Podcast
Questions and Answers
ما هي الصورة الناتجة عن النقطة C بعد دوران R؟
ما هي الصورة الناتجة عن النقطة C بعد دوران R؟
حل المعادلة: $z^2 - 4z + 29 = 0$. ما هي الحلول؟
حل المعادلة: $z^2 - 4z + 29 = 0$. ما هي الحلول؟
احسب الزاوية الخاصة بالعدد المركب $u = b - ω$.
احسب الزاوية الخاصة بالعدد المركب $u = b - ω$.
ما هي حلول المعادلة: $z^2 - 2z + 1 = 0$؟
ما هي حلول المعادلة: $z^2 - 2z + 1 = 0$؟
Signup and view all the answers
اكتب العدد المركب $a = rac{2}{ ext{√}} + i$ بشكل قياسي.
اكتب العدد المركب $a = rac{2}{ ext{√}} + i$ بشكل قياسي.
Signup and view all the answers
ما هو $|a - b| = |b - c|$ في مثلث ABC؟
ما هو $|a - b| = |b - c|$ في مثلث ABC؟
Signup and view all the answers
احسب الزاوية بين المتجهين $BA$ و $BC$ في مثلث ABC.
احسب الزاوية بين المتجهين $BA$ و $BC$ في مثلث ABC.
Signup and view all the answers
ما هي نوع المثلث ABC إذا كان $|a - b| = |b - c|$؟
ما هي نوع المثلث ABC إذا كان $|a - b| = |b - c|$؟
Signup and view all the answers
احسب الصورة الناتجة لـ D بعد الترجمة بواسطة t.
احسب الصورة الناتجة لـ D بعد الترجمة بواسطة t.
Signup and view all the answers
الصورة الناتجة عن الدائرة $|z - 1 - i| = 6$ هي في الشكل _____
الصورة الناتجة عن الدائرة $|z - 1 - i| = 6$ هي في الشكل _____
Signup and view all the answers
ما هو العدد المركب Z إذا علمنا أن z = x + iy؟
ما هو العدد المركب Z إذا علمنا أن z = x + iy؟
Signup and view all the answers
كيف يمكن تحديد مجموعة النقاط M (z) بحيث يكون Z حقيقيًا؟
كيف يمكن تحديد مجموعة النقاط M (z) بحيث يكون Z حقيقيًا؟
Signup and view all the answers
كيف تحدد مجموعة النقاط M (z) بحيث يكون Z عددًا تخيليًا؟
كيف تحدد مجموعة النقاط M (z) بحيث يكون Z عددًا تخيليًا؟
Signup and view all the answers
كيف تحدد مجموعة النقاط M (z) بحيث يكون |Z| = 1؟
كيف تحدد مجموعة النقاط M (z) بحيث يكون |Z| = 1؟
Signup and view all the answers
ما هي جذور المعادلة z^2 - 8z + 25 = 0 في C؟
ما هي جذور المعادلة z^2 - 8z + 25 = 0 في C؟
Signup and view all the answers
ما هي كتابة العدد المركب c - a بشكل مثلثي؟
ما هي كتابة العدد المركب c - a بشكل مثلثي؟
Signup and view all the answers
كيف تكتب العدد المركب b - a بشكل مثلثي؟
كيف تكتب العدد المركب b - a بشكل مثلثي؟
Signup and view all the answers
ما هي كتابة العدد المركب a بشكل مثلثي؟
ما هي كتابة العدد المركب a بشكل مثلثي؟
Signup and view all the answers
ما هي كتابة عدد الزاوية t بشكل مثلثي؟
ما هي كتابة عدد الزاوية t بشكل مثلثي؟
Signup and view all the answers
ماذا يعني أن Z يكون في مثلث متساوي الأضلاع؟
ماذا يعني أن Z يكون في مثلث متساوي الأضلاع؟
Signup and view all the answers
ما هي كتابة u تحت شكل مثلثي؟
ما هي كتابة u تحت شكل مثلثي؟
Signup and view all the answers
ما هي كتابة العدل string |b^2 - c^2|؟
ما هي كتابة العدل string |b^2 - c^2|؟
Signup and view all the answers
ماذا يعني أن النقاط A و B و C متراصة؟
ماذا يعني أن النقاط A و B و C متراصة؟
Signup and view all the answers
Study Notes
الأعداد المركبة
- العدد المركب يُعبر عنه بالشكل z = x + iy حيث x وy ينتميان إلى الأعداد الحقيقية.
- تم تقديم العمليات الأساسيات على الأعداد المركبة مثل الجمع والطرح.
التمارين
-
تمرين 1:
- تحديد الجزء الحقيقي Im(Z) والجزء التخيلي Re(Z) للعدد المركب Z = (z + 2)/(z - i).
- إيجاد النقاط M(z) في المستوى التي تجعل Z عددًا حقيقيًا أو عددًا تخيليًا.
- دراسة القيم التي تحقق |Z| = 1.
-
تمرين 2:
- حل معادلة z² - 8z + 25 = 0.
- حساب الإزاحة من نقطة A إلى نقطة D باستخدام النقاط A, B, C.
-
تمرين 3:
- كتابة الأعداد المركبة b وc بالشكل المثلثي.
- استنتاج طبيعة مثلث ABC من خلال العوامل والعلاقات بين النقاط.
-
تمرين 4:
- تحويل الأعداد المركبة إلى الشكل المثلثي وحساب قياسات الزوايا.
- التحقق من ميديات النقاط والتحقيق من القيم لدلائل الزوايا.
الخصائص الهندسية
- التدوير في المستوى المركب يعكس تأثيرات الزوايا والأطوال.
- العلاقة بين النقاط تعتمد على القيم الحقيقية والتخييلية.
تحليل الخصائص
-
النقاش حول الأعداد التخييلية:
- استكشاف خصائص الزوايا الموزونه والتواجد النمطي على مستوي الأعداد المركبة.
المعادلات
- دراسة معادلات من الدرجة الثانية لمدى تأثيرها على القيم المعقدة.
- دراسة التغييرات الناتجة عن الإزاحات والدورانات في المستوى المركب.
استنتاجات
- تغيير الزوايا والأساليب في معالجة الأعداد المركبة يؤدي إلى خصائص هندسية مختلفة.
- تحليل الشروط والمميزات لكل نقطة في المستوي هي ضرورية لفهم الأعداد المركبة بشكل عميق.
أمثلة
- تمارين متنوعة تُظهر كيفية تطبيق المفاهيم على الطائرات الحقيقية والمركبة.
- استخدام المعادلات لتحديد الخصائص الهندسية للأشكال في المستوى المركب.### التحليل المعقد والمعادلات
- حل المعادلات المعقدة مثل ( z^2 - 2z + 1 = 0 )، تُظهر كيفية الاستنتاج عن الجذور.
- الشكل الزاوي لعدد مركب يمكن كتابته كـ ( a = \sqrt{2} + i\sqrt{2} ) ثم تحويله إلى الشكل الزاوي لتسهيل العمليات.
التحويلات والمعادلات المثلثية
- استخدام التحويلات كالدوران ( R ) وزوايا التحويل عند إجراء حسابات معقدة.
- معادلات مثل ( z' = az ) تتعلق بتحويلات معقدة في الفراغ.
- التحويل المثلثي لنقاط معينة ينتج البنى الهندسية مثل المثلثات ومقدار زواياها.
الشروط الهندسية
- الاستنتاج عن العلاقة بين النقاط في المتسلسلات، مثل القول بأن النقاط ( O، B، D ) متراصفة.
- قياسات مثل ( |a - b| = |b - c| ) تحدد طبيعة مثلثات المختلفة، مثل كونها قائمة أو متساوية الساقين.
الحسابات المتعلقة بالزوايا
- استخدام الشكل المثلثي لحساب زوايا مثل ( \angle P A, P D ) و العلاقة بين الزوايا المختلفة في المثلثات.
- تحديد قيمة الزوايا يمكن أن يكون له تأثير في إثبات خصائص هندسية.
المجموعات الهندسية والتراكيب
- وجود نقاط مثل ( A، B، C، D ) يتطلب دراسة العلاقات بينها مثل المحاور وتجسيد النقاط.
- تحديد النقاط المعقدة مثل ( z ) وطرق الوصول إلى النتائج مثل الأبعاد والمسافات.
الدوال المعقدة
- الدالة ( z^2 - 8z + 25 = 0 ) توضح استخدام المعادلات غير الخطية في الدوال المعقدة.
- إظهار أن كميات مثل ( |z| ) و ( arg(z) ) تحمل أهمية كبيرة في قياس الاتجاهات والأبعاد.
التعاميم والخصائص
- توضيح طريقة قياس وتحديد الأبعاد لأعداد مثل ( z = 2 - 3 - i ).
- استخدام تحولات إلى الشكل المثلثي لرؤية الخصائص مثل المسافة وزاوية الاتجاه.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Related Documents
Description
اكتشفوا عالم الأعداد المعقدة من خلال هذا الاختبار. هذا الاختبار يتناول خاصيات الأعداد المعقدة وكيفية التعامل معها. استعدوا لإظهار مهاراتكم في الرياضيات!