Podcast
Questions and Answers
¿Cuál es el propósito principal de la clonación de ADN según el texto?
¿Cuál es el propósito principal de la clonación de ADN según el texto?
- Localizar genes en cromosomas grandes.
- Amplificación selectiva de un gen o segmento dentro de una célula huésped. (correct)
- Modificar la estructura de plásmidos bacterianos.
- Entender la función de secuencias de ADN en condiciones normales solamente.
¿Qué característica de los plásmidos bacterianos los hace idóneos como vectores de clonación?
¿Qué característica de los plásmidos bacterianos los hace idóneos como vectores de clonación?
- Su incapacidad para replicarse independientemente.
- Su capacidad para conferir resistencia a antibióticos a la célula huésped. (correct)
- Su necesidad de integrarse en el cromosoma del huésped para replicarse.
- Su gran tamaño y complejidad estructural.
¿Qué función cumplen las enzimas de restricción en el proceso de clonación de ADN?
¿Qué función cumplen las enzimas de restricción en el proceso de clonación de ADN?
- Cortar el ADN en secuencias específicas. (correct)
- Unir covalentemente los fragmentos de ADN.
- Aislar el ADN del cromosoma huésped.
- Replicar el plásmido bacteriano.
¿Cuál es la función de la DNA ligasa en el contexto de la clonación de ADN?
¿Cuál es la función de la DNA ligasa en el contexto de la clonación de ADN?
¿Qué se entiende por 'transformación' en el proceso de clonación de ADN?
¿Qué se entiende por 'transformación' en el proceso de clonación de ADN?
¿Cómo se seleccionan las bacterias que contienen el ADN recombinante después de la transformación?
¿Cómo se seleccionan las bacterias que contienen el ADN recombinante después de la transformación?
¿Cuál es la diferencia fundamental entre plásmidos de clonación y plásmidos de expresión, según el texto?
¿Cuál es la diferencia fundamental entre plásmidos de clonación y plásmidos de expresión, según el texto?
¿Qué paso es necesario para clonar genes que contienen intrones en vectores de expresión?
¿Qué paso es necesario para clonar genes que contienen intrones en vectores de expresión?
¿Cuál de las siguientes NO es una aplicación directa de la tecnología de clonación de ADN mencionada en el texto?
¿Cuál de las siguientes NO es una aplicación directa de la tecnología de clonación de ADN mencionada en el texto?
¿Qué es una genoteca de ADN o cDNA, según el texto?
¿Qué es una genoteca de ADN o cDNA, según el texto?
¿Cuál es el principal objetivo de la PCR (reacción en cadena de la polimerasa)?
¿Cuál es el principal objetivo de la PCR (reacción en cadena de la polimerasa)?
¿Qué papel desempeñan los cebadores (primers) en la PCR?
¿Qué papel desempeñan los cebadores (primers) en la PCR?
¿Cuáles son las tres etapas principales de un ciclo de PCR?
¿Cuáles son las tres etapas principales de un ciclo de PCR?
¿Qué enzima es fundamental para la extensión de la cadena de ADN durante la PCR?
¿Qué enzima es fundamental para la extensión de la cadena de ADN durante la PCR?
¿Cómo se visualizan los resultados de una PCR típicamente?
¿Cómo se visualizan los resultados de una PCR típicamente?
¿Cuál es el principio fundamental de la secuenciación de ADN?
¿Cuál es el principio fundamental de la secuenciación de ADN?
¿Qué son los ddNTPs en el método de secuenciación de Sanger?
¿Qué son los ddNTPs en el método de secuenciación de Sanger?
¿Qué representa un cromatograma en la secuenciación de Sanger?
¿Qué representa un cromatograma en la secuenciación de Sanger?
¿Cuál es una ventaja clave de las tecnologías de secuenciación de 'nueva generación' en comparación con el método de Sanger?
¿Cuál es una ventaja clave de las tecnologías de secuenciación de 'nueva generación' en comparación con el método de Sanger?
¿Qué tipo de secuenciación permite analizar simultáneamente millones de moléculas de ADN?
¿Qué tipo de secuenciación permite analizar simultáneamente millones de moléculas de ADN?
Flashcards
¿Qué es la clonación de ADN?
¿Qué es la clonación de ADN?
Separación y unión de un segmento de ADN a un plásmido bacteriano.
¿Qué son los plásmidos bacterianos?
¿Qué son los plásmidos bacterianos?
Pequeñas moléculas de ADN circulares en bacterias, usadas como portadores de genes.
¿Qué es un episoma?
¿Qué es un episoma?
ADN capaz de replicarse independientemente en bacterias, dentro o fuera del cromosoma.
¿Qué es un 'multi cloning site'?
¿Qué es un 'multi cloning site'?
Signup and view all the flashcards
¿Qué es una endonucleasa de restricción?
¿Qué es una endonucleasa de restricción?
Signup and view all the flashcards
¿Qué son los extremos cohesivos?
¿Qué son los extremos cohesivos?
Signup and view all the flashcards
¿Qué es la ADN ligasa?
¿Qué es la ADN ligasa?
Signup and view all the flashcards
¿Qué es la transformación (genética)?
¿Qué es la transformación (genética)?
Signup and view all the flashcards
¿Qué son los plásmidos de expresión?
¿Qué son los plásmidos de expresión?
Signup and view all the flashcards
¿Qué es una genoteca?
¿Qué es una genoteca?
Signup and view all the flashcards
¿Qué es la PCR?
¿Qué es la PCR?
Signup and view all the flashcards
¿Qué es la desnaturalización (de ADN)?
¿Qué es la desnaturalización (de ADN)?
Signup and view all the flashcards
¿Qué es el alineamiento de cebadores?
¿Qué es el alineamiento de cebadores?
Signup and view all the flashcards
¿Qué es la extensión (de ADN)?
¿Qué es la extensión (de ADN)?
Signup and view all the flashcards
¿Qué es la electroforesis en gel de agarosa?
¿Qué es la electroforesis en gel de agarosa?
Signup and view all the flashcards
¿Qué es la secuenciación de ADN?
¿Qué es la secuenciación de ADN?
Signup and view all the flashcards
¿Qué es el método de Sanger?
¿Qué es el método de Sanger?
Signup and view all the flashcards
¿Qué es un cromatograma (genética)?
¿Qué es un cromatograma (genética)?
Signup and view all the flashcards
¿Qué es la secuenciación de nueva generación?
¿Qué es la secuenciación de nueva generación?
Signup and view all the flashcards
Study Notes
- The majority of DNA sequences in genomes have unknown functions, including some that code for proteins.
- Sophisticated techniques exist to locate, purify, and manipulate genes from large chromosomes to study the function of small DNA sequences.
- This helps to understand gene function in normal conditions and the molecular bases of disease.
Techniques
- Techniques are used for isolating, amplifying, and manipulating small DNA segments for further study.
DNA Cloning
- DNA cloning typically involves separating a small DNA segment (like a specific gene) and joining it to a small carrier DNA molecule called a bacterial plasmid.
- This produces a recombinant DNA molecule capable of replicating many times within a cell, generating identical copies of the fragment.
- This process achieves selective amplification of a gene or essential segment within a living host cell.
Vectors
- Vectors are used in DNA cloning as carriers for DNA segments.
Bacterial Plasmids
- Bacterial plasmids are small, circular, double-stranded DNA molecules capable of providing antibiotic resistance to the host cell.
- They possess properties that make them suitable as cloning vectors, including:
- Existing as single or multiple copies and replicating independently of the bacterial DNA, like episomes. Episomes are extra-chromosomal replicating genetic elements that can replicate autonomously.
- They can also be inserted into the host organism's chromosome and replicate with it, using the host's replication machinery.
- Having a known complete DNA sequence and a precise location of restriction enzyme cutting sites (multi-cloning site), allowing for insertion and extraction of the DNA to be cloned.
- Being easily isolatable from the host cell chromosome due to their small size.
Plasmid structure
- ORI: Origin of replication
- Plasmid cloning vector
- Multi Cloning Site: A region with multiple sequences that can be cut with specific enzymes.
- Basic plasmids cannot function as expression plasmids.
Steps in DNA Cloning
- DNA cloning involves specific steps to isolate and amplify a desired DNA fragment.
Cutting and Pasting DNA
- This requires restriction endonucleases (restriction enzymes) and DNA ligases.
- Restriction endonucleases recognize and cut at specific sequences (restriction sites) or a predictable pattern nearby.
- They are found in bacteria, which use them as defense against foreign viral DNA.
- Both the fragment of interest and the bacterial plasmid (or chosen vector) are cut.
- This cut can produce:
- Cohesive ends: These are short, single-stranded fragments that protrude and facilitate joining to other complementary fragments cut by the same enzyme.
- Blunt ends: These ends lack unpaired bases and are more difficult to ligate.
- DNA ligase enzymes covalently join the newly synthesized fragments during replication, catalyzing the formation of a phosphodiester bond.
- In vitro, DNA ligases can be used with recombinant DNA technology to join cut ends produced by restriction enzymes.
Transformation
- Introduction of plasmids or other types of DNA into bacteria.
- To facilitate incorporation of recombinant DNA, bacteria are subjected to stress such as high temperatures.
Selection (Insertion)
- Selecting bacteria that contain recombinant DNA.
- Plasmids contain a gene for antibiotic resistance, allowing bacteria to survive in the presence of a specific antibiotic like ampicillin.
- The bacteria are cultured in a medium containing the specific antibiotic.
- Bacteria without the plasmid die.
- Bacteria with the plasmid will form colonies, meaning groups of bacteria that are clones of the first, thus containing the plasmid for resistance, and therefore, the DNA of interest.
- Colonies serve as factories for plasmid cloning.
Culturing Selected Bacteria
- Selected bacteria are cultivated in large quantities to be used as "factories" for plasmid cloning or protein coding.
- The plasmids and encoded proteins are then harvested and purified.
Types of Plasmids
- Plasmids are designed for either cloning or expression.
Cloning Plasmids
- Cloning plasmids do not necessarily need to be expressed.
Expression Plasmids
- Expression plasmids are used in industry and are cloning vectors equipped with transcription and translation signals for expressing the gene of interest.
- They contain necessary sequences like promoters.
- To avoid introns, the gene that is transcribed with introns and exons is taken and matured into a mature messenger inside the cell. In the lab, this is done by isolating RNA and describing it with retrica.
- Inside the cell, the cDNA is cloned in expression vectors.
- In the laboratory, this is achieved through reverse transcription:
- Isolation of mRNA.
- Addition of reverse transcriptases that digest it, while one strand of DNA is synthesized.
- Synthesis of the DNA chain complementary to the first.
- Obtaining cDNA (genes of DNA without introns, similar to mRNA).
Applications of DNA Technology
- DNA technology has various significant applications.
Gene Function Study
- Used to study gene functions by varying sequences through mutation to observe their function or involvement.
Gene Therapy Tools
- Produces therapy vectors containing a copy of the non-defective gene for a disease.
- The gene is expressed in the diseases cells.
Protein Production
- Used to generate proteins in abundance for therapy, such as insulin for diabetics, using E. coli.
Generating DNA or cDNA Libraries
- A gene library is a collection of DNA fragments, genome (DNA), or transcriptome (cDNA) that has been cloned into vectors.
- Libraries provide a large number of small fragments spanning the entire genome for sequencing.
- They are collections that contain the entire genome or transcriptome of an organism and were important in early sequencing efforts.
- DNA libraries are the same in all cells of an organism, whilst RNA libraries vary depending on the cell type.
Creating DNA Libraries
DNA Libraries
- Partial digestion of the total DNA with a restriction enzyme that cuts frequently, but it cuts partially leaving larger fragments, to preserve intact genes.
- Cloning in large cloning vectors.
- Bacterial transformation, obtaining clones that contain all the sequences of the genome.
cDNA Libraries
- mRNA cannot be cloned directly; therefore, cDNA must be made as a double strand.
- No digestion is required because the DNA fragments are small and can be directly cloned into cloning/expression vectors.
- Transformation of bacteria, obtaining clones containing the DNA of the starting cells (different cDNA in different cell types).
PCR (Polymerase Chain Reaction)
- It is a technique for replicating DNA, producing millions of copies in a test tube, without cells (in vitro).
- Generates enough DNA to be used for sequencing, digestion with restriction enzymes, or cloning in a plasmid.
- PCR amplifies a specific DNA region of interest.
- Specificity comes from using two oligonucleotide primers that hybridize to complementary sequences on opposite DNA strands, flanking the sequence of interest.
PCR Steps
- PCR consists of repeated cycles of denaturation, primer annealing, and extension with DNA polymerase, exponentially amplifying segments.
Denaturation (96°C)
- The DNA sample is heated to separate the two DNA strands.
Primer Annealing (55-65 °C)
- The reaction is cooled to allow excess primers to hybridize to the DNA strands.
Extension (72 °C)
- Each strand is copied by a DNA polymerase, starting at the primer sites in the presence of the four dNTPs.
- Heat-stable polymerases like Taq polymerase (from thermophilic bacteria) are used, as they do not denature at the high temperatures required for DNA denaturation.
- Only DNA sequences from 50 bp to 10 kb can be amplified, because polymerase cannot finish the reaction.
Visualization of results
- Agarose gel electrophoresis is used to visualize PCR products.
- It involves applying an electric current to a gel matrix containing pores, through which DNA moves at a rate inversely proportional to its size.
- The DNA fragments are separated by size, allowing classification based on the number of base pairs.
- A marker of known molecular weight determines the size of the fragments in the PCR sample.
- Millions of DNA molecules of the same size will form a band in the gel.
- The gel is stained with a dye that binds to DNA to reveal the bands.
DNA Sequencing
- Involves determining the nucleotide sequence (A, T, C, and G) of a DNA fragment.
- There are two main types of DNA sequencing methods.
Sanger Sequencing
- Developed by Frederick Sanger in 1977, capable of sequencing DNA regions up to 900 base pairs long.
- Although slow, it was used for the Human Genome Project in 2001.
- Used to sequence short DNA fragments (cloning or PCR fragments) of up to 900 bp.
Sanger Sequencing Ingredients
- DNA template to be sequenced.
- DNA polymerase.
- A primer (single-stranded DNA) that acts as an initiator of the polymerase.
- Four deoxynucleotides (dNTPs: dATP, dTTP, dCTP, dGTP).
- Dideoxynucleotides (ddNTPs): chain terminators which, because they have an H in place of OH 3', prevent the reaction from continuing.
- The four ddNTPs (ddATP, ddTTP, ddCTP, ddGTP) are labelled with different fluorochromes and are needed in smaller quantities than dNTPs.
Sanger Sequencing process
- Desnaturalization of two DNA strands
- Primer annealing to only one primer
- Extension: The process continues until the polymerase encounters a ddNTP, preventing the reaction from continuing.
- Sequences of different lengths are obtained following ddNTP incorporation at different positions (multiple cycles until all have been occupied).
- Since the nucleotides are labelled, one can know their occupied positions. These will be those that are sequenced.
Sequencing Output: Chromatogram
- A chromatogram is a graphical (or other type of) representation of a detector's response.
- The peaks in a chromatogram indicate the fluorescence intensity of each base; the distinct peaks correspond to nucleotides.
- If there are two peaks for one base, this could indicate a heterozygote.
- The Human Genome Project used Sanger sequencing to determine the sequences of relatively small human DNA fragments.
- The fragments were aligned based on overlapping regions to assemble larger DNA regions and, ultimately, complete chromosomes.
- The whole process required 13 years and 3 billion dollars.
- The last portion of sequencing is to organize the sequences.
- With sequences that overlap, an informatic program lines up sequences that match.
Next-Generation Sequencing
- The new methodologies on a larger scale will increase the speed and reduce costs of DNA sequencing.
- Used to sequence genomes and exomes.
- Allow massive parallel sequencing, meaning sequences can start from one sample and millions of DNA molecules can be sequenced at the same time.
- Does not need electrophoresis in agarose gel.
- Able to identify which nucleotides are being incorporated at each moment.
- Sequences genomes at a reasonable price and in a quick manner.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.