عمليات المتجهات وتطبيقاتها

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

$u = (4, -7, -5)$ $v = (3, -2, 6)$ () $u \cdot v$

  • 42
  • 10
  • 14
  • -22 (correct)

$u = (4, 6, 3)$ $v = (-9, 5, -4)$

  • (correct)

$a =(2, 1, -1)$ $b =(1, -2, 3)$ () $a \times b$

  • (1, -5, -5)
  • (2, -6, 2)
  • (1, -7, -5) (correct)
  • (5, -7, -5)

$A$ $B$ $C$

<pre><code> (B) </code></pre> Signup and view all the answers

$u$ $v$ $u \cdot v$ 12 $|u| = 3$ $|v| = 4$

<p>0 (C)</p> Signup and view all the answers

$u = (2, -1, 3)$

<p>(1, 2, 0) (C)</p> Signup and view all the answers

Flashcards

حساب طول المتجه

عملية حسابية تُستخدم لإيجاد حجم متجه مُعَيّن، يُمثّل المسافة من نقطة البداية إلى نقطة النهاية للمتجه.

الضرب القياسي (الداخلي) للمتجهين

عملية حسابية تُستخدم لإيجاد قيمة عددية تُمثّل مقدار العلاقة بين متجهين.

الضرب التبادلي للمتجهين

عملية حسابية تُستخدم لإيجاد متجه جديد يُمثّل الاتجاه المُعمّد على متجهين مُعَيّنين.

متجهين مُتعامدين

عندما يكون الضرب القياسي لمتجهين مساويًا للصفر.

Signup and view all the flashcards

متجهين مُتوازيين

عندما يكون متجه واحد مضروبًا في ثابت يُساعد في الحصول على المتجه الآخر.

Signup and view all the flashcards

استخدام الضرب القياسي لإيجاد الزاوية بين متجهين

عملية حسابية تُستخدم لإيجاد الزاوية بين متجهين.

Signup and view all the flashcards

إيجاد متجه مُتعامد على متجه مُعَيّن

متجه مُتعامد على متجه مُعَيّن.

Signup and view all the flashcards

تحديد ما إذا كانت نقاط مُعَيّنة على خط مستقيم واحد

عندما تقع جميع النقاط على نفس الخط المستقيم.

Signup and view all the flashcards

تحديد ما إذا كانت متجهات مُعَيّنة على نفس المستوى

عندما تقع جميع المتجهات على نفس المستوى.

Signup and view all the flashcards

حساب مساحة متوازي الأضلاع

تُستخدم لحساب مساحة متوازي الأضلاع.

Signup and view all the flashcards

Study Notes

Vector Operations and Applications

  • Vector Addition/Subtraction: Vectors are added/subtracted component-wise. For example, if u = (a, b, c) and v = (d, e, f), then u + v = (a + d, b + e, c + f) and u - v = (a - d, b - e, c - f).

  • Scalar Multiplication: Multiplying a vector by a scalar (number) multiplies each component of the vector by that scalar. For example, if u = (a, b, c) and k is a scalar, then ku = (ka, kb, kc).

  • Dot Product: The dot product of two vectors u and v, denoted as u ⋅ v, is calculated by multiplying corresponding components and summing the results. If u = (u1, u2, u3) and v = (v1, v2, v3), then u ⋅ v = u1v1 + u2v2 + u3v3. The dot product can determine if two vectors are orthogonal (perpendicular).

  • Cross Product: The cross product of two vectors u and v, denoted as u × v, is a vector perpendicular to both u and v. Its magnitude is given by |u × v| = |u| |v| sin θ, where θ is the angle between u and v. Its direction is found using the right-hand rule.

  • Vector Equations: Equations can represent relationships between vectors, such as u = (2-3, 1) t + (1, 4) where t is a scalar.

  • Parallelogram/Triangle Law of vectors: Graphical methods for vector addition.

  • Applications: Vectors are used to represent and solve many real-world problems in physics, engineering, and computer graphics (e.g., forces, displacements, velocities). Example applications are: finding magnitudes, directions, determining if vectors are orthogonal (perpendicular) and calculating angles between vectors.

Specific Examples of Vector Operations and Problems

  • Given vectors u, v, and t, find particular values: u+v, u-v, ku, u ⋅ v, u × v, or determine whether the vectors are orthogonal
  • Example values of vectors: u = (-1, -9, 2), v = (3, -2, 6)
  • Examples: Find the angles between vectors; find vectors related to the dot product
  • Applications determining geometric shapes such as parallelograms, triangles.
  • Special cases, such as determining if points are collinear.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

IMG_0104.jpeg

More Like This

Vector Operations Quiz
14 questions
Vector Operations Quiz
40 questions

Vector Operations Quiz

LegendaryCarnelian7173 avatar
LegendaryCarnelian7173
Use Quizgecko on...
Browser
Browser