Channel Capacity and Mutual Information

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

If someone is from France, which language do they speak?

  • Inglés
  • Francés (correct)
  • Italiano
  • Alemán

What is the opposite of alto?

  • Corto
  • Feo
  • Delgado
  • Bajo (correct)

If someone is gordo, what is the opposite of that?

  • Estrecho
  • Delgado (correct)
  • Pequeño
  • Débil

Which adjective best describes someone who shows much patience?

<p>Paciente (A)</p> Signup and view all the answers

If a professor of chemistry has a lot of simpatía, what is he?

<p>Simpático (D)</p> Signup and view all the answers

Complete the phrase: Soy una chica argentina, I have thirteen ______.

<p>Años (D)</p> Signup and view all the answers

What profession is described by 'Es bombero'?

<p>Firefighter (A)</p> Signup and view all the answers

If someone says 'Es cocinero', what is their job?

<p>Cook (B)</p> Signup and view all the answers

What job does 'Es enfermera' describe?

<p>Nurse (B)</p> Signup and view all the answers

If someone says 'El pelo largo y negro', what are they describing?

<p>Black Hair (D)</p> Signup and view all the answers

Flashcards

¿Qué es un bombero?

A person who extinguishes fires.

¿Qué es un carpintero?

A person who makes things out of wood.

¿Qué es una secretaria?

Someone employed to do clerical work in an office

¿Qué es un cartero?

A person employed to deliver letters and parcels.

Signup and view all the flashcards

¿Qué es un camarero?

A person who waits on customers at a restaurant.

Signup and view all the flashcards

¿Qué es un cocinero?

A person who cooks.

Signup and view all the flashcards

¿Qué es un estudiante?

A person who is studying at a school or college.

Signup and view all the flashcards

¿Qué es un dentista?

A medical professional who treats teeth.

Signup and view all the flashcards

¿Qué es un profesor?

An educator, especially in a school.

Signup and view all the flashcards

¿Qué es una enfermera?

A healthcare professional focused on patient care.

Signup and view all the flashcards

Study Notes

Channel Capacity

  • Channel Capacity is the maximum rate at which information can be reliably transmitted over a communication channel.

Formulae for Mutual Information

  • Mutual Information is given by:
    • (I(X;Y) = H(X) - H(X|Y))
    • (I(X;Y) = H(Y) - H(Y|X))
    • (I(X;Y) = H(X) + H(Y) - H(X,Y))
    • (I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)})

Formula for Channel Capacity

  • Channel Capacity is the maximum of the mutual information over all possible input distributions (p(x)):
    • (C = \max_{p(x)} I(X;Y))

Properties of Mutual Information

  • Mutual Information is symmetric: (I(X;Y) = I(Y;X))
  • Mutual Information is non-negative: (I(X;Y) \ge 0)
    • This can be proved using the inequality (\ln(x) \le x-1).
  • The mutual information of a random variable with itself is its entropy: (I(X;X) = H(X)) can be derived from the definition of mutual information.

Binary Symmetric Channel (BSC)

  • A Binary Symmetric Channel (BSC) has transition probabilities: (p(y=0|x=0) = p(y=1|x=1) = 1 - p) and (p(y=0|x=1) = p(y=1|x=0) = p)
  • The channel capacity is (C = 1 - H(p)) bits, achieved when the input distribution is uniform (p(x=0) = p(x=1) = \frac{1}{2}).
  • (H(Y|X)) is equal to (H(p)).

Binary Erasure Channel (BEC)

  • A Binary Erasure Channel (BEC) has transition probabilities:
    • (p(y=0|x=0) = 1 - \alpha)
    • (p(y=e|x=0) = \alpha),
    • (p(y=1|x=1) = 1 - \alpha)
    • (p(y=e|x=1) = \alpha)
  • The channel capacity is (C = 1 - \alpha) bits, achieved when the input distribution is uniform (p(x=0) = p(x=1) = \frac{1}{2}).
  • (H(Y|X)) is equal to (H(\alpha)).

Properties of Channel Capacity

  • Channel Capacity is always non-negative: (C \ge 0).
  • Channel Capacity is bounded by the size of input and output alphabets: (C \le \min{\log|X|, \log|Y|}).
  • Channel Capacity is a convex function of the channel transition probabilities (p(y|x)).
  • Channel Capacity is a concave function of the input distribution (p(x)).

Algorithmic Game Theory (AGT)

  • AGT merges classical game theory (study of strategic interactions) with classical algorithm design, addressing the intersection of rationality and computational efficiency.
  • Classical game theory assumes perfect rationality, while classical algorithm design often ignores incentives.
  • AGT provides new perspectives on problems such as the "Price of Anarchy" and mechanism design.

Selfish Routing Model

  • A network of (n) nodes and (m) links, where each link (e) has a cost function (\ell_e(x)) dependent on the traffic (x) on the link.
  • There is a set of (k) user populations, where population (i) consists of (r_i) users who want to travel from (s_i) to (t_i).
  • A flow (f) specifies the rate (f_p) of traffic on each path (p) in the network.
  • A flow (f) is feasible if it satisfies user demands: (\sum_{p:s_i \rightarrow t_i} f_p = r_i) for each (i).
  • The cost of a path (p) in a flow (f) is: (C_p(f) = \sum_{e \in p} \ell_e(f_e)) where (f_e = \sum_{p: e \in p} f_p).
  • The total cost of all users is: (\sum_{p} f_p C_p(f) = \sum_{e} f_e \ell_e(f_e)).

Concepts of Equilibrium and Optimality

  • Wardrop Equilibrium: a flow where all paths used have equal and minimal cost for each source-destination pair, also known as Nash equilibrium.
  • Social Optimum: a flow that minimizes the total cost (\sum_{e} f_e \ell_e(f_e)), achieved by a benevolent controller.
  • The Price of Anarchy (PoA) is the ratio of the cost at Wardrop equilibrium to the cost at social optimum: (PoA = \frac{\text{Cost of Wardrop Equilibrium}}{\text{Cost of Social Optimum}})

Senses Summary

  • Five special senses: olfaction, gustation, vision, hearing, and equilibrium.

Olfaction (Smell)

  • Olfactory epithelium contains olfactory receptor cells, supporting cells, and olfactory stem cells.
  • Olfactory pathway: receptor cells synapse with mitral cells in the olfactory bulb, forming the olfactory tract to the olfactory cortex.

Gustation (Taste)

  • Taste buds contain gustatory epithelial cells with gustatory hairs and basal epithelial cells.
  • Five basic tastes: sweet, sour, salty, bitter, and umami.
  • Gustatory pathway: cranial nerves VII and IX carry impulses to the solitary nucleus of the medulla oblongata, then to the thalamus and gustatory cortex.

Vision

  • Eyeball layers: fibrous (sclera, cornea), vascular (choroid, ciliary body, iris), and inner (retina).
  • Lens focuses light on the retina by changing shape.
  • Retina contains photoreceptors: rods (dim light, peripheral vision) and cones (bright light, color vision).
  • Visual pathway: photoreceptors synapse with bipolar cells, which synapse with ganglion cells; axons of ganglion cells form the optic nerve to the optic chiasm, thalamus, and visual cortex.

Hearing and Equilibrium

  • Ear: external (auricle, auditory canal), middle (tympanic membrane, ossicles), and internal (cochlea, vestibular apparatus).
  • Cochlea's spiral organ (organ of Corti) contains hair cells stimulated by vibrations for hearing.
  • Vestibular apparatus monitors static and dynamic equilibrium with maculae and cristae ampullares.
  • Auditory pathway: hair cells synapse with cochlear nerve, traveling to the medulla oblongata, inferior colliculus, thalamus, and auditory cortex.
  • Vestibular pathway: hair cells synapse with the vestibular nerve to the vestibular nuclei in the brainstem and cerebellum.

Sensory Receptors

  • Olfaction uses olfactory receptor cells in the nasal cavity.
    • The pathway goes from these cells to the olfactory bulb (mitral cells), then the olfactory tract and finally the olfactory cortex.
  • Gustation uses gustatory epithelial cells in taste buds on the tongue, pharynx, and larynx.
    • The pathway goes from these cells to cranial nerves VII & IX, then the solitary nucleus in the medulla, the thalamus and finally the gustatory cortex.
  • Vision uses photoreceptors (rods & cones) in the retina of the eye.
    • The pathway goes from the photoreceptors to bipolar cells, then ganglion cells (optic nerve), the optic chiasm, the thalamus and finally the visual cortex.
  • Hearing uses hair cells in the spiral organ (organ of Corti) in the cochlea.
    • The pathway for this sense goes from the hair cells to the cochlear nerve, then medulla oblongata, inferior colliculus, thalamus and auditory cortex.
  • Equilibrium receptors are hair cells in Maculae (utricle & saccule) and Cristae ampullares (semicircular canals)
    • the pathway goes from the hair cells to the vestibular nerve, and then the vestibular nuclei (brainstem) & cerebellum.

Cinemática (Kinematics) Formulas

  • Posición (Position):
    • (\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k})
    • (\overrightarrow{r} = r\cos(\theta)\hat{i} + r\sin(\theta)\hat{j})
  • Velocidad (Velocity):
    • (\overrightarrow{v} = \frac{d\overrightarrow{r}}{dt})
    • (\overrightarrow{v}_{avg} = \frac{\Delta \overrightarrow{r}}{\Delta t})
  • Aceleración (Acceleration):
    • (\overrightarrow{a} = \frac{d\overrightarrow{v}}{dt})
    • (\overrightarrow{a}_{avg} = \frac{\Delta \overrightarrow{v}}{\Delta t})

Movimiento con Aceleración Constante (Motion with Constant Acceleration) Formulas

  • Posición (Position): (x = x_0 + v_0t + \frac{1}{2}at^2)
  • Velocidad (Velocity): (v = v_0 + at)
  • (v^2 = v_0^2 + 2a\Delta x)

Movimiento de Proyectiles (Projectile Motion) Formulas

  • Altura Máxima (Maximum Height): (H = \frac{v_0^2\sin^2\theta}{2g})
  • Alcance Horizontal (Horizontal Range): (R = \frac{v_0^2\sin 2\theta}{g})
  • Tiempo Total de Vuelo (Total Flight Time): (T = \frac{2v_0 \sin\theta}{g})

Movimiento Circular Uniforme (Uniform Circular Motion) Formulas

  • Rapidez (Speed): (v = \frac{2\pi r}{T})
  • Aceleración (Acceleration):
    • (a_c = \frac{v^2}{r})
    • (a_c = r\omega^2)
  • Velocidad Angular (Angular Velocity): (\omega = \frac{d\theta}{dt})
  • Aceleración Angular (Angular Acceleration): (\alpha = \frac{d\omega}{dt})
  • Velocidad y Aceleración Tangencial (Tangential Velocity and Acceleration):
    • (v = r\omega)
    • (a_t = r\alpha)
  • Frecuencia (Frequency): (f = \frac{1}{T})

Fuerzas (Forces) Formulas

  • Primera Ley de Newton (Newton's First Law): (\sum \overrightarrow{F} = 0 \Leftrightarrow \overrightarrow{v} = \text{constante})
  • Segunda Ley de Newton (Newton's Second Law): (\sum \overrightarrow{F} = m\overrightarrow{a})
  • Tercera Ley de Newton (Newton's Third Law): (\overrightarrow{F}{12} = -\overrightarrow{F}{21})
  • Fuerza de Gravedad (Force of Gravity): (F_g = mg)
  • Fuerza Normal (Normal Force): (F_N)
  • Fuerza de Fricción Estática (Static Friction Force): (f_s \le \mu_s F_N)
  • Fuerza de Fricción Cinética (Kinetic Friction Force): (f_k = \mu_k F_N)
  • Fuerza Elástica (Elastic Force): (F_x = -kx)

Trabajo y Energía (Work and Energy) Equations

  • Trabajo (Work):
    • (W = \overrightarrow{F} \cdot \overrightarrow{d})
    • (W = Fd\cos\theta)
  • Trabajo Neto (Net Work): (W_{neto} = \Delta KE)
  • Energía Cinética (Kinetic Energy): (KE = \frac{1}{2}mv^2)
  • Energía Potencial Gravitatoria (Gravitational Potential Energy): (U_g = mgy)
  • Energía Potencial Elástica (Elastic Potential Energy): (U_s = \frac{1}{2}kx^2)
  • Potencia (Power):
    • (P = \frac{dW}{dt})
    • (P = \overrightarrow{F} \cdot \overrightarrow{v})

Conservación de la Energía (Conservation of Energy) Statements

  • Energía Mecánica (Mechanical Energy): (E_{mec} = KE + U)
  • Conservación de la Energía Mecánica (Conservation of Mechanical Energy): (\Delta E_{mec} = 0) (Si solo actúan fuerzas conservativas - If only conservative forces act)
  • Trabajo de Fuerzas No Conservativas (Work by Non-Conservative Forces): (\Delta E_{mec} = W_{nc}) (Si actúan fuerzas no conservativas - If non-conservative forces act)

Centro de Masa (Center of Mass) Equations

  • Posición (Position): (\overrightarrow{r}_{CM} = \frac{\sum m_i \overrightarrow{r}_i}{\sum m_i})
  • Velocidad (Velocity): (\overrightarrow{v}_{CM} = \frac{\sum m_i \overrightarrow{v}_i}{\sum m_i})
  • Segunda Ley de Newton para el Centro de Masa (Newton's Second Law for Center of Mass): (\sum \overrightarrow{F}{ext} = M\overrightarrow{a}{CM})

Colisiones (Collisions) Equations

  • Cantidad de Movimiento (Momentum): (\overrightarrow{p} = m\overrightarrow{v})
  • Impulso (Impulse): (\overrightarrow{I} = \Delta \overrightarrow{p} = \int \overrightarrow{F} dt)
  • Conservación de la Cantidad de Movimiento (Conservation of Momentum): (\sum \overrightarrow{p}_i = \sum \overrightarrow{p}_f)
  • Colisión Elástica en 1D (Elastic Collision in 1D): (v_{1i} - v_{2i} = -(v_{1f} - v_{2f}))

Rotación (Rotation) Equations

  • Torque:
    • (\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F})
    • (\tau = rF\sin\theta)
  • Momento de Inercia (Moment of Inertia): (I = \sum m_i r_i^2)
  • Segunda Ley de Newton para Rotación (Newton's Second Law for Rotation): (\sum \tau = I\alpha)
  • Trabajo Rotacional (Rotational Work): (W = \int \tau d\theta)
  • Energía Cinética Rotacional (Rotational Kinetic Energy): (KE_{rot} = \frac{1}{2}I\omega^2)
  • Momento Angular (Angular Momentum):
    • (\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p} = I\overrightarrow{\omega})
    • (\sum \tau = \frac{d\overrightarrow{L}}{dt})
  • Conservación del Momento Angular (Conservation of Angular Momentum): (\overrightarrow{L}_i = \overrightarrow{L}_f)
  • Energía Cinética Total (Total Kinetic Energy): (KE = \frac{1}{2}mv_{CM}^2 + \frac{1}{2}I_{CM}\omega^2)

Gravitación (Gravitation) Equations

  • Ley de Gravitación Universal (Law of Universal Gravitation): (F = G\frac{m_1m_2}{r^2})
  • Energía Potencial Gravitacional (Gravitational Potential Energy): (U = -G\frac{m_1m_2}{r})
  • Velocidad de Escape (Escape Velocity): (v_{esc} = \sqrt{\frac{2GM}{R}})

Leyes de Kepler (Kepler's Laws)

  • Primera Ley (First Law): Las órbitas son elípticas (Orbits are elliptical)
  • Segunda Ley (Second Law): La velocidad areolar es constante (The areal velocity is constant)
  • Tercera Ley (Third Law): (T^2 = (\frac{4\pi^2}{GM})a^3)

Oscilaciones (Oscillations) Equations

  • Movimiento Armónico Simple (MAS) - Simple Harmonic Motion (SHM):
    • (x(t) = A\cos(\omega t + \phi))
    • (v(t) = -A\omega\sin(\omega t + \phi))
    • (a(t) = -A\omega^2\cos(\omega t + \phi) = -\omega^2x(t))
  • Frecuencia Angular (Angular Frequency): (\omega = \sqrt{\frac{k}{m}})
  • Periodo (Period): (T = 2\pi\sqrt{\frac{m}{k}})
  • Péndulo Simple (Simple Pendulum):
    • (\omega = \sqrt{\frac{g}{L}})
    • (T = 2\pi\sqrt{\frac{L}{g}})
  • Péndulo Físico (Physical Pendulum):
    • (\omega = \sqrt{\frac{mgd}{I}})
    • (T = 2\pi\sqrt{\frac{I}{mgd}})
  • Oscilaciones Amortiguadas (Damped Oscillations): (x(t) = Ae^{-bt/2m}\cos(\omega't + \phi))
  • Oscilaciones Forzadas (Forced Oscillations): (x(t) = A\cos(\omega t + \phi)) where (A = \frac{F_0/m}{\sqrt{(\omega^2 - \omega_0^2)^2 + (b\omega/m)^2}})

Ondas (Waves) Equations

  • Velocidad de Onda (Wave Speed): (v = \sqrt{\frac{F}{\mu}})
  • Número de Onda (Wave Number): (k = \frac{2\pi}{\lambda})
  • Función de Onda (Wave Function): (y(x, t) = A\sin(kx - \omega t + \phi))
  • Velocidad (Speed): (v = f\lambda)
  • Densidad Lineal (Linear Density): (\mu = \frac{m}{L})
  • Potencia (Power): (P_{avg} = \frac{1}{2}\mu\omega^2A^2v)
  • Superposición de Ondas (Superposition of Waves): (y(x, t) = y_1(x, t) + y_2(x, t))
  • Interferencia Constructiva (Constructive Interference): (\Delta r = n\lambda)
  • Interferencia Destructiva (Destructive Interference): (\Delta r = (n + \frac{1}{2})\lambda)
  • Ondas Estacionarias (Standing Waves): (y(x, t) = (2A\sin kx)\cos \omega t)
  • Frecuencias (Frequencies): (f_n = n\frac{v}{2L}), where (n = 1, 2, 3,...)

Termodinámica (Thermodynamics) Equations

  • Ley Cero (Zeroth Law): Si A está en equilibrio térmico con C, y B está en equilibrio térmico con C, entonces A está en equilibrio térmico con B.
  • Dilatación Lineal (Linear Expansion): (\Delta L = \alpha L_0 \Delta T)
  • Dilatación de Área (Area Expansion): (\Delta A = 2\alpha A_0 \Delta T)
  • Dilatación de Volumen (Volume Expansion): (\Delta V = \beta V_0 \Delta T)
  • Calor Específico (Specific Heat): (Q = mc\Delta T)
  • Calor Latente (Latent Heat): (Q = mL)
  • Conducción (Conduction): (\frac{dQ}{dt} = kA\frac{T_H - T_C}{L})
  • Convección (Convection): Transferencia de calor por movimiento de un fluido (Heat transfer by the movement of a fluid)
  • Radiación (Radiation): (\frac{dQ}{dt} = \sigma A e T^4)
  • Ley de los Gases Ideales (Ideal Gas Law): (PV = nRT)
  • Trabajo (Work): (W = \int PdV)
  • Energía Interna (Internal Energy):
    • (\Delta E_{int} = Q - W)
    • (E_{int} = \frac{3}{2}nRT)
  • Capacidad Calorífica Molar (Molar Heat Capacity): (C_V = \frac{3}{2}R)
  • (C_P = C_V + R)
  • Procesos Adiabáticos (Adiabatic Processes):
    • (PV^\gamma = \text{constante})
    • (TV^{\gamma - 1} = \text{constante})
    • (W = \frac{P_fV_f - P_iV_i}{1 - \gamma})
    • (\gamma = \frac{C_P}{C_V})

Segunda Ley de la Termodinámica (Second Law of Thermodynamics) Equations

  • Eficiencia (Efficiency): (e = \frac{W_{neto}}{Q_H} = 1 - \frac{Q_C}{Q_H})
  • Ciclo de Carnot (Carnot Cycle): (e_C = 1 - \frac{T_C}{T_H})
  • Entropía (Entropy): (\Delta S = \int \frac{dQ}{T})

Miscelánea (Miscellaneous)

  • Circunferencia (Circumference): (C = 2\pi r)
  • Área (Area): (A = \pi r^2)
  • Área de la Superficie (Surface Area): (A = 4\pi r^2)
  • Volumen (Volume): (V = \frac{4}{3}\pi r^3)

Trigonometría (Trigonometry)

  • Seno (Sine): (\sin\theta = \frac{\text{opuesto}}{\text{hipotenusa}})
  • Coseno (Cosine): (\cos\theta = \frac{\text{adyacente}}{\text{hipotenusa}})
  • Tangente (Tangent): (\tan\theta = \frac{\text{opuesto}}{\text{adyacente}})

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Use Quizgecko on...
Browser
Browser