Podcast
Questions and Answers
What is the limit of $x^2$ as $x$ approaches 3?
What is the limit of $x^2$ as $x$ approaches 3?
- $rac{1}{3}x^3$
- $2x^2$
- $3^2 = 9 (correct)
- $rac{1}{2}x^2$
If $\lim_{x \to 5} f(x) = 7$ and $\lim_{x \to 5} g(x) = 3$, what is $\lim_{x \to 5} (f(x) - 2g(x))$?
If $\lim_{x \to 5} f(x) = 7$ and $\lim_{x \to 5} g(x) = 3$, what is $\lim_{x \to 5} (f(x) - 2g(x))$?
- 1 (correct)
- 4
- $7 - 2(3) = 1$
- 10
If $\lim_{x \to 4} f(x) = 2$ and $\lim_{x \to 4} g(x) = -1$, what is $\lim_{x \to 4} \frac{f(x)}{g(x)}$?
If $\lim_{x \to 4} f(x) = 2$ and $\lim_{x \to 4} g(x) = -1$, what is $\lim_{x \to 4} \frac{f(x)}{g(x)}$?
- $\frac{2}{1} = 2$
- The limit does not exist because the denominator is 0.
- $\frac{2}{-1} = -2$ (correct)
- -2
If $\lim_{x \to 1} f(x) = 3$ and $\lim_{x \to 1} g(x) = 2$, what is $\lim_{x \to 1} (f(x)g(x))$?
If $\lim_{x \to 1} f(x) = 3$ and $\lim_{x \to 1} g(x) = 2$, what is $\lim_{x \to 1} (f(x)g(x))$?