Algebra 2 - Graphing Rational Functions
27 Questions
100 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Identify the vertical asymptote(s) of the function $f(x) = \frac{x + 2}{x^2 - 3x - 4}$

C and F

Which is the graph of $f(x) = \frac{x - 1}{x^2 - x - 6}$?

  • Option A (correct)
  • Option C
  • Option B
  • Option D
  • Which statement defines the horizontal asymptote?

    m = n, so y = am / bn is the horizontal asymptote.

    What is the horizontal asymptote?

    <p>5</p> Signup and view all the answers

    The graph of the function has a vertical asymptote of $x =$

    <p>0</p> Signup and view all the answers

    The graph of the function has a horizontal asymptote of $y =$

    <p>0</p> Signup and view all the answers

    The domain of the function is

    <p>all nonzero real numbers</p> Signup and view all the answers

    The range of the function is

    <p>all nonzero real numbers</p> Signup and view all the answers

    The vertical asymptote is $x =$

    <p>0</p> Signup and view all the answers

    The horizontal asymptote is $y =$

    <p>0</p> Signup and view all the answers

    Select all that are true for $g(x) = \frac{10}{x}$

    <p>Option B</p> Signup and view all the answers

    Which is the graph of $g(x) = \frac{10}{x}$?

    <p>Option C</p> Signup and view all the answers

    Which is the graph of $y = \frac{2}{x} + 1 - 6$?

    <p>Option A</p> Signup and view all the answers

    Name the vertical asymptote(s).

    <p>x = -1 and x = 2</p> Signup and view all the answers

    Name the horizontal asymptote(s).

    <p>y = \frac{1}{4}</p> Signup and view all the answers

    What is the domain of the function?

    <p>all real numbers except -1 and 1</p> Signup and view all the answers

    Which of the following describes the end behavior of $f(x) = \frac{2x}{3x^2 - 3}$?

    <p>Option B</p> Signup and view all the answers

    Which of the following could be the function graphed?

    <p>Option D</p> Signup and view all the answers

    Identify the graph of $f(x) = \frac{10 - 10x^2}{x^2}$.

    <p>Option B</p> Signup and view all the answers

    Which of the following are correct? (Check all that apply)

    <p>Option C</p> Signup and view all the answers

    The vertical asymptote of $f(x) = \frac{c}{x}$, where $c$ is a nonzero real number, is:

    <p>is x = 0</p> Signup and view all the answers

    The horizontal asymptote of $f(x) = \frac{c}{x}$ is:

    <p>is y = 0</p> Signup and view all the answers

    The domain of the function $f(x) = \frac{c}{x}$ is:

    <p>is all nonzero real numbers</p> Signup and view all the answers

    The range of the function $f(x) = \frac{c}{x}$ is:

    <p>is all nonzero real numbers</p> Signup and view all the answers

    How does the graph of this function compare with the graph of the parent function, $y = \frac{1}{x}$?

    <p>B</p> Signup and view all the answers

    Which of the following is the function represented by the graph?

    <p>Option D</p> Signup and view all the answers

    Explain the behavior of the graph of $I$ where $P$ is the power of the sound:

    <p>The vertical asymptote is r = 0. The intensity is undefined at the source. The horizontal asymptote is I = 0. As the distance from the source increases, the intensity goes to zero. The intensity decreases as the distance increases.</p> Signup and view all the answers

    Study Notes

    Vertical Asymptotes

    • Identify vertical asymptotes in rational functions by finding values that cause the denominator to equal zero.
    • For the function ( f(x) = \frac{x + 2}{x^2 - 3x - 4} ), vertical asymptotes are found at ( x = -1 ) and ( x = 2 ).
    • The function ( g(x) = \frac{10}{x} ) also has a vertical asymptote at ( x = 0 ).

    Horizontal Asymptotes

    • The horizontal asymptote can be determined by considering the degrees of the numerator and denominator in rational functions.
    • For functions where the degrees of the numerator (m) and denominator (n) are equal, the horizontal asymptote is determined by the ratio of leading coefficients: ( y = \frac{a_m}{b_n} ).
    • In the given scenarios, horizontal asymptotes were established at ( y = 1/4 ) and ( y = 0 ).

    Domain and Range

    • The domain of rational functions is typically all real numbers except those that make the denominator equal zero.
    • For certain functions like ( g(x) = \frac{10}{x} ), the domain includes all nonzero real numbers.
    • The range similarly consists of all nonzero real numbers in the cases discussed.

    End Behavior and Graph Characteristics

    • End behavior describes how the graph behaves as values approach infinity or negative infinity.
    • For functions like ( f(x) = \frac{2x}{3x^2 - 3} ), various end behaviors can be predicted based on the degree of polynomials.
    • Comparing graphs with parent functions, such as ( y = \frac{1}{x} ), is crucial for understanding transformations and behaviors.

    Graph Identification

    • Several graphs represent different rational functions, and accurate identification is key in analyzing their characteristics.
    • Example graphs were mentioned for specific functions, including ( f(x) = \frac{10 - 10x^2}{x^2} ) and others associated with their respective letters in the provided context.

    Special Function Behaviors

    • For specific functions like ( f(x) = \frac{c}{x} ) (where c is nonzero), key attributes include vertical asymptote at ( x = 0 ), horizontal asymptote at ( y = 0 ), and domain and range of all nonzero real numbers.
    • Understanding intensity-related graphs, as referenced, emphasizes the significance of asymptotes in real-life contexts, such as sound intensity diminishing with distance.

    True Statements and Core Functions

    • It’s essential to evaluate true statements about given functions and their graphs, reinforcing understanding of the mathematical concepts behind rational functions.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Test your understanding of graphing rational functions with these flashcards. Each card prompts you to identify key characteristics like vertical and horizontal asymptotes. Perfect for reviewing the concepts before your Algebra 2 exam.

    More Like This

    Rational Functions - Algebra 2
    6 questions
    Algebra 2 Unit 4 Flashcards
    20 questions
    Graphing Rational Functions
    14 questions
    Use Quizgecko on...
    Browser
    Browser