resizing, normalization, and data augmentation.
- Splitting the data into training, validation, and test sets.
- Model Definition: Selecting an appropriate CNN architecture, such as AlexNet, VGGNet, ResNet, or a custom design.
- Defining the layers, activation functions, and other hyperparameters of the network.
- Weight Initialization: Setting the initial values of the network's weights.
- Methods include random initialization, Xavier initialization, and He initialization.
- Proper initialization is crucial for effective training.
- Forward Propagation: Passing the input images through the network to compute the output predictions.
- Each layer performs its respective operations, transforming the input until the final output is obtained.
- Loss Function: Quantifying the difference between the predicted outputs and the ground truth labels.
- Common loss functions include cross-entropy loss for classification and mean squared error for regression.
- Backpropagation: Computing the gradients of the loss function with respect to the network's weights.
- Uses the chain rule to propagate the gradients backwards through the network.
- Optimization Algorithm: Updating the network's weights based on the computed gradients.
- Common optimization algorithms include stochastic gradient descent (SGD), Adam, and RMSprop.
- The goal is to minimize the loss function and improve the network's accuracy.
- Hyperparameter Tuning: Optimizing the hyperparameters of the network, such as learning rate, batch size, and number of epochs.
- Techniques include grid search, random search, and Bayesian optimization.
- Regularization: Applying techniques to prevent overfitting, such as dropout, weight decay, and batch normalization.
- Regularization helps to improve the generalization performance of the network.
- Evaluation: Assessing the performance of the trained network on the validation and test sets.
- Metrics include accuracy, precision, recall, F1-score, and area under the ROC curve (AUC).
- Deployment: Deploying the trained network for real-world applications, such as image classification, object detection, or image segmentation.
- Data Augmentation: Artificially increasing the size of the training set by applying transformations to the original images.
- Common transformations include rotations, flips, zooms, and translations.
- Helps to improve the network's robustness and generalization ability.
- Transfer Learning: Utilizing pre-trained CNN models on large benchmark datasets, such as ImageNet.
- Fine-tuning the pre-trained models on a specific task with a smaller dataset.
- Can significantly reduce training time and improve performance.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.