G12 Adv S1 Unit 2-2024-2025 Worksheet PDF

Summary

This document contains a worksheet with questions on computing limits in calculus. The worksheet includes rules for calculating limits, examples, and exercises. It's suitable for a secondary school mathematics course.

Full Transcript

Lesson 2-3 Computation of Limits Rules for calculating limits: 1) For any constant 𝑐 and any real number π‘Ž : lim 𝑐 = 𝑐 π‘₯β†’π‘Ž (the limit of constant equals the same constant) 2) For any real num...

Lesson 2-3 Computation of Limits Rules for calculating limits: 1) For any constant 𝑐 and any real number π‘Ž : lim 𝑐 = 𝑐 π‘₯β†’π‘Ž (the limit of constant equals the same constant) 2) For any real number π‘Ž: lim π‘₯ = π‘Ž π‘₯β†’π‘Ž 3) Suppose that lim 𝑓(π‘₯) and lim 𝑔(π‘₯) both are exist and let 𝐿, 𝑀, 𝑐 are real numbers π‘₯β†’π‘Ž π‘₯β†’π‘Ž and lim 𝑓(π‘₯) = 𝐿 and lim 𝑔(π‘₯) = 𝑀 then the following apply: π‘₯β†’π‘Ž π‘₯β†’π‘Ž a) lim 𝑐𝑓(π‘₯) = π‘π‘Ž Multiplying π‘₯β†’π‘Ž with constant b) lim (𝑓(π‘₯ ) Β± 𝑔(π‘₯ )) = lim 𝑓(π‘₯) Β± lim 𝑔(π‘₯ ) = 𝐿 Β± 𝑀 Addition and π‘₯β†’π‘Ž π‘₯β†’π‘Ž π‘₯β†’π‘Ž subtraction c) lim (𝑓(π‘₯ ) Γ— 𝑔(π‘₯ )) = lim 𝑓(π‘₯) Γ— lim 𝑔(π‘₯ ) = 𝐿 Γ— 𝑀 Multiplying π‘₯β†’π‘Ž π‘₯β†’π‘Ž π‘₯β†’π‘Ž 𝑓(π‘₯) lim 𝑓(π‘₯)Β± 𝐿 Dividing d) lim ( )= π‘₯β†’π‘Ž = , 𝑖𝑓 lim 𝑔(π‘₯ ) β‰  0 π‘₯β†’π‘Ž 𝑔(π‘₯) lim 𝑔(π‘₯) π‘₯β†’π‘Ž 𝑀 π‘₯β†’π‘Ž e) lim ( 𝑔(π‘₯ ))𝑛 = (lim 𝑔(π‘₯))𝑛 = 𝑀𝑛 Power of 𝑛 π‘₯β†’π‘Ž π‘₯β†’π‘Ž Radical f) lim √f(x) = √lim f(x) = √L ; 𝐿 β‰₯ 0 π‘“π‘œπ‘Ÿ 𝑓(π‘₯) β‰₯ 0 xβ†’a xβ†’a functions 𝑛 nth root g) lim π‘›βˆšπ‘“(π‘₯) = π‘›βˆš lim 𝑓(π‘₯) = √𝐿 ; 𝐿 β‰₯ 0 π‘€π‘’π‘Ÿπ‘’ 𝑛 𝑒𝑣𝑒𝑛 xβ†’a π‘₯β†’π‘Ž Note: to find the limits, direct substitute in the given functions 14 | P a g e Use both graphs to find the limits if they exist: 25 g(x) f(x) 26 π₯𝐒𝐦 π’ˆ(𝒙) = 27 π₯𝐒𝐦 πŸπ’‡(𝒙) = π’™β†’πŸŽ π’™β†’πŸ 28 π₯𝐒𝐦(𝒇(𝒙) + πŸ‘π’ˆ(𝒙) βˆ’ 𝟏) = 29 π₯𝐒𝐦 ( π’ˆ(𝒙) + πŸ‘π’™) = π’™β†’πŸ π’™β†’πŸ 30 π₯𝐒𝐦 𝒙 π’ˆ(𝒙) = 31 𝒇(𝒙)+𝟏 π’™β†’βˆ’πŸ π₯𝐒𝐦 ( )= π’™β†’πŸ‘ π’ˆ(𝒙) 15 | P a g e 32 a) π₯𝐒𝐦+ 𝒑(𝒙) = π’™β†’βˆ’πŸ b) π₯𝐒𝐦 𝑡(𝒙) = 𝒓𝒆𝒂𝒔𝒐𝒏: … … …. π’™β†’βˆ’πŸ c) π₯𝐒𝐦 𝑡(𝒙) = π’™β†’πŸ d) π₯𝐒𝐦 𝒑(𝒙) = π’™β†’πŸ e) π₯𝐒𝐦(𝒑(𝒙) + 𝑡(𝒙)) = π’™β†’πŸ‘ f) If π₯𝐒𝐦 𝒑(𝒙) = πŸ‘ then the value of 𝒂 = 𝒙→𝒂 g) If π₯𝐒𝐦 𝑡(𝒙) = πŸ“ then the value of 𝒄 = 𝒙→𝒄 16 | P a g e Use π₯𝐒𝐦 𝒇(𝒙) = 𝟐 , π₯𝐒𝐦 π’ˆ(𝒙) = βˆ’πŸ‘ , π₯𝐒𝐦 𝒉(𝒙) = 𝟎 to determine the indicated limits, if 𝒙→𝒂 𝒙→𝒂 𝒙→𝒂 possible: 33 π₯𝐒𝐦(πŸπ’‡(𝒙) βˆ’ πŸ‘π’ˆ(𝒙)) = 34 π₯𝐒𝐦(πŸ‘π’‡(𝒙)π’ˆ(𝒙)) = 𝒙→𝒂 𝒙→𝒂 35 𝟐 36 πŸπ’‡(𝒙)𝒉(𝒙) π₯𝐒𝐦 ( (𝒇(𝒙)) )= π₯𝐒𝐦 ( )= π’ˆ(𝒙) 𝒙→𝒂 𝒇(𝒙)+𝒉(𝒙) 𝒙→𝒂 17 | P a g e Factorizing revision: Type: Example: Exercise: Common πŸπŸ“π’™ βˆ’ 𝟏𝟎 = πŸ“(πŸ“π’™ βˆ’ 𝟐) πŸπ’™πŸ + πŸ”π’™ = factored Difference 𝟐 𝟐 πŸ’π’™πŸ βˆ’ πŸ— = of two 𝒙 βˆ’ 𝒂 = (𝒙 βˆ’ 𝒂)(𝒙 + 𝒂) squares π’‚πŸ βˆ’ π’™πŸ = (𝒂 βˆ’ 𝒙)(𝒂 + 𝒙) πŸπŸ“ βˆ’ πŸ’π’™πŸ = Difference π’™πŸ‘ βˆ’ π’‚πŸ‘ = (𝒙 βˆ’ 𝒂)(π’™πŸ + 𝒂𝒙 + π’‚πŸ ) π’™πŸ‘ βˆ’ πŸ– = of two cubes π’™πŸ‘ + π’‚πŸ‘ = (𝒙 + 𝒂)(π’™πŸ βˆ’ 𝒂𝒙 + π’‚πŸ ) π’™πŸ‘ + πŸπŸ•= Polynomials π’™πŸ + πŸ’π’™ + πŸ‘ = (𝒙 + πŸ‘)(𝒙 + 𝟏) π’™πŸ + πŸ“π’™ βˆ’ πŸ” = π’™πŸ βˆ’ πŸ’π’™ + πŸ‘ = (𝒙 βˆ’ πŸ‘)(𝒙 βˆ’ 𝟏) πŸ“π’™πŸ βˆ’ πŸ•π’™ + 𝟐 = 𝟐 𝒙 + πŸ’π’™ βˆ’ πŸ“ = (𝒙 + πŸ“)(𝒙 βˆ’ 𝟏) π’™πŸ βˆ’ πŸ’π’™ βˆ’ πŸ“ = (𝒙 βˆ’ πŸ“)(𝒙 + 𝟏) π’™πŸ βˆ’ πŸ‘π’™ βˆ’ 𝟏𝟎 = πŸ‘π’™πŸ + πŸ’π’™ + 𝟏 = (πŸ‘π’™ + 𝟏)(𝒙 + 𝟏) 𝟐 πŸπ’™πŸ + πŸπŸŽπ’™ + 𝟏𝟐 = πŸ‘π’™ + πŸ‘π’™ βˆ’ πŸ” = πŸ‘(𝒙 + 𝟏)(𝒙 βˆ’ 𝟐) Groups π’™πŸ‘ βˆ’ πŸ‘π’™πŸ + πŸ’π’™ βˆ’ 𝟏𝟐 = π’™πŸ‘ + πŸπ’™πŸ + πŸπ’™ + πŸ’ = (π’™πŸ‘ + πŸπ’™πŸ ) + (πŸπ’™ + πŸ’) = π’™πŸ (𝒙 + 𝟐) + 𝟐(𝒙 + 𝟐) = (𝒙 + 𝟐)(π’™πŸ + 𝟐) 18 | P a g e First type of limits is polynomial functions limits (direct substitutions). Evaluate the indicated limits, if it exists: 37 π₯𝐒𝐦 πŸ‘ = 38 π’™β†’πŸ π₯π’π¦βˆšπŸ’ = π’™β†’πŸ’ 39 π₯𝐒𝐦 𝝅 = 40 π₯𝐒𝐦 βˆ’πŸ“π’™ = π’™β†’βˆ’πŸ π’™β†’πŸ’ 41 π₯𝐒𝐦(π’™πŸ βˆ’ πŸ‘π’™ + 𝟏) = 42 π₯𝐒𝐦 (βˆ’πŸ“π’™πŸ‘ βˆ’ πŸπ’™πŸ + 𝟏) = π’™β†’πŸŽ π’™β†’βˆ’πŸ 43 πŸ‘ 44 πŸ’ π₯𝐒𝐦 √(πŸπ’™ + 𝟏) = π₯𝐒𝐦 √(πŸπ’™πŸ + 𝒙 + 𝟏) = π’™β†’πŸ π’™β†’πŸ‘ 45 π₯𝐒𝐦(πŸ‘π’™ βˆ’ 𝟏)(𝒙 βˆ’ πŸ“) = 46 π₯𝐒𝐦(πŸπ’™ + 𝟏)πŸ‘ = π’™β†’πŸ‘ π’™β†’πŸ 47 𝒙+πŸ‘ 48 π’™πŸ βˆ’πŸ‘π’™βˆ’πŸ π₯𝐒𝐦 = π₯𝐒𝐦 = π’™β†’πŸ πŸπ’™+πŸ• π’™β†’βˆ’πŸ π’™πŸ +𝟏 19 | P a g e Second type of limits is fraction functions limits. π’™πŸ βˆ’πŸ 𝟎 If π₯𝐒𝐦 = then it is indeterminant, to solve it you must simplify the function π’™β†’πŸ π’™βˆ’πŸ 𝟎 by factorizing or by multiplying with the conjugate. Evaluate the indicated limits, if it exists: 49 π’™πŸ βˆ’π’™βˆ’πŸ” 50 π’™πŸ +π’™βˆ’πŸ π₯𝐒𝐦 = π₯𝐒𝐦 = π’™β†’πŸ‘ π’™βˆ’πŸ‘ π’™β†’πŸ π’™πŸ βˆ’πŸ‘π’™+𝟐 51 π’™πŸ βˆ’π’™βˆ’πŸ 52 π’™πŸ‘ βˆ’πŸ π₯𝐒𝐦 = π₯𝐒𝐦 = π’™β†’πŸ π’™πŸ βˆ’πŸ’ π’™β†’πŸ π’™πŸ +πŸπ’™βˆ’πŸ‘ 53 π’™πŸ βˆ’πŸπ’™+𝟏 54 π’™πŸ βˆ’π’™ π₯𝐒𝐦 = π₯𝐒𝐦 = π’™β†’πŸ π’™πŸ βˆ’πŸ π’™β†’πŸ π’™πŸ βˆ’πŸ’π’™+πŸ‘ 20 | P a g e Third type of limits is radical root functions limits. Note: conjugate product of square root is (√𝐟(𝐱) βˆ’ 𝒂) (βˆšπ’‡(𝒙) + 𝒂) = (βˆšπ’‡(𝒙))𝟐 βˆ’ π’‚πŸ = 𝒇(𝒙) βˆ’ π’‚πŸ Ex.) (√𝐱 βˆ’ 𝟐) (βˆšπ’™ + 𝟐) = 𝒙 βˆ’ πŸ’ Evaluate the indicated limits, if it exists: 55 βˆšπ’™βˆ’πŸ‘ 56 π’™βˆ’πŸ’ π₯𝐒𝐦 π₯𝐒𝐦 π’™β†’πŸ— π’™πŸ βˆ’πŸ—π’™ π’™β†’πŸ’ βˆšπ’™βˆ’πŸ 57 βˆšπ’™+πŸ’βˆ’πŸ 58 πŸπ’™ π₯𝐒𝐦 π₯𝐒𝐦 π’™β†’πŸŽ 𝒙 π’™β†’πŸŽ πŸ‘βˆ’βˆšπ’™+πŸ— 21 | P a g e 59 π’™βˆ’π’‚βˆ’πŸ‘ 60 π’™πŸ βˆ’πŸ‘π’™ If π₯𝐒𝐦 √ π’™βˆ’πŸ = π’†π’™π’Šπ’”π’• 𝒕𝒉𝒆𝒏 π’‡π’Šπ’π’… 𝒂 π₯𝐒𝐦 π’™β†’πŸ π’™β†’πŸ‘ πŸβˆ’βˆšπ’™+𝟏 61 π’™βˆ’πŸ 62 π’™πŸ βˆ’πŸ’ π₯𝐒𝐦 π₯𝐒𝐦 π’™β†’πŸ βˆšπ’™βˆ’πŸ π’™β†’πŸ πŸβˆ’βˆšπŸπ’™ 22 | P a g e 63 βˆšπ’™+πŸβˆ’βˆšπŸ 64 βˆšπ’™βˆ’πŸ π₯𝐒𝐦 π₯𝐒𝐦 π’™β†’πŸŽ 𝒙 π’™β†’πŸ πŸβˆ’π’™πŸ Fourth type of limits is Piecewise-defined functions limits. 𝒇(𝒙) ,𝒙 ≀ 𝒂 π₯π’π¦βˆ’ 𝒇(𝒙) , 𝒙 ≀ 𝒂 π’Šπ’‡ π’š = { 𝒕𝒉𝒆𝒏 π₯𝐒𝐦 π’š = { 𝒙→𝒂 π’ˆ(𝒙) ,𝒙 > 𝒂 𝒙→𝒂 π₯𝐒𝐦+ π’ˆ(𝒙) , 𝒙 > 𝒂 𝒙→𝒂 𝑖𝑓 limβˆ’ 𝑓(π‘₯) = lim+ 𝑔(π‘₯) π‘‘β„Žπ‘’π‘› π‘‘β„Žπ‘’ π’π’Šπ’Žπ’Šπ’• π’†π’™π’Šπ’”π’•π’” , π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ π’π’Šπ’Žπ’Šπ’• 𝒅𝒐𝒆𝒔 𝒏𝒐𝒕 π’†π’™π’Šπ’”π’•. π‘₯β†’π‘Ž π‘₯β†’π‘Ž Evaluate the limit where β€œf(x)” defined at: 65 πŸ‘π± βˆ’ 𝟏; 𝐱 < 𝟐 𝒇(𝒙) = { πŸ” ; 𝐱 = 𝟐 find the following limits 𝐱 𝟐 + 𝟏; 𝐱 > 𝟐 a) π₯𝐒𝐦 𝒇(𝒙) = b) π₯𝐒𝐦 𝒇(𝒙) = π’™β†’πŸ‘ π’™β†’πŸ c) π₯π’π¦βˆ’ 𝒇(𝒙) = d) π₯𝐒𝐦+ 𝒇(𝒙) = π’™β†’πŸ π’™β†’πŸ e) π₯𝐒𝐦 𝒇(𝒙) = f) 𝒇(𝟐) = π’™β†’πŸ 23 | P a g e 66 πŸπ’™ , 𝒙 > 𝟐 𝒇(𝒙) = { 𝟐 find π₯𝐒𝐦 𝒇(𝒙) 𝒙 ,𝒙 ≀ 𝟐 π’™β†’πŸ 67 π’™πŸ + 𝟏 , 𝒙 < βˆ’πŸ 𝒇(𝒙) = { find π₯𝐒𝐦 𝒇(𝒙) πŸ‘π’™ + 𝟏 , 𝒙 > βˆ’πŸ π’™β†’βˆ’πŸ 68 πŸπ’™ + 𝟏 , 𝒙 < βˆ’πŸ { πŸ‘ , βˆ’πŸ < 𝒙 < 𝟏 find a) π₯𝐒𝐦 𝒇(𝒙) b) π₯𝐒𝐦 𝒇(𝒙) π’™β†’βˆ’πŸ π’™β†’πŸ πŸπ’™ + 𝟏 ,𝒙 > 𝟏 24 | P a g e Fifth type of limits is Absolute Value Functions limits Absolute value function is a continuous function and the limit of this function exists on all real numbers when it’s a single function, but when its merged with other function like rational functions. then it must be rewritten as a Piecewise- defined function and then check the limit on both sides. left and right sides. 𝒇(𝒙) 𝒇(𝒙) > 𝟎 π’š = |𝒇(𝒙)| = { βˆ’π’‡(𝒙) 𝒇(𝒙) ≀ 𝟎 Evaluate the indicated limit, if it exists: 69 π₯𝐒𝐦|𝒙| = 70 π₯𝐒𝐦|πŸ‘π’™ βˆ’ πŸ•| = π’™β†’πŸŽ π’™β†’πŸ 71 |𝒙+𝟏|βˆ’πŸ 72 |π’™βˆ’πŸ|βˆ’πŸ π₯𝐒𝐦 = π₯𝐒𝐦 = π’™β†’πŸ π’™πŸ βˆ’π’™ π’™β†’πŸ π’™πŸ βˆ’π’™ 25 | P a g e 73 |𝒙| 74 |𝒙| π₯π’π¦βˆ’ = π₯𝐒𝐦 = π’™β†’πŸŽ 𝒙 π’™β†’πŸŽ 𝒙 75 π’™πŸ βˆ’π’ƒπŸ π₯𝐒𝐦 = π₯𝐒𝐦 (𝒙|𝒙| + πŸ”) find the value of 𝒃 𝒙→𝒃 π’™βˆ’π’ƒ π’™β†’βˆ’πŸ 26 | P a g e Sixth type of limits is the limit of the greatest integer number. Definition [𝒙] = 𝒂 , 𝒂 ≀ 𝒙 < 𝒂 + 𝟏 π’š = [ 𝒙] Ex.) [πŸ–. 𝟏𝟐] = πŸ– , [βˆ’πŸ. πŸ’] = βˆ’πŸ‘ [πŸ‘. πŸ—] = πŸ‘ , [βˆ’πŸ‘. πŸ—πŸ—] = βˆ’πŸ’ Evaluate the indicated limits, if it exist: 76 π₯𝐒𝐦 [𝒙] = 77 π₯𝐒𝐦 [𝒙] = π’™β†’πŸ‘βˆ’ π’™β†’πŸ‘ 78 π₯π’π¦βˆ’([𝒙] + πŸπ’™) = 79 π₯𝐒𝐦( [𝒙] + πŸ’π’™ + 𝟏) = π’™β†’πŸ‘ 𝟏 π’™β†’πŸ 80 π₯𝐒𝐦 [πŸπ’™] = 81 π’™πŸ βˆ’[𝒙] π’™β†’πŸ.πŸ“ π₯𝐒𝐦+ |π’™βˆ’πŸ|βˆ’πŸ π’™β†’πŸ 27 | P a g e Seventh type of limits is limit of trigonometry and inverse trigonometry functions. π’”π’Šπ’ 𝒙 𝒙 𝒕𝒂𝒏 𝒙 𝒙 π₯𝐒𝐦 = 𝟏 , π₯𝐒𝐦 = 𝟏 , π₯𝐒𝐦 = 𝟏 , π₯𝐒𝐦 =𝟏, π’™β†’πŸŽ 𝒙 π’™β†’πŸŽ π’”π’Šπ’ 𝒙 π’™β†’πŸŽ 𝒙 π’™β†’πŸŽ 𝒕𝒂𝒏 𝒙 π’”π’Šπ’ 𝒂𝒙 𝒂 𝒃𝒙 𝒃 𝒕𝒂𝒏 𝒂 𝒙 𝒂 𝒃𝒙 𝒃 π₯𝐒𝐦 = , π₯𝐒𝐦 = , π₯𝐒𝐦 = , π₯𝐒𝐦 = , π’™β†’πŸŽ 𝒃𝒙 𝒃 π’™β†’πŸŽ π’”π’Šπ’ 𝒂𝒙 𝒂 π’™β†’πŸŽ 𝒃𝒙 𝒃 π’™β†’πŸŽ 𝒕𝒂𝒏 𝒂 𝒙 𝒂 Evaluate the indicated limits, if it exists: 82 π’”π’Šπ’ 𝒙 83 π’”π’Šπ’ 𝒙 π₯𝐒𝐦 = π₯𝐒𝐦 ( )= π’™β†’πŸŽ πŸ‘π’™ π’™β†’πŸŽ 𝒕𝒂𝒏 𝒙 84 π’•π’‚π’πŸ 𝒙 85 π’”π’Šπ’ πŸ“π’™ π₯𝐒𝐦 = π₯𝐒𝐦 = π’™β†’πŸŽ 𝒙 π’™β†’πŸŽ πŸπ’™ 86 𝒙 87 π’”π’Šπ’πŸ πŸ‘π’™ π₯𝐒𝐦 = π₯𝐒𝐦 = π’™β†’πŸŽ π’”π’Šπ’(πŸ’π’™) π’™β†’πŸŽ πŸπ’™πŸ 88 π’•π’‚π’πŸ‘π’™+πŸπ’™ π’”π’Šπ’π’™ 89 π₯𝐒𝐦 π’•π’‚π’πŸπ’™ 𝒄𝒔𝒄𝝅𝒙 = π₯𝐒𝐦 = π’™β†’πŸŽ π’™β†’πŸŽ πŸ“π’™ 28 | P a g e 90 π’•π’‚π’πŸ“π’™ π’„π’π’”πŸ‘π’™ 91 π’”π’Šπ’πŸπ’™ π₯𝐒𝐦 = π₯𝐒𝐦 = π’™β†’πŸŽ πŸπ’™ π’™β†’πŸŽ π’™πŸ βˆ’πŸπ’™ 92 π’”π’Šπ’πŸ πŸ‘π’™βˆ’ π’•π’‚π’πŸπ’™ 93 π’”π’Šπ’πŸ πŸ‘π’™ π₯𝐒𝐦 = π₯π’π¦βˆ’ = π’™β†’πŸŽ 𝒙𝒄𝒐𝒔𝒙+πŸ’ 𝒕𝒂𝒏𝒙 π’™β†’πŸŽ πŸ‘π’™|𝒙| 29 | P a g e 94 π’”π’Šπ’πŸπ’™ 95 πŸβˆ’π’„π’π’”πŸπ’™ π₯π’π¦βˆ’ = π₯𝐒𝐦 = π’™β†’πŸŽ πŸ‘π’™[𝒙] π’™β†’πŸŽ πŸ“π’™πŸ 96 π’”π’Šπ’π’™ 97 π₯𝐒𝐦 πŸ“π’™( π’„π’”π’„πŸπ’™ + 𝒄𝒐𝒕𝒙) = π₯𝐒𝐦 = π’™β†’πŸŽ π’™β†’πŸŽ πŸβˆ’βˆšπ’™+𝟏 30 | P a g e 98 π₯𝐒𝐦 ( π’™πŸ 𝐜𝐬𝐜 𝟐 𝒙) = 99 π’”π’Šπ’ |𝒙| π’™β†’πŸŽ π₯𝐒𝐦 ( )= π’™β†’πŸŽ 𝒙 100 𝒕𝒂𝒏 𝒙.𝒄𝒐𝒔 𝒙 101 π’”π’Šπ’ (π’™πŸ βˆ’πŸ’) π₯𝐒𝐦 ( )= π₯𝐒𝐦 ( )= π’™β†’πŸŽ πŸ“π’™ π’™β†’πŸ π’™πŸ βˆ’πŸ’ 31 | P a g e 102 πŸβˆ’π’„π’π’”π’™ 103 π₯𝐒𝐦 π₯𝐒𝐦 (πŸπ’™(√𝟏 + π’„π’π’•πŸ 𝒙) π’™β†’πŸŽ π’™πŸ π’™β†’πŸŽβˆ’ 104 𝒙+𝟏 105 π₯𝐒𝐦 π’„π’π’”βˆ’πŸ (π’™πŸ ) = π₯𝐒𝐦 π¬π’π§βˆ’πŸ ( )= π’™β†’πŸŽ π’™β†’πŸŽ 𝟐 32 | P a g e 106 𝟐 𝟐 π₯𝐒𝐦 ( βˆ’ |𝒙| ) π’™β†’πŸŽ 𝒙 107 𝟏 𝟐 π₯𝐒𝐦 ( βˆ’ ) π’™β†’πŸ π’™βˆ’πŸ π’™πŸ βˆ’πŸ 108 𝟏 𝟏 π’π’Šπ’Ž ( 𝒙 βˆ’ π’™πŸ +𝒙 ) π’™β†’πŸŽ 33 | P a g e 109 π’”π’Šπ’π’™ 110 π’™π’†πŸπ’™+𝟏 π₯𝐒𝐦+ π₯𝐒𝐦 π’™πŸ +𝒙 π’™β†’πŸŽ βˆšπ’™ π’™β†’πŸŽ If 𝒑(𝒙) = π’™πŸ βˆ’ 𝟏 answer Q 117,118: 111 π₯𝐒𝐦(𝒑 (𝒑(𝒑(𝒑(𝒙)))) = π’™β†’πŸŽ 112 π₯𝐒𝐦(𝒑(πŸ‘ + πŸπ’‘(𝒙 βˆ’ 𝒑(𝒙))) = π’™β†’πŸŽ 113 (𝟐+𝒉)𝟐 βˆ’πŸ’ π₯𝐒𝐦 π’‰β†’πŸŽ 𝒉 34 | P a g e 114 𝒂 + 𝟎, πŸπŸπ’™ 𝒙 ≀ 𝟐𝟎, 𝟎𝟎𝟎 𝑻(𝒙) = { 𝒃 + 𝟎. πŸπŸ”(𝒙 βˆ’ 𝟐𝟎, 𝟎𝟎𝟎𝟎) 𝒙 > 𝟐𝟎, 𝟎𝟎𝟎 find the value of 𝒂, 𝒃 therefore. π₯𝐒𝐦 𝑻(𝒙) π’†π’™π’Šπ’”π’• , 𝒂𝒏𝒅 π₯𝐒𝐦+ 𝑻(𝒙) = 𝟎 π’™β†’πŸπŸŽπŸŽπŸŽπŸŽ π’™β†’πŸŽ 115 |𝒙+𝟏|βˆ’πŸ πŸ“π’™ π₯𝐒𝐦+ = π₯𝐒𝐦 π’”π’Šπ’ π’Œπ’™ find the value of π’Œ π’™β†’πŸ π’™πŸ βˆ’π’™ π’™β†’πŸŽ 35 | P a g e Eighth: squeeze Theorem Use the squeeze theorem to verify the values of limits: 116 𝟏 π₯𝐒𝐦 π’™πŸ π’”π’Šπ’ π’™β†’πŸŽ 𝒙 117 𝟏 π₯𝐒𝐦(πŸ“ βˆ’ π’™πŸ 𝒄𝒐𝒔 ) π’™β†’πŸŽ 𝒙 36 | P a g e 118 If (π’™πŸ βˆ’ 𝟏)(π’™πŸ + 𝟏) ≀ (𝒙 βˆ’ 𝟏)𝒇(𝒙) ≀ π’™πŸ + πŸπ’™ βˆ’ πŸ‘ 𝒙 β‰  𝟏 𝒂𝒏𝒅 𝒙 ∈ [βˆ’πŸ‘, πŸ‘] find π₯𝐒𝐦 𝒇(𝒙) π’™β†’πŸ 119 if π’”π’Šπ’ 𝒙 + 𝒙 ≀ 𝒇(𝒙) ≀ π’™πŸ + πŸπ’™ 𝒇(𝒙) 𝒙 β‰  𝟎 𝒂𝒏𝒅 𝒙 ∈ [βˆ’π…, 𝝅] find π₯𝐒𝐦 π’™β†’πŸŽ 𝒙 37 | P a g e Use of limits in computing velocity. we see that for an object moving in straight line , whose position at time 𝒕 is given by the function 𝒇(𝒕) , the instantaneous velocity of that object at time 𝒕 𝒇(𝒕+𝒉)βˆ’π’‡(𝒕) the average velocity over some period is given by the limit π₯𝐒𝐦 π’‰β†’πŸŽ 𝒉 Use the given position function 𝒇(𝒕) to find the velocity at time 𝒕 = 𝒂: 120 𝒇(𝒕) = π’•πŸ + 𝟐 𝒂=𝟐 121 𝒇(𝒕) = π’•πŸ‘ + 𝟐 𝒂=𝟎 38 | P a g e TRY BY Your Self (2) 1 Evaluate π₯𝐒𝐦(π’™πŸ βˆ’ πŸ‘π’™ + 𝟏) π’™β†’πŸŽ A 2 B 0 C -1 D Does not exist 2 π’™πŸ βˆ’πŸ Evaluate π₯𝐒𝐦( ) π’™β†’πŸŽ 𝒙+𝟏 A 2 B 0 C -1 D Does not exist 3 Evaluate π₯𝐒𝐦( 𝒙+πŸ’ ) π’™β†’πŸ π’™πŸ +πŸπ’™+𝟏 A 2 B 0 C -1 D Does not exist 4 Evaluate π₯𝐒𝐦 (βˆšπ’™πŸ + πŸ’) π’™β†’βˆ’πŸ A 2 B 0 C -1 D Does not exist 5 π’™πŸ βˆ’πŸ Evaluate π₯𝐒𝐦 ( ) π’™β†’βˆ’πŸ 𝒙+𝟏 A 2 B 0 C -1 D Does not exist 39 | P a g e 6 βˆšπŸπ’™+𝟏+πŸ‘ Evaluate π₯𝐒𝐦( ) π’™β†’πŸ’ π’™βˆ’πŸ A 2 B 0 C -1 D Does not exist 7 π’™πŸ‘ βˆ’πŸ Evaluate π₯𝐒𝐦( ) π’™β†’πŸ π’™πŸ +πŸπ’™βˆ’πŸ‘ A 2 B 0 C -1 D Does not exist 8 Evaluate π₯𝐒𝐦(π’”π’Šπ’βˆ’πŸ (π’™πŸ ) π’™β†’πŸŽ A 2 B 0 C -1 D Does not exist 9 Evaluate π₯𝐒𝐦( π’•π’‚π’πŸ‘π’™ ) π’™β†’πŸŽ πŸπ’”π’Šπ’πŸ“π’™ A 2 B 0 C -1 D Does not exist 10 Evaluate π₯𝐒𝐦(π’™πŸ π’„π’”π’„πŸ 𝒙) π’™β†’πŸŽ A 2 B 0 C -1 D Does not exist 40 | P a g e 11 π’™π’†πŸ‘π’™+𝟏 Evaluate π₯𝐒𝐦( ) π’™β†’πŸŽ π’™πŸ +𝒙 A 2 B 0 C -1 D Does not exist 12 βˆšπ’™+πŸ’βˆ’πŸ Evaluate π₯𝐒𝐦( ) π’™β†’πŸŽ 𝒙 A 2 B 0 C -1 D Does not exist 13 π’™πŸ βˆ’πŸ Evaluate π₯𝐒𝐦( ) π’™β†’πŸŽ 𝒙+𝟏 A 2 B 0 C -1 D Does not exist 14 Evaluate π₯𝐒𝐦( π’™βˆ’πŸ ) π’™β†’πŸ βˆšπ’™βˆ’πŸ A 2 B 0 C -1 D Does not exist 15 π’™πŸ‘ βˆ’πŸπŸ• Evaluate π₯𝐒𝐦( ) π’™β†’πŸ‘ π’™πŸ βˆ’πŸπ’™βˆ’πŸ‘ A 2 B 0 C -1 D Does not exist 41 | P a g e 16 Evaluate 𝟐 π₯𝐒𝐦( βˆ’ |𝒙|) 𝟐 π’™β†’πŸŽ 𝒙 A 2 B 0 C -1 D Does not exist 17 πŸβˆ’π’†πŸπ’™ Evaluate π₯𝐒𝐦( ) π’™β†’πŸŽ πŸβˆ’π’†π’™ A 2 B 0 C -1 D Does not exist 18 π’”π’Šπ’|𝒙| Evaluate π₯𝐒𝐦( ) π’™β†’πŸŽ 𝒙 A 2 B 0 C -1 D Does not exist 19 π’™πŸ Evaluate π₯𝐒𝐦( ) π’™β†’πŸŽ π’™πŸ‘ +𝒙 A 2 B 0 C -1 D Does not exist 20 Evaluate π₯𝐒𝐦( π’„π’π’”π’™βˆ’πŸ ) π’™β†’πŸŽ 𝒙 A 2 B 0 C -1 D Does not exist 42 | P a g e Lesson 2-4 Continuity and its Consequence The function will be continuous on point 𝒙 = 𝒄 if and only if the following conditions applied: 1) 𝒇(𝒄) = 𝑳 (π’…π’†π’‡π’Šπ’π’†π’…) 2) π₯𝐒𝐦 𝒇(𝒙) = 𝑳 (π’†π’™π’Šπ’”π’•) 𝒙→𝒄 3) π₯𝐒𝐦 𝒇(𝒙) = 𝒇(𝒄) = 𝑳 𝒙→𝒄 Discontinuous cases: - 1.) Removable discontinuous: lim 𝑓(π‘₯ ) = 𝑒π‘₯𝑖𝑠𝑑 π‘₯β†’π‘Ž lim 𝑓 (π‘₯ ) = 𝑒π‘₯𝑖𝑠𝑑 𝑓(π‘Ž) = 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 π‘₯β†’π‘Ž 𝑓(π‘Ž) = 𝑒𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 lim 𝑓(π‘₯ ) β‰  𝑓(π‘Ž) π‘₯β†’π‘Ž The graph of the function has a hole at The graph of the function has a hole at π‘₯ = π‘₯=π‘Ž 43 | P a g e 2.) Nonremovable discontinuous: lim 𝑓(π‘₯ ) = π‘‘π‘œπ‘’ π‘›π‘œπ‘‘ 𝑒π‘₯𝑖𝑠𝑑 lim 𝑓(π‘₯ ) = π‘‘π‘œπ‘’ π‘›π‘œπ‘‘ 𝑒π‘₯𝑖𝑠𝑑 π‘₯β†’π‘Ž π‘₯β†’π‘Ž 𝑓(π‘Ž) = 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑓(π‘Ž) = 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 The graph of the function has a Jump The graph of the function has infinity at π‘₯ = π‘Ž (blows up) at π‘₯ = π‘Ž 𝟏 π’π’Šπ’Ž 𝒄𝒐𝒔 (𝒙) = 𝒅𝒐𝒆𝒔 𝒏𝒐𝒕 π’†π’™π’Šπ’”π’• π’™β†’πŸŽ 𝟏 the endless oscillation of 𝒄𝒐𝒔( ) 𝒙 44 | P a g e Use the given graphs to identify all intervals on which the function is continuous and the points the function is discontinuous and type of discontinuity: 122 123 45 | P a g e 124 Complete the table below: Type of discontinuity Reason: Function: at 𝒙 = 𝟎: 𝟏 𝒇(𝒙) = π’”π’Šπ’ π’™πŸ 𝟏 𝒇(𝒙) = 𝒙 πŸβˆ’π’™ 𝒇(𝒙) = 𝒙 𝟐 𝒇 (𝒙 ) = { 𝒙 βˆ’ πŸ“ 𝒙>𝟎 𝒙 + 𝒄𝒐𝒔 𝒙 𝒙 ≀ 𝟎 𝒇 (𝒙 ) = { √ 𝒙 + πŸ’ 𝟐 π’™β‰ πŸŽ πŸ’ 𝒙=𝟎 46 | P a g e Type of Function: Point of discontinuity: discontinuity: π’™πŸ βˆ’ πŸπ’™ βˆ’ πŸ‘ 𝒇(𝒙) = π’™βˆ’πŸ‘ π’”π’Šπ’πŸ“π’™ 𝒇(𝒙) = 𝒙 𝟐 𝒇(𝒙) = π’™βˆ’πŸ‘ |𝒙| 𝒇(𝒙) = 𝒙 π’™πŸ βˆ’ πŸ“π’™ βˆ’ πŸ” 𝒇(𝒙) = π’™βˆ’πŸ” π’™βˆ’πŸ 𝒇(𝒙) = π’™πŸ βˆ’ πŸ’ π’™βˆ’πŸ“ 𝒙>𝟐 𝒇(𝒙) = { π’™πŸ + πŸ‘ π’™β‰€πŸ Functions continuous everywhere: 1) Polynomials functions. 2) Trigonometry functions (π’”π’Šπ’ 𝒙 , 𝒄𝒐𝒔 𝒙 , π’•π’‚π’βˆ’πŸ 𝒙). 3) Exponential functions (π’š = 𝒆𝒙 ). 4) Square roots (π’š = βˆšπ’‡(𝒙) , 𝒇(𝒙) β‰₯ 𝟎). 𝒏 5) βˆšπ’‡(𝒙) π’„π’π’π’•π’Šπ’π’–π’π’–π’” 𝒐𝒏 𝒂𝒍𝒍 𝒙 𝒗𝒂𝒍𝒖𝒆𝒔 π’˜π’‰π’†π’ "𝒏" π’Šπ’” 𝒐𝒅𝒅 , 𝒇(𝒙) β‰₯ 𝟎 π’˜π’‰π’†π’ is 𝒆𝒗𝒆𝒏. 6) Logarithm function (π’š = 𝒍𝒏(𝒇 (𝒙)) , 𝒇(𝒙) β‰₯ 𝟎). 7) Absolute value. 8) π’”π’Šπ’βˆ’πŸ 𝒙 , π’„π’π’”βˆ’πŸ 𝒙 π’„π’π’π’•π’Šπ’π’–π’π’–π’” 𝒐𝒏 βˆ’ 𝟏 < 𝒙 < 𝟏. 47 | P a g e 9) π₯𝐒𝐦 π’ˆ(𝒙) = 𝑳 𝒂𝒏𝒅 𝒇 π’„π’π’π’•π’Šπ’π’–π’π’–π’” 𝒐𝒏 𝑳 𝒕𝒉𝒆𝒏: 𝒙→𝒂 π₯𝐒𝐦 𝒇(π’ˆ(𝒙)) = 𝒇(π₯𝐒𝐦 π’ˆ(𝒙)) = 𝒇(𝑳) 𝒙→𝒂 𝒙→𝒂 First: continuity for rational functions. Note: To remove a hole from a graph, the function must be extended to be continuous so rewrite the function as: 𝑓(π‘₯ ) π‘₯ β‰  𝑐 𝑓(π‘₯ ) = { π‘€β„Žπ‘’π‘Ÿπ‘’ lim 𝑓(π‘₯ ) = π‘Ž π‘Ž π‘₯=𝑐 π‘₯→𝑐 Determine where 𝒇 is continuous, if possible, extend 𝒇 as a new function that is continuous on a larger domain: 125 π’™πŸ +π’™βˆ’πŸ 126 π’™πŸ βˆ’π’™βˆ’πŸ” 𝒇(𝒙) = 𝒇(𝒙) = 𝒙+𝟐 π’™βˆ’πŸ‘ 48 | P a g e 127 π’™βˆ’πŸ 128 πŸ’π’™ 𝒇(𝒙) = 𝒇(𝒙) = π’™πŸ βˆ’πŸ π’™πŸ +π’™βˆ’πŸ 129 πŸ’π’™ 130 π’™πŸ βˆ’πŸπ’™+𝟏 𝒇(𝒙) = 𝒇(𝒙) = π’™πŸ +πŸ’ π’™πŸ βˆ’πŸ 49 | P a g e 131 π’”π’Šπ’ πŸπ’™βˆ’π’•π’‚π’ 𝒙 132 βˆšπ’™+πŸβˆ’πŸ‘ 𝒇(𝒙) = 𝒇(𝒙) = 𝒙 π’™βˆ’πŸ– 133 𝒙+πŸ‘ 134 βˆšπ’™+πŸ’βˆ’πŸ 𝒇(𝒙) = 𝟏 𝟏 𝒇(𝒙) = + π’”π’Šπ’ 𝒙 𝒙 πŸ‘ 50 | P a g e 135 πŸβˆ’π’™πŸ’ 136 π’†πŸπ’™ βˆ’πŸ 𝒇(𝒙) = 𝒇(𝒙) = π’™πŸ βˆ’πŸ 𝒆𝒙 βˆ’πŸ 137 |π’™βˆ’πŸ|βˆ’πŸ 138 |π’™βˆ’πŸ|βˆ’πŸ 𝒇(𝒙) = 𝒇(𝒙) = π’™βˆ’πŸ‘ 𝒙 51 | P a g e Second: continuity for Piecewise-defined functions. Note: to determine the continuity of a Piecewise-defined function 𝒇(𝒙) = 𝒉(𝒙) ,𝒙 ≀ 𝒂 { , the following must be applied.: π’ˆ(𝒙) , 𝒙 > 𝒂 1) 𝑓(π‘₯) = 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 π‘Žπ‘‘ π‘₯ = π‘Ž 2) limβˆ’ 𝑓(π‘₯) = lim+ 𝑓(π‘₯) π‘₯β†’π‘Ž π‘₯β†’π‘Ž 3) 𝑓(π‘Ž) = lim 𝑓(π‘₯) π‘₯β†’π‘Ž Determine where 𝒇 is continuous, at point 𝒙 = 𝒂: 139 πŸπ’™ 𝒙 < 𝟏 140 πŸ‘π’™ βˆ’ 𝟏 𝒙 ≀ βˆ’πŸ 𝒇(𝒙) = { 𝟐 𝒙 𝒙β‰₯𝟏 𝒇(𝒙) = {π’™πŸ + πŸ“π’™ βˆ’ 𝟏 < 𝒙 < 𝟏 πŸ‘π’™πŸ‘ 𝒙β‰₯𝟏 141 πŸπ’™ π’™β‰€πŸŽ 142 π’”π’Šπ’ 𝒙 π’™β‰ πŸŽ 𝒇(𝒙) = { π’”π’Šπ’ 𝒙 𝟎 < 𝒙 < 𝝅 𝒇(𝒙) = { 𝒙 π’™βˆ’π… 𝒙β‰₯𝝅 𝟏 𝒙=𝟎 52 | P a g e 143 𝟏 144 𝟏 π’™πŸ π’”π’Šπ’ π’™β‰ πŸŽ π’™πŸŽ 177 Determine the values of 𝒂 & 𝒃 that make the given function continuous on its domain: πŸπ’”π’Šπ’ 𝒙 π’™πŸŽ 63 | P a g e 178 Determine values of 𝒂 & 𝒃 that make the given function continuous on its domain: 𝒂𝒆𝒙 + 𝟏 π’™πŸ 179 Determine values of 𝒂 & 𝒃 that make the given function continuous on its domain: 𝒂(π’•π’‚π’βˆ’πŸ 𝒙 + 𝟐) π’™πŸ‘ 64 | P a g e 180 Prove that if f is continuous on the interval [𝒂, 𝒃], 𝒇(𝒂) > 𝒂, 𝒇(𝒃) < 𝒃, then f has a fixed point ( a solution of 𝒇(𝒙) = 𝒙 ) in the interval (𝒂, 𝒃): 181 𝒙 𝟐 𝒙 β‰  𝟎 and π’ˆ(𝒙) = πŸπ’™ If 𝒇(𝒙) = { πŸ’ 𝒙=𝟎 show that π₯𝐒𝐦 𝒇(π’ˆ(𝒙)) β‰  𝒇(π₯𝐒𝐦 π’ˆ(𝒙)) : π’™β†’πŸŽ π’™β†’πŸŽ 65 | P a g e TRY BY Your Self (4) 1 Determine the interval(s) where 𝒇(𝒙) = βˆšπ’™ + 𝟐 is continuous. A 2 B 0 C -1 D Does not exist 2 Determine the interval(s) where 𝒇(𝒙) = βˆšπ’™πŸ βˆ’ πŸ— is continuous. A 2 B 0 C -1 D Does not exist 3 Determine the interval(s) where πŸ‘ 𝒇(𝒙) = βˆšπ’™πŸ βˆ’ πŸ’ is continuous. A 2 B 0 C -1 D Does not exist 4 πŸ‘ Determine the interval(s) where 𝒇(𝒙) = (𝒙 βˆ’ 𝟏) is continuous. 𝟐 A 2 B 0 C -1 D Does not exist 5 Determine the interval(s) where 𝒇(𝒙) = π’”π’Šπ’βˆ’πŸ (𝒙) is continuous. A 2 B 0 C -1 D Does not exist 66 | P a g e 6 Determine the interval(s) where 𝒍𝒏(π’”π’Šπ’ 𝒙) is continuous. A 2 B 0 C -1 D Does not exist 7 βˆšπ‘Ώ+𝟐+𝒆𝒙 Determine the interval(s) where 𝒇(𝒙) = is continuous. π’™πŸ βˆ’πŸ’ A 2 B 0 C -1 D Does not exist 8 π₯𝐧(𝐱 𝟐 βˆ’πŸ Determine the interval(s) where 𝒇(𝒙) = is continuous. βˆšπ’™πŸ βˆ’πŸπ’™ A 2 B 0 C -1 D Does not exist 9 Determine the interval(s) where 𝒇(𝒙) = βˆšπ’™ + 𝟐 is continuous. A 2 B 0 C -1 D Does not exist 10 πŸ—βˆ’π’™πŸ If 𝒇(𝒙) = is continuous. On (βˆ’βˆž, ∞) π’‡π’Šπ’π’… π’Ž, where m is constant π’Žπ’™+𝟐 number A 0 B -2 C 1 D 3 67 | P a g e Lesson 2-5 Limits Involving Infinity, Asymptotes 𝟏 Let 𝒇(𝒙) = , the table shows that: 𝒙 𝒙 -0.001 -0.0001 -0.00001 0 0.00001 0.0001 0.001 𝒇(𝒙) -1000 -10000 -100000 100000 10000 1000 when "𝒙" is approaching to zero from right, 𝒇(𝒙) is approaching to unbounded positive number and when "𝒙" is approaching to zero from left 𝒇(𝒙) is approaching to unbounded negative number. 𝟏 𝟏 That means π₯𝐒𝐦+ β†’ ∞ and π₯π’π¦βˆ’ β†’ βˆ’βˆž π’™β†’πŸŽ 𝒙 π’™β†’πŸŽ 𝒙 𝟏 so π₯𝐒𝐦 = 𝒅𝒐𝒆𝒔 𝒏𝒐𝒕 π’†π’™π’Šπ’”π’• π’™β†’πŸŽ 𝒙 𝟏 Let 𝒇(𝒙) = , complete the table and the indicated limits below: π’™πŸ 𝒙 -0.001 -0.0001 -0.00001 0 0.00001 0.0001 0.001 𝒇(𝒙) Find: 𝟏 1) π₯𝐒𝐦+ = π’™β†’πŸŽ π’™πŸ 𝟏 2) π₯π’π¦βˆ’ = π’™β†’πŸŽ π’™πŸ 𝟏 3) π₯𝐒𝐦 = π’™β†’πŸŽ π’™πŸ 68 | P a g e 𝒇(𝒙) Notes: when π₯𝐒𝐦 , π’ˆ(𝒄) = 𝟎 , 𝒇(𝒄) β‰  𝟎 there’s three prospects for the 𝒙→𝒄 π’ˆ(𝒙) answer: 𝒇(𝒙) Prospect 1: π₯𝐒𝐦 =∞ 𝒙→𝒄 π’ˆ(𝒙) 𝒇(𝒙) Prospect 2: π₯𝐒𝐦 = βˆ’βˆž 𝒙→𝒄 π’ˆ(𝒙) 𝒇(𝒙) 𝒇(𝒙) 𝒇(𝒙) Prospect 3: π₯𝐒𝐦 π’ˆ(𝒙) = 𝒅𝒐𝒆𝒔 𝒏𝒐𝒕 π’†π’™π’Šπ’”π’• , 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 π₯π’π¦βˆ’ π’ˆ(𝒙) = βˆ’βˆž , π₯𝐒𝐦+ π’ˆ(𝒙) = ∞ 𝒙→𝒄 𝒙→𝒄 𝒙→𝒄 Note: Determinant quantities: 𝒂 𝒂 1) = ±∞ , =𝟎 π’‚β‰ πŸŽ 𝟎 ±∞ 2) ∞ Β± 𝒂 = ∞ , ∞+∞=∞ 3) 𝒂 Γ— ∞ = ∞ π’Šπ’‡ 𝒂 > 𝟎 , 𝒂 Γ— ∞ = βˆ’βˆž π’Šπ’‡ 𝒂 < 𝟎 4) π’‚πŸŽ = 𝟏 , ∞∞ = ∞ 5) π’‚βˆž = ∞ , π’Šπ’‡ 𝒂 > 𝟏 , π’‚βˆž = 𝟎 , π’Šπ’‡ 𝟎 < 𝒂 < 𝟏 Indeterminant quantities: 𝟎 ±∞ , ,∞ βˆ’ ∞ , 𝟎 Γ— ∞ , 𝟎𝟎 , ∞𝟎 , 𝟏∞ 𝟎 ±∞ 69 | P a g e Determine: a) π₯𝐒𝐦+ 𝒇(𝒙) b) π₯π’π¦βˆ’ 𝒇(𝒙) c) π₯𝐒𝐦 𝒇(𝒙) (the answer will be 𝒙→𝒂 𝒙→𝒂 𝒙→𝒂 π’π’–π’Žπ’ƒπ’†π’“ , ∞ , βˆ’βˆž 𝒐𝒓 𝒅𝒐𝒆𝒔 𝒏𝒐𝒕 π’†π’™π’Šπ’”π’• ): 182 𝒙 183 𝒙 𝒇(𝒙) = 𝒂𝒕 𝒂 = 𝟏 𝒇 (𝒙) = (𝒙+𝟏)𝟐 𝒂𝒕 𝒂 = βˆ’πŸ π’™βˆ’πŸ 𝒙 𝒙 a) π₯𝐒𝐦+ = a) π₯𝐒𝐦+ (𝒙+𝟏)𝟐 = π’™β†’πŸ π’™βˆ’πŸ π’™β†’βˆ’πŸ 𝒙 𝒙 b) π₯π’π¦βˆ’ = b) π₯π’π¦βˆ’ (𝒙+𝟏)𝟐 = π’™β†’πŸ π’™βˆ’πŸ π’™β†’βˆ’πŸ 𝒙 𝒙 c) π₯𝐒𝐦 = c) π₯𝐒𝐦 = π’™β†’πŸ π’™βˆ’πŸ π’™β†’βˆ’πŸ (𝒙+𝟏)𝟐 184 πŸβˆ’πŸπ’™ 185 πŸβˆ’πŸπ’™ 𝒇(𝒙) = 𝒂𝒕 𝒂 = 𝟏 𝒇(𝒙) = 𝒂𝒕 𝒂 = βˆ’πŸ π’™πŸ βˆ’πŸ π’™πŸ βˆ’πŸ πŸβˆ’πŸπ’™ πŸβˆ’πŸπ’™ d) π₯𝐒𝐦+ = d) π₯𝐒𝐦+ = π’™β†’πŸ π’™πŸ βˆ’πŸ π’™β†’βˆ’πŸ π’™πŸ βˆ’πŸ πŸβˆ’πŸπ’™ πŸβˆ’πŸπ’™ e) π₯π’π¦βˆ’ = e) π₯π’π¦βˆ’ = π’™β†’πŸ π’™πŸ βˆ’πŸ π’™β†’βˆ’πŸ π’™πŸ βˆ’πŸ πŸβˆ’πŸπ’™ πŸβˆ’πŸπ’™ f) π₯𝐒𝐦 = f) π₯𝐒𝐦 = π’™β†’πŸ π’™πŸ βˆ’πŸ π’™β†’βˆ’πŸ π’™πŸ βˆ’πŸ 70 | P a g e 186 π’™βˆ’πŸ’ 187 πŸβˆ’π’™ 𝒇(𝒙) = 𝒂=𝟐 𝒇(𝒙) = (𝒙+𝟏)𝟐 𝒂 = βˆ’πŸ π’™πŸ βˆ’πŸ’π’™+πŸ’ Evaluate each limit below, (answer will be number, ∞, βˆ’βˆž or does not exist): 188 π’™βˆ’πŸ 189 βˆ’πŸ π₯𝐒𝐦 = 𝟐 π₯𝐒𝐦 (𝒙 βˆ’ πŸπ’™ βˆ’ πŸ‘) πŸ‘ = π’™β†’βˆ’πŸ (𝟐+𝒙)𝟐 π’™β†’βˆ’πŸβˆ’ 71 | P a g e 190 π’™πŸ +πŸπ’™βˆ’πŸ 191 𝒆𝒙 π₯𝐒𝐦 = π₯𝐒𝐦 = π’™β†’βˆ’πŸ π’™πŸ βˆ’πŸ’ π’™β†’πŸ π’™πŸ βˆ’πŸ 192 𝟏 193 𝟏 π₯𝐒𝐦 𝒆 = 𝒙 π₯𝐒𝐦 𝒆 = 𝒙 π’™β†’πŸŽβˆ’ π’™β†’πŸŽ+ 194 𝟏 195 π₯𝐒𝐦𝝅 𝒕𝒂𝒏 𝒙 = π₯𝐒𝐦 𝒆𝒙 = π’™β†’πŸ π’™β†’πŸŽ 72 | P a g e 196 π₯𝐒𝐦 𝒄𝒐𝒕 𝒙 = 197 π₯𝐒𝐦𝝅 𝒙 π’”π’†π’„πŸ 𝒙 = π’™β†’πŸŽ 𝒙→ 𝟐 198 π₯𝐒𝐦+ 𝒍𝒏( 𝒙) = 199 π₯𝐒𝐦 π’†π’”π’Šπ’ 𝒙 = π’™β†’πŸŽ π’™β†’πŸŽ 200 π₯𝐒𝐦+ π’•π’‚π’βˆ’πŸ (𝒍𝒏( 𝒙)) = 201 π₯𝐒𝐦 𝒍𝒏( 𝒙 π’”π’Šπ’ 𝒙) = π’™β†’πŸŽ π’™β†’πŸŽ+ 73 | P a g e 202 βˆ’πŸ 203 βˆ’πŸ π₯𝐒𝐦+𝒆 πŸ‘π’™ = π₯𝐒𝐦 π’”π’Šπ’( 𝒆 ) = π’™πŸ π’™β†’πŸŽ π’™β†’πŸŽ 204 π₯𝐒𝐦𝝅 π’†βˆ’π’•π’‚π’π’™ = 205 𝟏 π₯𝐒𝐦+ 𝒙𝒍𝒏𝒙 = 𝒙→ π’™β†’πŸŽ 𝟐 Limits at infinity: (horizontal asymptotes( Note: if π₯𝐒𝐦 𝒇(𝒙) = 𝑳 , π₯𝐒𝐦 𝒇(𝒙) = 𝑳 β†’ 𝒇(𝒙) has horizontal asymptote π’™β†’βˆž π’™β†’βˆ’βˆž 𝒕𝒉𝒆𝒏 π’š = 𝑳. Important notes: 1) π₯𝐒𝐦 𝑲 = 𝑲 π’Œβ‰ πŸŽ π’™β†’βˆ“βˆž 𝑲 2) π₯𝐒𝐦 =𝟎 π’Œβ‰ πŸŽ π’™β†’βˆ“βˆž 𝒙𝒏 ∞ 𝒂>𝟎 3) π₯𝐒𝐦 𝒂𝒙𝒏 = { n: positive integer number. π’™β†’βˆ“βˆž βˆ’βˆž π’‚πŸŽ ∞ 𝒂>𝟎 4) π₯𝐒𝐦 𝒂𝒙𝒏 = { , π₯𝐒𝐦 𝒂𝒙𝒏 = { π’™β†’βˆ’βˆž ∞ 𝒂

Use Quizgecko on...
Browser
Browser