Podcast
Questions and Answers
If someone is from France, which language do they speak?
If someone is from France, which language do they speak?
- Inglés
- Francés (correct)
- Italiano
- Alemán
What is the opposite of alto?
What is the opposite of alto?
- Corto
- Feo
- Delgado
- Bajo (correct)
If someone is gordo, what is the opposite of that?
If someone is gordo, what is the opposite of that?
- Estrecho
- Delgado (correct)
- Pequeño
- Débil
Which adjective best describes someone who shows much patience?
Which adjective best describes someone who shows much patience?
If a professor of chemistry has a lot of simpatía, what is he?
If a professor of chemistry has a lot of simpatía, what is he?
Complete the phrase: Soy una chica argentina, I have thirteen ______.
Complete the phrase: Soy una chica argentina, I have thirteen ______.
What profession is described by 'Es bombero'?
What profession is described by 'Es bombero'?
If someone says 'Es cocinero', what is their job?
If someone says 'Es cocinero', what is their job?
What job does 'Es enfermera' describe?
What job does 'Es enfermera' describe?
If someone says 'El pelo largo y negro', what are they describing?
If someone says 'El pelo largo y negro', what are they describing?
Flashcards
¿Qué es un bombero?
¿Qué es un bombero?
A person who extinguishes fires.
¿Qué es un carpintero?
¿Qué es un carpintero?
A person who makes things out of wood.
¿Qué es una secretaria?
¿Qué es una secretaria?
Someone employed to do clerical work in an office
¿Qué es un cartero?
¿Qué es un cartero?
Signup and view all the flashcards
¿Qué es un camarero?
¿Qué es un camarero?
Signup and view all the flashcards
¿Qué es un cocinero?
¿Qué es un cocinero?
Signup and view all the flashcards
¿Qué es un estudiante?
¿Qué es un estudiante?
Signup and view all the flashcards
¿Qué es un dentista?
¿Qué es un dentista?
Signup and view all the flashcards
¿Qué es un profesor?
¿Qué es un profesor?
Signup and view all the flashcards
¿Qué es una enfermera?
¿Qué es una enfermera?
Signup and view all the flashcards
Study Notes
Channel Capacity
- Channel Capacity is the maximum rate at which information can be reliably transmitted over a communication channel.
Formulae for Mutual Information
- Mutual Information is given by:
- (I(X;Y) = H(X) - H(X|Y))
- (I(X;Y) = H(Y) - H(Y|X))
- (I(X;Y) = H(X) + H(Y) - H(X,Y))
- (I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)})
Formula for Channel Capacity
- Channel Capacity is the maximum of the mutual information over all possible input distributions (p(x)):
- (C = \max_{p(x)} I(X;Y))
Properties of Mutual Information
- Mutual Information is symmetric: (I(X;Y) = I(Y;X))
- Mutual Information is non-negative: (I(X;Y) \ge 0)
- This can be proved using the inequality (\ln(x) \le x-1).
- The mutual information of a random variable with itself is its entropy: (I(X;X) = H(X)) can be derived from the definition of mutual information.
Binary Symmetric Channel (BSC)
- A Binary Symmetric Channel (BSC) has transition probabilities: (p(y=0|x=0) = p(y=1|x=1) = 1 - p) and (p(y=0|x=1) = p(y=1|x=0) = p)
- The channel capacity is (C = 1 - H(p)) bits, achieved when the input distribution is uniform (p(x=0) = p(x=1) = \frac{1}{2}).
- (H(Y|X)) is equal to (H(p)).
Binary Erasure Channel (BEC)
- A Binary Erasure Channel (BEC) has transition probabilities:
- (p(y=0|x=0) = 1 - \alpha)
- (p(y=e|x=0) = \alpha),
- (p(y=1|x=1) = 1 - \alpha)
- (p(y=e|x=1) = \alpha)
- The channel capacity is (C = 1 - \alpha) bits, achieved when the input distribution is uniform (p(x=0) = p(x=1) = \frac{1}{2}).
- (H(Y|X)) is equal to (H(\alpha)).
Properties of Channel Capacity
- Channel Capacity is always non-negative: (C \ge 0).
- Channel Capacity is bounded by the size of input and output alphabets: (C \le \min{\log|X|, \log|Y|}).
- Channel Capacity is a convex function of the channel transition probabilities (p(y|x)).
- Channel Capacity is a concave function of the input distribution (p(x)).
Algorithmic Game Theory (AGT)
- AGT merges classical game theory (study of strategic interactions) with classical algorithm design, addressing the intersection of rationality and computational efficiency.
- Classical game theory assumes perfect rationality, while classical algorithm design often ignores incentives.
- AGT provides new perspectives on problems such as the "Price of Anarchy" and mechanism design.
Selfish Routing Model
- A network of (n) nodes and (m) links, where each link (e) has a cost function (\ell_e(x)) dependent on the traffic (x) on the link.
- There is a set of (k) user populations, where population (i) consists of (r_i) users who want to travel from (s_i) to (t_i).
- A flow (f) specifies the rate (f_p) of traffic on each path (p) in the network.
- A flow (f) is feasible if it satisfies user demands: (\sum_{p:s_i \rightarrow t_i} f_p = r_i) for each (i).
- The cost of a path (p) in a flow (f) is: (C_p(f) = \sum_{e \in p} \ell_e(f_e)) where (f_e = \sum_{p: e \in p} f_p).
- The total cost of all users is: (\sum_{p} f_p C_p(f) = \sum_{e} f_e \ell_e(f_e)).
Concepts of Equilibrium and Optimality
- Wardrop Equilibrium: a flow where all paths used have equal and minimal cost for each source-destination pair, also known as Nash equilibrium.
- Social Optimum: a flow that minimizes the total cost (\sum_{e} f_e \ell_e(f_e)), achieved by a benevolent controller.
- The Price of Anarchy (PoA) is the ratio of the cost at Wardrop equilibrium to the cost at social optimum: (PoA = \frac{\text{Cost of Wardrop Equilibrium}}{\text{Cost of Social Optimum}})
Senses Summary
- Five special senses: olfaction, gustation, vision, hearing, and equilibrium.
Olfaction (Smell)
- Olfactory epithelium contains olfactory receptor cells, supporting cells, and olfactory stem cells.
- Olfactory pathway: receptor cells synapse with mitral cells in the olfactory bulb, forming the olfactory tract to the olfactory cortex.
Gustation (Taste)
- Taste buds contain gustatory epithelial cells with gustatory hairs and basal epithelial cells.
- Five basic tastes: sweet, sour, salty, bitter, and umami.
- Gustatory pathway: cranial nerves VII and IX carry impulses to the solitary nucleus of the medulla oblongata, then to the thalamus and gustatory cortex.
Vision
- Eyeball layers: fibrous (sclera, cornea), vascular (choroid, ciliary body, iris), and inner (retina).
- Lens focuses light on the retina by changing shape.
- Retina contains photoreceptors: rods (dim light, peripheral vision) and cones (bright light, color vision).
- Visual pathway: photoreceptors synapse with bipolar cells, which synapse with ganglion cells; axons of ganglion cells form the optic nerve to the optic chiasm, thalamus, and visual cortex.
Hearing and Equilibrium
- Ear: external (auricle, auditory canal), middle (tympanic membrane, ossicles), and internal (cochlea, vestibular apparatus).
- Cochlea's spiral organ (organ of Corti) contains hair cells stimulated by vibrations for hearing.
- Vestibular apparatus monitors static and dynamic equilibrium with maculae and cristae ampullares.
- Auditory pathway: hair cells synapse with cochlear nerve, traveling to the medulla oblongata, inferior colliculus, thalamus, and auditory cortex.
- Vestibular pathway: hair cells synapse with the vestibular nerve to the vestibular nuclei in the brainstem and cerebellum.
Sensory Receptors
- Olfaction uses olfactory receptor cells in the nasal cavity.
- The pathway goes from these cells to the olfactory bulb (mitral cells), then the olfactory tract and finally the olfactory cortex.
- Gustation uses gustatory epithelial cells in taste buds on the tongue, pharynx, and larynx.
- The pathway goes from these cells to cranial nerves VII & IX, then the solitary nucleus in the medulla, the thalamus and finally the gustatory cortex.
- Vision uses photoreceptors (rods & cones) in the retina of the eye.
- The pathway goes from the photoreceptors to bipolar cells, then ganglion cells (optic nerve), the optic chiasm, the thalamus and finally the visual cortex.
- Hearing uses hair cells in the spiral organ (organ of Corti) in the cochlea.
- The pathway for this sense goes from the hair cells to the cochlear nerve, then medulla oblongata, inferior colliculus, thalamus and auditory cortex.
- Equilibrium receptors are hair cells in Maculae (utricle & saccule) and Cristae ampullares (semicircular canals)
- the pathway goes from the hair cells to the vestibular nerve, and then the vestibular nuclei (brainstem) & cerebellum.
Cinemática (Kinematics) Formulas
- Posición (Position):
- (\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k})
- (\overrightarrow{r} = r\cos(\theta)\hat{i} + r\sin(\theta)\hat{j})
- Velocidad (Velocity):
- (\overrightarrow{v} = \frac{d\overrightarrow{r}}{dt})
- (\overrightarrow{v}_{avg} = \frac{\Delta \overrightarrow{r}}{\Delta t})
- Aceleración (Acceleration):
- (\overrightarrow{a} = \frac{d\overrightarrow{v}}{dt})
- (\overrightarrow{a}_{avg} = \frac{\Delta \overrightarrow{v}}{\Delta t})
Movimiento con Aceleración Constante (Motion with Constant Acceleration) Formulas
- Posición (Position): (x = x_0 + v_0t + \frac{1}{2}at^2)
- Velocidad (Velocity): (v = v_0 + at)
- (v^2 = v_0^2 + 2a\Delta x)
Movimiento de Proyectiles (Projectile Motion) Formulas
- Altura Máxima (Maximum Height): (H = \frac{v_0^2\sin^2\theta}{2g})
- Alcance Horizontal (Horizontal Range): (R = \frac{v_0^2\sin 2\theta}{g})
- Tiempo Total de Vuelo (Total Flight Time): (T = \frac{2v_0 \sin\theta}{g})
Movimiento Circular Uniforme (Uniform Circular Motion) Formulas
- Rapidez (Speed): (v = \frac{2\pi r}{T})
- Aceleración (Acceleration):
- (a_c = \frac{v^2}{r})
- (a_c = r\omega^2)
- Velocidad Angular (Angular Velocity): (\omega = \frac{d\theta}{dt})
- Aceleración Angular (Angular Acceleration): (\alpha = \frac{d\omega}{dt})
- Velocidad y Aceleración Tangencial (Tangential Velocity and Acceleration):
- (v = r\omega)
- (a_t = r\alpha)
- Frecuencia (Frequency): (f = \frac{1}{T})
Fuerzas (Forces) Formulas
- Primera Ley de Newton (Newton's First Law): (\sum \overrightarrow{F} = 0 \Leftrightarrow \overrightarrow{v} = \text{constante})
- Segunda Ley de Newton (Newton's Second Law): (\sum \overrightarrow{F} = m\overrightarrow{a})
- Tercera Ley de Newton (Newton's Third Law): (\overrightarrow{F}{12} = -\overrightarrow{F}{21})
- Fuerza de Gravedad (Force of Gravity): (F_g = mg)
- Fuerza Normal (Normal Force): (F_N)
- Fuerza de Fricción Estática (Static Friction Force): (f_s \le \mu_s F_N)
- Fuerza de Fricción Cinética (Kinetic Friction Force): (f_k = \mu_k F_N)
- Fuerza Elástica (Elastic Force): (F_x = -kx)
Trabajo y Energía (Work and Energy) Equations
- Trabajo (Work):
- (W = \overrightarrow{F} \cdot \overrightarrow{d})
- (W = Fd\cos\theta)
- Trabajo Neto (Net Work): (W_{neto} = \Delta KE)
- Energía Cinética (Kinetic Energy): (KE = \frac{1}{2}mv^2)
- Energía Potencial Gravitatoria (Gravitational Potential Energy): (U_g = mgy)
- Energía Potencial Elástica (Elastic Potential Energy): (U_s = \frac{1}{2}kx^2)
- Potencia (Power):
- (P = \frac{dW}{dt})
- (P = \overrightarrow{F} \cdot \overrightarrow{v})
Conservación de la Energía (Conservation of Energy) Statements
- Energía Mecánica (Mechanical Energy): (E_{mec} = KE + U)
- Conservación de la Energía Mecánica (Conservation of Mechanical Energy): (\Delta E_{mec} = 0) (Si solo actúan fuerzas conservativas - If only conservative forces act)
- Trabajo de Fuerzas No Conservativas (Work by Non-Conservative Forces): (\Delta E_{mec} = W_{nc}) (Si actúan fuerzas no conservativas - If non-conservative forces act)
Centro de Masa (Center of Mass) Equations
- Posición (Position): (\overrightarrow{r}_{CM} = \frac{\sum m_i \overrightarrow{r}_i}{\sum m_i})
- Velocidad (Velocity): (\overrightarrow{v}_{CM} = \frac{\sum m_i \overrightarrow{v}_i}{\sum m_i})
- Segunda Ley de Newton para el Centro de Masa (Newton's Second Law for Center of Mass): (\sum \overrightarrow{F}{ext} = M\overrightarrow{a}{CM})
Colisiones (Collisions) Equations
- Cantidad de Movimiento (Momentum): (\overrightarrow{p} = m\overrightarrow{v})
- Impulso (Impulse): (\overrightarrow{I} = \Delta \overrightarrow{p} = \int \overrightarrow{F} dt)
- Conservación de la Cantidad de Movimiento (Conservation of Momentum): (\sum \overrightarrow{p}_i = \sum \overrightarrow{p}_f)
- Colisión Elástica en 1D (Elastic Collision in 1D): (v_{1i} - v_{2i} = -(v_{1f} - v_{2f}))
Rotación (Rotation) Equations
- Torque:
- (\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F})
- (\tau = rF\sin\theta)
- Momento de Inercia (Moment of Inertia): (I = \sum m_i r_i^2)
- Segunda Ley de Newton para Rotación (Newton's Second Law for Rotation): (\sum \tau = I\alpha)
- Trabajo Rotacional (Rotational Work): (W = \int \tau d\theta)
- Energía Cinética Rotacional (Rotational Kinetic Energy): (KE_{rot} = \frac{1}{2}I\omega^2)
- Momento Angular (Angular Momentum):
- (\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p} = I\overrightarrow{\omega})
- (\sum \tau = \frac{d\overrightarrow{L}}{dt})
- Conservación del Momento Angular (Conservation of Angular Momentum): (\overrightarrow{L}_i = \overrightarrow{L}_f)
- Energía Cinética Total (Total Kinetic Energy): (KE = \frac{1}{2}mv_{CM}^2 + \frac{1}{2}I_{CM}\omega^2)
Gravitación (Gravitation) Equations
- Ley de Gravitación Universal (Law of Universal Gravitation): (F = G\frac{m_1m_2}{r^2})
- Energía Potencial Gravitacional (Gravitational Potential Energy): (U = -G\frac{m_1m_2}{r})
- Velocidad de Escape (Escape Velocity): (v_{esc} = \sqrt{\frac{2GM}{R}})
Leyes de Kepler (Kepler's Laws)
- Primera Ley (First Law): Las órbitas son elípticas (Orbits are elliptical)
- Segunda Ley (Second Law): La velocidad areolar es constante (The areal velocity is constant)
- Tercera Ley (Third Law): (T^2 = (\frac{4\pi^2}{GM})a^3)
Oscilaciones (Oscillations) Equations
- Movimiento Armónico Simple (MAS) - Simple Harmonic Motion (SHM):
- (x(t) = A\cos(\omega t + \phi))
- (v(t) = -A\omega\sin(\omega t + \phi))
- (a(t) = -A\omega^2\cos(\omega t + \phi) = -\omega^2x(t))
- Frecuencia Angular (Angular Frequency): (\omega = \sqrt{\frac{k}{m}})
- Periodo (Period): (T = 2\pi\sqrt{\frac{m}{k}})
- Péndulo Simple (Simple Pendulum):
- (\omega = \sqrt{\frac{g}{L}})
- (T = 2\pi\sqrt{\frac{L}{g}})
- Péndulo Físico (Physical Pendulum):
- (\omega = \sqrt{\frac{mgd}{I}})
- (T = 2\pi\sqrt{\frac{I}{mgd}})
- Oscilaciones Amortiguadas (Damped Oscillations): (x(t) = Ae^{-bt/2m}\cos(\omega't + \phi))
- Oscilaciones Forzadas (Forced Oscillations): (x(t) = A\cos(\omega t + \phi)) where (A = \frac{F_0/m}{\sqrt{(\omega^2 - \omega_0^2)^2 + (b\omega/m)^2}})
Ondas (Waves) Equations
- Velocidad de Onda (Wave Speed): (v = \sqrt{\frac{F}{\mu}})
- Número de Onda (Wave Number): (k = \frac{2\pi}{\lambda})
- Función de Onda (Wave Function): (y(x, t) = A\sin(kx - \omega t + \phi))
- Velocidad (Speed): (v = f\lambda)
- Densidad Lineal (Linear Density): (\mu = \frac{m}{L})
- Potencia (Power): (P_{avg} = \frac{1}{2}\mu\omega^2A^2v)
- Superposición de Ondas (Superposition of Waves): (y(x, t) = y_1(x, t) + y_2(x, t))
- Interferencia Constructiva (Constructive Interference): (\Delta r = n\lambda)
- Interferencia Destructiva (Destructive Interference): (\Delta r = (n + \frac{1}{2})\lambda)
- Ondas Estacionarias (Standing Waves): (y(x, t) = (2A\sin kx)\cos \omega t)
- Frecuencias (Frequencies): (f_n = n\frac{v}{2L}), where (n = 1, 2, 3,...)
Termodinámica (Thermodynamics) Equations
- Ley Cero (Zeroth Law): Si A está en equilibrio térmico con C, y B está en equilibrio térmico con C, entonces A está en equilibrio térmico con B.
- Dilatación Lineal (Linear Expansion): (\Delta L = \alpha L_0 \Delta T)
- Dilatación de Área (Area Expansion): (\Delta A = 2\alpha A_0 \Delta T)
- Dilatación de Volumen (Volume Expansion): (\Delta V = \beta V_0 \Delta T)
- Calor Específico (Specific Heat): (Q = mc\Delta T)
- Calor Latente (Latent Heat): (Q = mL)
- Conducción (Conduction): (\frac{dQ}{dt} = kA\frac{T_H - T_C}{L})
- Convección (Convection): Transferencia de calor por movimiento de un fluido (Heat transfer by the movement of a fluid)
- Radiación (Radiation): (\frac{dQ}{dt} = \sigma A e T^4)
- Ley de los Gases Ideales (Ideal Gas Law): (PV = nRT)
- Trabajo (Work): (W = \int PdV)
- Energía Interna (Internal Energy):
- (\Delta E_{int} = Q - W)
- (E_{int} = \frac{3}{2}nRT)
- Capacidad Calorífica Molar (Molar Heat Capacity): (C_V = \frac{3}{2}R)
- (C_P = C_V + R)
- Procesos Adiabáticos (Adiabatic Processes):
- (PV^\gamma = \text{constante})
- (TV^{\gamma - 1} = \text{constante})
- (W = \frac{P_fV_f - P_iV_i}{1 - \gamma})
- (\gamma = \frac{C_P}{C_V})
Segunda Ley de la Termodinámica (Second Law of Thermodynamics) Equations
- Eficiencia (Efficiency): (e = \frac{W_{neto}}{Q_H} = 1 - \frac{Q_C}{Q_H})
- Ciclo de Carnot (Carnot Cycle): (e_C = 1 - \frac{T_C}{T_H})
- Entropía (Entropy): (\Delta S = \int \frac{dQ}{T})
Miscelánea (Miscellaneous)
- Circunferencia (Circumference): (C = 2\pi r)
- Área (Area): (A = \pi r^2)
- Área de la Superficie (Surface Area): (A = 4\pi r^2)
- Volumen (Volume): (V = \frac{4}{3}\pi r^3)
Trigonometría (Trigonometry)
- Seno (Sine): (\sin\theta = \frac{\text{opuesto}}{\text{hipotenusa}})
- Coseno (Cosine): (\cos\theta = \frac{\text{adyacente}}{\text{hipotenusa}})
- Tangente (Tangent): (\tan\theta = \frac{\text{opuesto}}{\text{adyacente}})
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.