Podcast
Questions and Answers
Which of the following expressions represents the index law for raising a variable to the power of zero?
Which of the following expressions represents the index law for raising a variable to the power of zero?
If $a^m \cdot a^n = a^{m+n}$ is the index law for multiplying variables with the same base, what is the index law for dividing variables with the same base?
If $a^m \cdot a^n = a^{m+n}$ is the index law for multiplying variables with the same base, what is the index law for dividing variables with the same base?
If $a^m \cdot b^m = (ab)^m$ is the index law for multiplying variables with different bases, what is the index law for raising a product of variables to a power?
If $a^m \cdot b^m = (ab)^m$ is the index law for multiplying variables with different bases, what is the index law for raising a product of variables to a power?
If $a^{-m} = \frac{1}{a^m}$ is the index law for negative exponents, what is the index law for raising a quotient of variables to a power?
If $a^{-m} = \frac{1}{a^m}$ is the index law for negative exponents, what is the index law for raising a quotient of variables to a power?
Signup and view all the answers
If $(x^2)^3 = x^6$ is an example of the index law for raising a power to a power, what is the index law for raising a variable to the power of a quotient?
If $(x^2)^3 = x^6$ is an example of the index law for raising a power to a power, what is the index law for raising a variable to the power of a quotient?
Signup and view all the answers
What is the value of $x^5 \cdot x^0$?
What is the value of $x^5 \cdot x^0$?
Signup and view all the answers
Simplify $a^6 \div a^6$.
Simplify $a^6 \div a^6$.
Signup and view all the answers
What is the value of $m^3 \cdot m^{-3}$?
What is the value of $m^3 \cdot m^{-3}$?
Signup and view all the answers
Evaluate $5^2 \cdot 5^0$.
Evaluate $5^2 \cdot 5^0$.
Signup and view all the answers
Simplify $c^{-3} \cdot c^{-3}$.
Simplify $c^{-3} \cdot c^{-3}$.
Signup and view all the answers