Tutorial Sheet 03 UMA 023 Differential Equations PDF
Document Details
Thapar Institute of Engineering & Technology
Tags
Summary
This document is a tutorial sheet for a mathematics course, specifically differential equations and linear algebra. It contains various problems for students to solve. The problems deal with finding general solutions of differential equations using different methods.
Full Transcript
Department of Mathematics Thapar Institute of Engineering & Technology, Patiala, UMA 023 (Differential Equations & Linear Algebra): Tutorial Sheet 03 1. Find the general solution of the following differential equations by the method of undetermined coefficients....
Department of Mathematics Thapar Institute of Engineering & Technology, Patiala, UMA 023 (Differential Equations & Linear Algebra): Tutorial Sheet 03 1. Find the general solution of the following differential equations by the method of undetermined coefficients. (i) y ′′ −3y ′ −10y = 1+x2 (ii) 4y ′′ −y = ex +e3x (iii) 3y ′′ +2y ′ −y = −2x e +x (iv) y ′′ + 3y ′ + 2y = cos x + sin x (v) y ′′ + 16y = 16 sin 4x (vi) y ′′ + 2y ′ + 10y = −x ′′ ′ −2x 2 ′′ ′ e sin 3x (vii) y + 4y + 4y = 6e cos x (viii) y + y = 10x4 + 2 2. Solve each differential equation by variation of parameters method. (i) y ′′ +y = sec x (ii) y ′′ +y = sin x (iii) y ′′ +y = cos2 x (iv) xy ′′ −4xy = e2x (v) y ′′ +3y ′ +2y = 1+e 1 x (vi) y ′′ +3y ′ +2y = sin ex (vii) y ′′ + 2y ′ + y = e−x ln x (viii) 3y ′′ − 6y ′ + 6y = ex sec x 3. Obtain the particular solution of the following differential equations by using operator methods. (i) y ′′ − 4y = e2x (ii) y ′′ − y = x2 e2x (iii) y ′′ − y ′ + y = x3 − 3x2 + 1 (iv) y ′′′ − y ′′ = 12x − 2 (v) y ′′ + 2y ′ + y = 2x2 e−2x + 3e2x 4. Find the general solution of the following Cauchy-Euler differential equations. (i) x2 y ′′ + xy ′ − y = 24x (ii) x2 y ′′ − xy ′ − y = ln x 5. An e.m.f. of 3 sin t is applied in LCR circuit. Find the charge(q) and the current(i) in the circuit if q(0) = 0, i(0) = 0, L = 1H, R = 1Ω and C = 0.25F. Answers: 1. (i) y = Ae−2x + Be5x − (50x2 − 30x + 69)/500 (ii) y = Aex/2 + Be−x/2 + (35ex + 3e3x )/105 −x −2x x/3 (iii) y = Ae + Be + (e − 7x − 14)/7 (iv) y = Ae−x + Be−2x + (2 sin x − cos x)/5 (v) y = A cos 4x + B sin 4x − 2x cos x (vi) y = e (A cos 3x + B sin 3x) − (xe−x cos 3x)/6 −x (vii) y = (Ax + B)e−2x + 3e−2x (2x2 − cos 2x)/4 (viii) y = A + Be−x + 2x5 − 10x4 + 40x3 − 120x2 + 242x 2. (i) y = c1 cos x + c2 sin x + x sin x + cos x ln | cos x| (ii) y = c1 cos x + c2 sin x − 21 x cos x Rx e4t −2x 1 −2x (iii) y = c1 cos x+c2 sin x+ 12 − 16 cos 2x 2x (iv) y = c1 e +c2 e 2x + 4 e ln |x|−e dt , x0 > x0 t 0 (v) y = c1 e−x + c2 e−2x + (e−x + e−2x ) ln(1 + ex ) (vi) y = c1 e−2x + c2 e−x − e−2x sin ex (vii) y = c1 e−x + c2 xe−x + 21 x2 e−x ln x − 34 x2 e−x (viii) y = c1 ex sin x + c2 ex cos x + 31 xex sin x + 1 x 3 e cos x ln | cos x| x 1 1 3. (i) yp (x) = − e2x (ii) yp (x) = 9x2 − 24x + 26 e2x (iii) yp (x) = x3 − 6x − 5 4 16 27 (iv) yp (x) = −2x3 − 5x2 − 10x − 10 (v) yp (x) = 2e−2x (x2 + 4x + 6) + (1/3)e2x 4. (i) y(x) = c1 x + c2 x−1 + 12x ln x (ii) y(x) = c1 cos 4 ln x + c2 sin 4 ln x − (1/16) ln x