Calculus Exam: Functions, Limits, and Differentiation
14 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

If $f(x) = 2x + 1$ and $g(x) = x^2 - 3$, what is the value of $(f \circ g)'(2)$?

  • $26$ (correct)
  • $10$
  • $14$
  • $30$
  • What is the domain of the function $f(x) = \frac{1}{(x-2)(x-3)}$?

  • $(-\infty, 2) \cup (2, 3) \cup (3, \infty)$ (correct)
  • $(-\infty, 2) \cup (3, \infty)$
  • $(-\infty, 2) \cup (2, 3) \cup [3, \infty)$
  • $(-\infty, 3) \cup (2, \infty)$
  • Use the epsilon-delta definition to prove that $\lim_{x \to 2} (3x - 4) = 2$. What is the correct choice for $\delta$ if $|x - 2| < \delta$ and $|(3x - 4) - 2| < \epsilon$?

  • $\delta = \frac{\epsilon}{2}$
  • $\delta = \frac{\epsilon}{3}$ (correct)
  • $\delta = \epsilon$
  • $\delta = 3\epsilon$
  • Let $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and $f(0) = 0$. Which of the following statements is true?

    <p>$f$ is continuous at $x = 0$ but not differentiable.</p> Signup and view all the answers

    What is the derivative of the implicitly defined function $x^2 + y^2 = 4$ with respect to $x$?

    <p>$-\frac{x}{y}$</p> Signup and view all the answers

    If $u$ and $v$ are functions of $x$, which of the following is equivalent to the derivative of $u/v$ with respect to $x$?

    <p>$$rac{v * du/dx - u * dv/dx}{v^2}$$</p> Signup and view all the answers

    If $u$, $v$, and $w$ are functions of $x$, what is the derivative of $u(v+w)$ with respect to $x$?

    <p>$$u * (dv/dx + dw/dx) + (v+w) * du/dx$$</p> Signup and view all the answers

    If $y = (x^2 + 1)(x^3 - 2)$, what is the derivative of $y$ with respect to $x$?

    <p>$$2x(x^3 - 2) + 3x^2(x^2 + 1)$$</p> Signup and view all the answers

    If $y = f(g(x))$, where $f(u) = u^2$ and $g(x) = 2x + 1$, what is the derivative of $y$ with respect to $x$?

    <p>$$4(2x + 1)^2 * 2$$</p> Signup and view all the answers

    If $y = (2x + 1)^3$, what is the derivative of $y$ with respect to $x$?

    <p>$$3(2x + 1)^2 * 2$$</p> Signup and view all the answers

    If $y = x^2 * \sin(x)$, what is the derivative of $y$ with respect to $x$?

    <p>$$2x * \sin(x) + x^2 * \cos(x)$$</p> Signup and view all the answers

    If $y = rac{x^2 + 1}{x - 1}$, what is the derivative of $y$ with respect to $x$?

    <p>$$rac{(x - 1)(2x) - (x^2 + 1)}{(x - 1)^2}$$</p> Signup and view all the answers

    If $y = (x^2 + 1)(x^3 - 2)$, what is the derivative of $y$ with respect to $x$?

    <p>$$2x(x^3 - 2) + 3x^2(x^2 + 1)$$</p> Signup and view all the answers

    If $y = x^n$, where $n$ is a constant, what is the derivative of $y$ with respect to $x$?

    <p>$$nx^{n-1}$$</p> Signup and view all the answers

    Study Notes

    Differentiation Rules

    Product Rule

    • The product rule is used to find the derivative of a product of two functions.
    • The formula is: ddx(u∗v)=u∗dvdx+v∗dudx\frac{d}{dx} (u * v) = u * \frac{dv}{dx} + v * \frac{du}{dx}dxd​(u∗v)=u∗dxdv​+v∗dxdu​
    • This rule can be generalized to find the derivative of a product of n functions: ddx(u1∗u2∗...∗un)=∑i=1nu1∗...∗ui−1∗duidx∗ui+1∗...∗un\frac{d}{dx} (u_1 * u_2 *...* u_n) = \sum_{i=1}^n u_1 *...* u_{i-1} * \frac{du_i}{dx} * u_{i+1} *...* u_ndxd​(u1​∗u2​∗...∗un​)=∑i=1n​u1​∗...∗ui−1​∗dxdui​​∗ui+1​∗...∗un​

    Quotient Rule

    • The quotient rule is used to find the derivative of a quotient of two functions.
    • The formula is: ddx(uv)=v∗dudx−u∗dvdxv2\frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v * \frac{du}{dx} - u * \frac{dv}{dx}}{v^2}dxd​(vu​)=v2v∗dxdu​−u∗dxdv​​
    • This rule can be derived from the product rule and the chain rule.

    Sum Rule

    • The sum rule is used to find the derivative of a sum of two functions.
    • The formula is: ddx(u+v)=dudx+dvdx\frac{d}{dx} (u + v) = \frac{du}{dx} + \frac{dv}{dx}dxd​(u+v)=dxdu​+dxdv​
    • This rule can be generalized to find the derivative of a sum of n functions: ddx(u1+u2+...+un)=du1dx+du2dx+...+dundx\frac{d}{dx} (u_1 + u_2 +...+ u_n) = \frac{du_1}{dx} + \frac{du_2}{dx} +...+ \frac{du_n}{dx}dxd​(u1​+u2​+...+un​)=dxdu1​​+dxdu2​​+...+dxdun​​

    Chain Rule

    • The chain rule is used to find the derivative of a composite function.
    • The formula is: dydx=dydu∗dudx\frac{dy}{dx} = \frac{dy}{du} * \frac{du}{dx}dxdy​=dudy​∗dxdu​
    • This rule can be generalized to find the derivative of a composite function of n functions: dydx=dydun∗dundun−1∗...∗du2du1∗du1dx\frac{dy}{dx} = \frac{dy}{du_n} * \frac{du_n}{du_{n-1}} *...* \frac{du_2}{du_1} * \frac{du_1}{dx}dxdy​=dun​dy​∗dun−1​dun​​∗...∗du1​du2​​∗dxdu1​​

    Power Rule

    • The power rule is used to find the derivative of a function of the form y=xny = x^ny=xn.
    • The formula is: dydx=n∗xn−1\frac{dy}{dx} = n * x^{n-1}dxdy​=n∗xn−1
    • This rule can be generalized to find the derivative of a function of the form y=uny = u^ny=un, where uuu is a function of xxx: dydx=n∗un−1∗dudx\frac{dy}{dx} = n * u^{n-1} * \frac{du}{dx}dxdy​=n∗un−1∗dxdu​ (chain rule and power rule combined)

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Test your knowledge of calculus concepts, including composition of functions, domain and continuity, limits, epsilon delta definition, and differentiation rules. Practice problems cover implicit differentiation, mean value theorem, and more.

    More Like This

    Increasing and Decreasing Functions
    7 questions
    Calculus Chapter 1: Introduction to Derivatives
    8 questions
    Türev Kuralları
    16 questions

    Türev Kuralları

    WorkableOganesson avatar
    WorkableOganesson
    Calculus: Introduction to Derivatives
    8 questions
    Use Quizgecko on...
    Browser
    Browser