주산 4계산 (Four Arithmetic Operations)

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

어떤 수학 연산이 Commutative, Associative, Distributive의 성질을 모두 가지고 있는가?

  • _addition(+)와 multiplication(×) (correct)
  • multiplication(×)와 division(÷)
  • subtraction(-)와 division(÷)
  • addition(+)와 subtraction(-)

어떤 수학 연산이 not Commutative, not Associative의 성질을 모두 가지고 있는가?

  • subtraction(-)와 division(÷) (correct)
  • addition(+)와 multiplication(×)
  • addition(+)와 division(÷)
  • multiplication(×)와 subtraction(-)

Sharing a number into equal parts는 어떤 수학 연산을 의미하는가?

  • division(÷) (correct)
  • multiplication(×)
  • subtraction(-)
  • addition(+)

어떤 수학 연산이 repeating a number a certain number of times를 의미하는가?

<p>multiplication(×) (B)</p> Signup and view all the answers

Combining two or more numbers to get a total or a sum는 어떤 수학 연산을 의미하는가?

<p>addition(+) (A)</p> Signup and view all the answers

Finding the difference between two numbers는 어떤 수학 연산을 의미하는가?

<p>subtraction(-) (A)</p> Signup and view all the answers

Flashcards are hidden until you start studying

Study Notes

주산 (Four Arithmetic Operations)

Addition (+)

  • Combining two or more numbers to get a total or a sum
  • Example: 2 + 3 = 5
  • Properties:
    • Commutative: a + b = b + a
    • Associative: (a + b) + c = a + (b + c)
    • Distributive: a + (b + c) = (a + b) + (a + c)

Subtraction (-)

  • Finding the difference between two numbers
  • Example: 5 - 3 = 2
  • Properties:
    • Not commutative: a - b ≠ b - a
    • Not associative: (a - b) - c ≠ a - (b - c)

Multiplication (×)

  • Repeating a number a certain number of times
  • Example: 2 × 3 = 6
  • Properties:
    • Commutative: a × b = b × a
    • Associative: (a × b) × c = a × (b × c)
    • Distributive: a × (b + c) = (a × b) + (a × c)

Division (÷)

  • Sharing a number into equal parts
  • Example: 6 ÷ 2 = 3
  • Properties:
    • Not commutative: a ÷ b ≠ b ÷ a
    • Not associative: (a ÷ b) ÷ c ≠ a ÷ (b ÷ c)

Note: These notes focus on the basic properties and definitions of the four arithmetic operations. Further study is recommended to explore more advanced concepts and applications.

주산 (Four Arithmetic Operations)

сложение (+)

  • 두 개 이상의 숫자를 합하여 전체 또는 합계를 구하는 연산
  • 예: 2 + 3 = 5
  • 성질:
    • 교환 법칙: a + b = b + a
    • 결합 법칙: (a + b) + c = a + (b + c)
    • 분배 법칙: a + (b + c) = (a + b) + (a + c)

뺄셈 (-)

  • 두 숫자의 차이를 구하는 연산
  • 예: 5 - 3 = 2
  • 성질:
    • 교환 법칙이 성립하지 않음: a - b ≠ b - a
    • 결합 법칙이 성립하지 않음: (a - b) - c ≠ a - (b - c)

###곱셈 (×)

  • 숫자를 일정한 횟수로 반복하는 연산
  • 예: 2 × 3 = 6
  • 성질:
    • 교환 법칙: a × b = b × a
    • 결합 법칙: (a × b) × c = a × (b × c)
    • 분배 법칙: a × (b + c) = (a × b) + (a × c)

나눗셈 (÷)

  • 숫자를 동일한 부분으로 나누는 연산
  • 예: 6 ÷ 2 = 3
  • 성질:
    • 교환 법칙이 성립하지 않음: a ÷ b ≠ b ÷ a
    • 결합 법칙이 성립하지 않음: (a ÷ b) ÷ c ≠ a ÷ (b ÷ c)

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Use Quizgecko on...
Browser
Browser