Practical Statistics for Data Scientists PDF

Summary

This is a textbook on practical statistics for data scientists. It covers 50+ essential concepts using R and Python. The book is suitable to learn and apply practical statistical techniques. The second edition has been updated.

Full Transcript

Se dit E co ion nd Practical Statistics for Data Scientists 50+ Essential Concepts Using R and Python Peter Bruce, And...

Se dit E co ion nd Practical Statistics for Data Scientists 50+ Essential Concepts Using R and Python Peter Bruce, Andrew Bruce & Peter Gedeck SECOND EDITION Practical Statistics for Data Scientists 50+ Essential Concepts Using R and Python Peter Bruce, Andrew Bruce, and Peter Gedeck Beijing Boston Farnham Sebastopol Tokyo Practical Statistics for Data Scientists by Peter Bruce, Andrew Bruce, and Peter Gedeck Copyright © 2020 Peter Bruce, Andrew Bruce, and Peter Gedeck. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Editor: Nicole Tache Indexer: Ellen Troutman-Zaig Production Editor: Kristen Brown Interior Designer: David Futato Copyeditor: Piper Editorial Cover Designer: Karen Montgomery Proofreader: Arthur Johnson Illustrator: Rebecca Demarest May 2017: First Edition May 2020: Second Edition Revision History for the Second Edition 2020-04-10: First Release See http://oreilly.com/catalog/errata.csp?isbn=9781492072942 for release details. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Practical Statistics for Data Scientists, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc. The views expressed in this work are those of the authors, and do not represent the publisher’s views. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights. 978-1-492-07294-2 [LSI] Peter Bruce and Andrew Bruce would like to dedicate this book to the memories of our parents, Victor G. Bruce and Nancy C. Bruce, who cultivated a passion for math and science; and to our early mentors John W. Tukey and Julian Simon and our lifelong friend Geoff Watson, who helped inspire us to pursue a career in statistics. Peter Gedeck would like to dedicate this book to Tim Clark and Christian Kramer, with deep thanks for their scientific collaboration and friendship. Table of Contents Preface...................................................................... xiii 1. Exploratory Data Analysis..................................................... 1 Elements of Structured Data 2 Further Reading 4 Rectangular Data 4 Data Frames and Indexes 6 Nonrectangular Data Structures 6 Further Reading 7 Estimates of Location 7 Mean 9 Median and Robust Estimates 10 Example: Location Estimates of Population and Murder Rates 12 Further Reading 13 Estimates of Variability 13 Standard Deviation and Related Estimates 14 Estimates Based on Percentiles 16 Example: Variability Estimates of State Population 18 Further Reading 19 Exploring the Data Distribution 19 Percentiles and Boxplots 20 Frequency Tables and Histograms 22 Density Plots and Estimates 24 Further Reading 26 Exploring Binary and Categorical Data 27 Mode 29 Expected Value 29 Probability 30 v Further Reading 30 Correlation 30 Scatterplots 34 Further Reading 36 Exploring Two or More Variables 36 Hexagonal Binning and Contours (Plotting Numeric Versus Numeric Data) 36 Two Categorical Variables 39 Categorical and Numeric Data 41 Visualizing Multiple Variables 43 Further Reading 46 Summary 46 2. Data and Sampling Distributions............................................. 47 Random Sampling and Sample Bias 48 Bias 50 Random Selection 51 Size Versus Quality: When Does Size Matter? 52 Sample Mean Versus Population Mean 53 Further Reading 53 Selection Bias 54 Regression to the Mean 55 Further Reading 57 Sampling Distribution of a Statistic 57 Central Limit Theorem 60 Standard Error 60 Further Reading 61 The Bootstrap 61 Resampling Versus Bootstrapping 65 Further Reading 65 Confidence Intervals 65 Further Reading 68 Normal Distribution 69 Standard Normal and QQ-Plots 71 Long-Tailed Distributions 73 Further Reading 75 Student’s t-Distribution 75 Further Reading 78 Binomial Distribution 78 Further Reading 80 Chi-Square Distribution 80 Further Reading 81 F-Distribution 82 vi | Table of Contents Further Reading 82 Poisson and Related Distributions 82 Poisson Distributions 83 Exponential Distribution 84 Estimating the Failure Rate 84 Weibull Distribution 85 Further Reading 86 Summary 86 3. Statistical Experiments and Significance Testing................................ 87 A/B Testing 88 Why Have a Control Group? 90 Why Just A/B? Why Not C, D,…? 91 Further Reading 92 Hypothesis Tests 93 The Null Hypothesis 94 Alternative Hypothesis 95 One-Way Versus Two-Way Hypothesis Tests 95 Further Reading 96 Resampling 96 Permutation Test 97 Example: Web Stickiness 98 Exhaustive and Bootstrap Permutation Tests 102 Permutation Tests: The Bottom Line for Data Science 102 Further Reading 103 Statistical Significance and p-Values 103 p-Value 106 Alpha 107 Type 1 and Type 2 Errors 109 Data Science and p-Values 109 Further Reading 110 t-Tests 110 Further Reading 112 Multiple Testing 112 Further Reading 116 Degrees of Freedom 116 Further Reading 118 ANOVA 118 F-Statistic 121 Two-Way ANOVA 123 Further Reading 124 Chi-Square Test 124 Table of Contents | vii Chi-Square Test: A Resampling Approach 124 Chi-Square Test: Statistical Theory 127 Fisher’s Exact Test 128 Relevance for Data Science 130 Further Reading 131 Multi-Arm Bandit Algorithm 131 Further Reading 134 Power and Sample Size 135 Sample Size 136 Further Reading 138 Summary 139 4. Regression and Prediction.................................................. 141 Simple Linear Regression 141 The Regression Equation 143 Fitted Values and Residuals 146 Least Squares 148 Prediction Versus Explanation (Profiling) 149 Further Reading 150 Multiple Linear Regression 150 Example: King County Housing Data 151 Assessing the Model 153 Cross-Validation 155 Model Selection and Stepwise Regression 156 Weighted Regression 159 Further Reading 161 Prediction Using Regression 161 The Dangers of Extrapolation 161 Confidence and Prediction Intervals 161 Factor Variables in Regression 163 Dummy Variables Representation 164 Factor Variables with Many Levels 167 Ordered Factor Variables 169 Interpreting the Regression Equation 169 Correlated Predictors 170 Multicollinearity 172 Confounding Variables 172 Interactions and Main Effects 174 Regression Diagnostics 176 Outliers 177 Influential Values 179 Heteroskedasticity, Non-Normality, and Correlated Errors 182 viii | Table of Contents Partial Residual Plots and Nonlinearity 185 Polynomial and Spline Regression 187 Polynomial 188 Splines 189 Generalized Additive Models 192 Further Reading 193 Summary 194 5. Classification............................................................. 195 Naive Bayes 196 Why Exact Bayesian Classification Is Impractical 197 The Naive Solution 198 Numeric Predictor Variables 200 Further Reading 201 Discriminant Analysis 201 Covariance Matrix 202 Fisher’s Linear Discriminant 203 A Simple Example 204 Further Reading 207 Logistic Regression 208 Logistic Response Function and Logit 208 Logistic Regression and the GLM 210 Generalized Linear Models 212 Predicted Values from Logistic Regression 212 Interpreting the Coefficients and Odds Ratios 213 Linear and Logistic Regression: Similarities and Differences 214 Assessing the Model 216 Further Reading 219 Evaluating Classification Models 219 Confusion Matrix 221 The Rare Class Problem 223 Precision, Recall, and Specificity 223 ROC Curve 224 AUC 226 Lift 228 Further Reading 229 Strategies for Imbalanced Data 230 Undersampling 231 Oversampling and Up/Down Weighting 232 Data Generation 233 Cost-Based Classification 234 Exploring the Predictions 234 Table of Contents | ix Further Reading 236 Summary 236 6. Statistical Machine Learning................................................ 237 K-Nearest Neighbors 238 A Small Example: Predicting Loan Default 239 Distance Metrics 241 One Hot Encoder 242 Standardization (Normalization, z-Scores) 243 Choosing K 246 KNN as a Feature Engine 247 Tree Models 249 A Simple Example 250 The Recursive Partitioning Algorithm 252 Measuring Homogeneity or Impurity 254 Stopping the Tree from Growing 256 Predicting a Continuous Value 257 How Trees Are Used 258 Further Reading 259 Bagging and the Random Forest 259 Bagging 260 Random Forest 261 Variable Importance 265 Hyperparameters 269 Boosting 270 The Boosting Algorithm 271 XGBoost 272 Regularization: Avoiding Overfitting 274 Hyperparameters and Cross-Validation 279 Summary 282 7. Unsupervised Learning..................................................... 283 Principal Components Analysis 284 A Simple Example 285 Computing the Principal Components 288 Interpreting Principal Components 289 Correspondence Analysis 292 Further Reading 294 K-Means Clustering 294 A Simple Example 295 K-Means Algorithm 298 Interpreting the Clusters 299 x | Table of Contents Selecting the Number of Clusters 302 Hierarchical Clustering 304 A Simple Example 305 The Dendrogram 306 The Agglomerative Algorithm 308 Measures of Dissimilarity 309 Model-Based Clustering 311 Multivariate Normal Distribution 311 Mixtures of Normals 312 Selecting the Number of Clusters 315 Further Reading 318 Scaling and Categorical Variables 318 Scaling the Variables 319 Dominant Variables 321 Categorical Data and Gower’s Distance 322 Problems with Clustering Mixed Data 325 Summary 326 Bibliography................................................................. 327 Index....................................................................... 329 Table of Contents | xi Preface This book is aimed at the data scientist with some familiarity with the R and/or Python programming languages, and with some prior (perhaps spotty or ephemeral) exposure to statistics. Two of the authors came to the world of data science from the world of statistics, and have some appreciation of the contribution that statistics can make to the art of data science. At the same time, we are well aware of the limitations of traditional statistics instruction: statistics as a discipline is a century and a half old, and most statistics textbooks and courses are laden with the momentum and inertia of an ocean liner. All the methods in this book have some connection—historical or methodological—to the discipline of statistics. Methods that evolved mainly out of computer science, such as neural nets, are not included. Two goals underlie this book: To lay out, in digestible, navigable, and easily referenced form, key concepts from statistics that are relevant to data science. To explain which concepts are important and useful from a data science perspec‐ tive, which are less so, and why. Conventions Used in This Book The following typographical conventions are used in this book: Italic Indicates new terms, URLs, email addresses, filenames, and file extensions. Constant width Used for program listings, as well as within paragraphs to refer to program ele‐ ments such as variable or function names, databases, data types, environment variables, statements, and keywords. xiii Constant width bold Shows commands or other text that should be typed literally by the user. Key Terms Data science is a fusion of multiple disciplines, including statistics, computer science, information technology, and domain-specific fields. As a result, several different terms could be used to reference a given concept. Key terms and their synonyms will be highlighted throughout the book in a sidebar such as this. This element signifies a tip or suggestion. This element signifies a general note. This element indicates a warning or caution. Using Code Examples In all cases, this book gives code examples first in R and then in Python. In order to avoid unnecessary repetition, we generally show only output and plots created by the R code. We also skip the code required to load the required packages and data sets. You can find the complete code as well as the data sets for download at https:// github.com/gedeck/practical-statistics-for-data-scientists. This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of xiv | Preface example code from this book into your product’s documentation does require per‐ mission. We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Practical Statistics for Data Scientists by Peter Bruce, Andrew Bruce, and Peter Gedeck (O’Reilly). Copyright 2020 Peter Bruce, Andrew Bruce, and Peter Gedeck, 978-1-492-07294-2.” If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at [email protected]. O’Reilly Online Learning For more than 40 years, O’Reilly Media has provided technol‐ ogy and business training, knowledge, and insight to help companies succeed. Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com. How to Contact Us Please address comments and questions concerning this book to the publisher: O’Reilly Media, Inc. 1005 Gravenstein Highway North Sebastopol, CA 95472 800-998-9938 (in the United States or Canada) 707-829-0515 (international or local) 707-829-0104 (fax) We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://oreil.ly/practicalStats_dataSci_2e. Email [email protected] to comment or ask technical questions about this book. For news and more information about our books and courses, see our website at http://oreilly.com. Preface | xv Find us on Facebook: http://facebook.com/oreilly Follow us on Twitter: http://twitter.com/oreillymedia Watch us on YouTube: http://www.youtube.com/oreillymedia Acknowledgments The authors acknowledge the many people who helped make this book a reality. Gerhard Pilcher, CEO of the data mining firm Elder Research, saw early drafts of the book and gave us detailed and helpful corrections and comments. Likewise, Anya McGuirk and Wei Xiao, statisticians at SAS, and Jay Hilfiger, fellow O’Reilly author, provided helpful feedback on initial drafts of the book. Toshiaki Kurokawa, who translated the first edition into Japanese, did a comprehensive job of reviewing and correcting in the process. Aaron Schumacher and Walter Paczkowski thoroughly reviewed the second edition of the book and provided numerous helpful and valuable suggestions for which we are extremely grateful. Needless to say, any errors that remain are ours alone. At O’Reilly, Shannon Cutt has shepherded us through the publication process with good cheer and the right amount of prodding, while Kristen Brown smoothly took our book through the production phase. Rachel Monaghan and Eliahu Sussman cor‐ rected and improved our writing with care and patience, while Ellen Troutman-Zaig prepared the index. Nicole Tache took over the reins for the second edition and has both guided the process effectively and provided many good editorial suggestions to improve the readability of the book for a broad audience. We also thank Marie Beau‐ gureau, who initiated our project at O’Reilly, as well as Ben Bengfort, O’Reilly author and Statistics.com instructor, who introduced us to O’Reilly. We, and this book, have also benefited from the many conversations Peter has had over the years with Galit Shmueli, coauthor on other book projects. Finally, we would like to especially thank Elizabeth Bruce and Deborah Donnell, whose patience and support made this endeavor possible. xvi | Preface CHAPTER 1 Exploratory Data Analysis This chapter focuses on the first step in any data science project: exploring the data. Classical statistics focused almost exclusively on inference, a sometimes complex set of procedures for drawing conclusions about large populations based on small sam‐ ples. In 1962, John W. Tukey (Figure 1-1) called for a reformation of statistics in his seminal paper “The Future of Data Analysis” [Tukey-1962]. He proposed a new scien‐ tific discipline called data analysis that included statistical inference as just one com‐ ponent. Tukey forged links to the engineering and computer science communities (he coined the terms bit, short for binary digit, and software), and his original tenets are surprisingly durable and form part of the foundation for data science. The field of exploratory data analysis was established with Tukey’s 1977 now-classic book Explor‐ atory Data Analysis [Tukey-1977]. Tukey presented simple plots (e.g., boxplots, scat‐ terplots) that, along with summary statistics (mean, median, quantiles, etc.), help paint a picture of a data set. With the ready availability of computing power and expressive data analysis software, exploratory data analysis has evolved well beyond its original scope. Key drivers of this discipline have been the rapid development of new technology, access to more and bigger data, and the greater use of quantitative analysis in a variety of disciplines. David Donoho, professor of statistics at Stanford University and former undergradu‐ ate student of Tukey’s, authored an excellent article based on his presentation at the Tukey Centennial workshop in Princeton, New Jersey [Donoho-2015]. Donoho traces the genesis of data science back to Tukey’s pioneering work in data analysis. 1 Figure 1-1. John Tukey, the eminent statistician whose ideas developed over 50 years ago form the foundation of data science Elements of Structured Data Data comes from many sources: sensor measurements, events, text, images, and vid‐ eos. The Internet of Things (IoT) is spewing out streams of information. Much of this data is unstructured: images are a collection of pixels, with each pixel containing RGB (red, green, blue) color information. Texts are sequences of words and nonword char‐ acters, often organized by sections, subsections, and so on. Clickstreams are sequen‐ ces of actions by a user interacting with an app or a web page. In fact, a major challenge of data science is to harness this torrent of raw data into actionable infor‐ mation. To apply the statistical concepts covered in this book, unstructured raw data must be processed and manipulated into a structured form. One of the commonest forms of structured data is a table with rows and columns—as data might emerge from a relational database or be collected for a study. There are two basic types of structured data: numeric and categorical. Numeric data comes in two forms: continuous, such as wind speed or time duration, and discrete, such as the count of the occurrence of an event. Categorical data takes only a fixed set of values, such as a type of TV screen (plasma, LCD, LED, etc.) or a state name (Ala‐ bama, Alaska, etc.). Binary data is an important special case of categorical data that takes on only one of two values, such as 0/1, yes/no, or true/false. Another useful type of categorical data is ordinal data in which the categories are ordered; an example of this is a numerical rating (1, 2, 3, 4, or 5). Why do we bother with a taxonomy of data types? It turns out that for the purposes of data analysis and predictive modeling, the data type is important to help determine the type of visual display, data analysis, or statistical model. In fact, data science software, such as R and Python, uses these data types to improve computational per‐ formance. More important, the data type for a variable determines how software will handle computations for that variable. 2 | Chapter 1: Exploratory Data Analysis Key Terms for Data Types Numeric Data that are expressed on a numeric scale. Continuous Data that can take on any value in an interval. (Synonyms: interval, float, numeric) Discrete Data that can take on only integer values, such as counts. (Synonyms: integer, count) Categorical Data that can take on only a specific set of values representing a set of possible categories. (Synonyms: enums, enumerated, factors, nominal) Binary A special case of categorical data with just two categories of values, e.g., 0/1, true/false. (Synonyms: dichotomous, logical, indicator, boolean) Ordinal Categorical data that has an explicit ordering. (Synonym: ordered factor) Software engineers and database programmers may wonder why we even need the notion of categorical and ordinal data for analytics. After all, categories are merely a collection of text (or numeric) values, and the underlying database automatically han‐ dles the internal representation. However, explicit identification of data as categorical, as distinct from text, does offer some advantages: Knowing that data is categorical can act as a signal telling software how statistical procedures, such as producing a chart or fitting a model, should behave. In par‐ ticular, ordinal data can be represented as an ordered.factor in R, preserving a user-specified ordering in charts, tables, and models. In Python, scikit-learn supports ordinal data with the sklearn.preprocessing.OrdinalEncoder. Storage and indexing can be optimized (as in a relational database). The possible values a given categorical variable can take are enforced in the soft‐ ware (like an enum). The third “benefit” can lead to unintended or unexpected behavior: the default behavior of data import functions in R (e.g., read.csv) is to automatically convert a text column into a factor. Subsequent operations on that column will assume that the only allowable values for that column are the ones originally imported, and assigning a new text value will introduce a warning and produce an NA (missing Elements of Structured Data | 3 value). The pandas package in Python will not make such a conversion automatically. However, you can specify a column as categorical explicitly in the read_csv function. Key Ideas Data is typically classified in software by type. Data types include numeric (continuous, discrete) and categorical (binary, ordinal). Data typing in software acts as a signal to the software on how to process the data. Further Reading The pandas documentation describes the different data types and how they can be manipulated in Python. Data types can be confusing, since types may overlap, and the taxonomy in one software may differ from that in another. The R Tutorial website covers the taxonomy for R. The pandas documentation describes the different data types and how they can be manipulated in Python. Databases are more detailed in their classification of data types, incorporating considerations of precision levels, fixed- or variable-length fields, and more; see the W3Schools guide to SQL. Rectangular Data The typical frame of reference for an analysis in data science is a rectangular data object, like a spreadsheet or database table. Rectangular data is the general term for a two-dimensional matrix with rows indicat‐ ing records (cases) and columns indicating features (variables); data frame is the spe‐ cific format in R and Python. The data doesn’t always start in this form: unstructured data (e.g., text) must be processed and manipulated so that it can be represented as a set of features in the rectangular data (see “Elements of Structured Data” on page 2). Data in relational databases must be extracted and put into a single table for most data analysis and modeling tasks. 4 | Chapter 1: Exploratory Data Analysis Key Terms for Rectangular Data Data frame Rectangular data (like a spreadsheet) is the basic data structure for statistical and machine learning models. Feature A column within a table is commonly referred to as a feature. Synonyms attribute, input, predictor, variable Outcome Many data science projects involve predicting an outcome—often a yes/no out‐ come (in Table 1-1, it is “auction was competitive or not”). The features are some‐ times used to predict the outcome in an experiment or a study. Synonyms dependent variable, response, target, output Records A row within a table is commonly referred to as a record. Synonyms case, example, instance, observation, pattern, sample Table 1-1. A typical data frame format Category currency sellerRating Duration endDay ClosePrice OpenPrice Competitive? Music/Movie/Game US 3249 5 Mon 0.01 0.01 0 Music/Movie/Game US 3249 5 Mon 0.01 0.01 0 Automotive US 3115 7 Tue 0.01 0.01 0 Automotive US 3115 7 Tue 0.01 0.01 0 Automotive US 3115 7 Tue 0.01 0.01 0 Automotive US 3115 7 Tue 0.01 0.01 0 Automotive US 3115 7 Tue 0.01 0.01 1 Automotive US 3115 7 Tue 0.01 0.01 1 In Table 1-1, there is a mix of measured or counted data (e.g., duration and price) and categorical data (e.g., category and currency). As mentioned earlier, a special form of categorical variable is a binary (yes/no or 0/1) variable, seen in the rightmost column in Table 1-1—an indicator variable showing whether an auction was competitive (had multiple bidders) or not. This indicator variable also happens to be an outcome vari‐ able, when the scenario is to predict whether an auction is competitive or not. Rectangular Data | 5 Data Frames and Indexes Traditional database tables have one or more columns designated as an index, essen‐ tially a row number. This can vastly improve the efficiency of certain database quer‐ ies. In Python, with the pandas library, the basic rectangular data structure is a DataFrame object. By default, an automatic integer index is created for a DataFrame based on the order of the rows. In pandas, it is also possible to set multilevel/hier‐ archical indexes to improve the efficiency of certain operations. In R, the basic rectangular data structure is a data.frame object. A data.frame also has an implicit integer index based on the row order. The native R data.frame does not support user-specified or multilevel indexes, though a custom key can be created through the row.names attribute. To overcome this deficiency, two new packages are gaining widespread use: data.table and dplyr. Both support multilevel indexes and offer significant speedups in working with a data.frame. Terminology Differences Terminology for rectangular data can be confusing. Statisticians and data scientists use different terms for the same thing. For a sta‐ tistician, predictor variables are used in a model to predict a response or dependent variable. For a data scientist, features are used to predict a target. One synonym is particularly confusing: com‐ puter scientists will use the term sample for a single row; a sample to a statistician means a collection of rows. Nonrectangular Data Structures There are other data structures besides rectangular data. Time series data records successive measurements of the same variable. It is the raw material for statistical forecasting methods, and it is also a key component of the data produced by devices—the Internet of Things. Spatial data structures, which are used in mapping and location analytics, are more complex and varied than rectangular data structures. In the object representation, the focus of the data is an object (e.g., a house) and its spatial coordinates. The field view, by contrast, focuses on small units of space and the value of a relevant metric (pixel brightness, for example). 6 | Chapter 1: Exploratory Data Analysis Graph (or network) data structures are used to represent physical, social, and abstract relationships. For example, a graph of a social network, such as Facebook or LinkedIn, may represent connections between people on the network. Distribution hubs connected by roads are an example of a physical network. Graph structures are useful for certain types of problems, such as network optimization and recommender systems. Each of these data types has its specialized methodology in data science. The focus of this book is on rectangular data, the fundamental building block of predictive modeling. Graphs in Statistics In computer science and information technology, the term graph typically refers to a depiction of the connections among entities, and to the underlying data structure. In statistics, graph is used to refer to a variety of plots and visualizations, not just of connections among entities, and the term applies only to the visualization, not to the data structure. Key Ideas The basic data structure in data science is a rectangular matrix in which rows are records and columns are variables (features). Terminology can be confusing; there are a variety of synonyms arising from the different disciplines that contribute to data science (statistics, computer science, and information technology). Further Reading Documentation on data frames in R Documentation on data frames in Python Estimates of Location Variables with measured or count data might have thousands of distinct values. A basic step in exploring your data is getting a “typical value” for each feature (variable): an estimate of where most of the data is located (i.e., its central tendency). Estimates of Location | 7 Key Terms for Estimates of Location Mean The sum of all values divided by the number of values. Synonym average Weighted mean The sum of all values times a weight divided by the sum of the weights. Synonym weighted average Median The value such that one-half of the data lies above and below. Synonym 50th percentile Percentile The value such that P percent of the data lies below. Synonym quantile Weighted median The value such that one-half of the sum of the weights lies above and below the sorted data. Trimmed mean The average of all values after dropping a fixed number of extreme values. Synonym truncated mean Robust Not sensitive to extreme values. Synonym resistant Outlier A data value that is very different from most of the data. Synonym extreme value 8 | Chapter 1: Exploratory Data Analysis At first glance, summarizing data might seem fairly trivial: just take the mean of the data. In fact, while the mean is easy to compute and expedient to use, it may not always be the best measure for a central value. For this reason, statisticians have developed and promoted several alternative estimates to the mean. Metrics and Estimates Statisticians often use the term estimate for a value calculated from the data at hand, to draw a distinction between what we see from the data and the theoretical true or exact state of affairs. Data scien‐ tists and business analysts are more likely to refer to such a value as a metric. The difference reflects the approach of statistics versus that of data science: accounting for uncertainty lies at the heart of the discipline of statistics, whereas concrete business or organiza‐ tional objectives are the focus of data science. Hence, statisticians estimate, and data scientists measure. Mean The most basic estimate of location is the mean, or average value. The mean is the sum of all values divided by the number of values. Consider the following set of num‐ bers: {3 5 1 2}. The mean is (3 + 5 + 1 + 2) / 4 = 11 / 4 = 2.75. You will encounter the symbol x (pronounced “x-bar”) being used to represent the mean of a sample from a population. The formula to compute the mean for a set of n values x1, x2,..., xn is: ∑ni=1 xi Mean = x = n N (or n) refers to the total number of records or observations. In statistics it is capitalized if it is referring to a population, and lower‐ case if it refers to a sample from a population. In data science, that distinction is not vital, so you may see it both ways. A variation of the mean is a trimmed mean, which you calculate by dropping a fixed number of sorted values at each end and then taking an average of the remaining val‐ ues. Representing the sorted values by x 1 , x 2 ,..., x n where x 1 is the smallest value and x n the largest, the formula to compute the trimmed mean with p smallest and largest values omitted is: ∑ni =− pp + 1 x i Trimmed mean = x = n − 2p Estimates of Location | 9 A trimmed mean eliminates the influence of extreme values. For example, in interna‐ tional diving the top score and bottom score from five judges are dropped, and the final score is the average of the scores from the three remaining judges. This makes it difficult for a single judge to manipulate the score, perhaps to favor their country’s contestant. Trimmed means are widely used, and in many cases are preferable to using the ordinary mean—see “Median and Robust Estimates” on page 10 for further discussion. Another type of mean is a weighted mean, which you calculate by multiplying each data value xi by a user-specified weight wi and dividing their sum by the sum of the weights. The formula for a weighted mean is: ∑ni = 1 wixi Weighted mean = xw = ∑ni = 1 wi There are two main motivations for using a weighted mean: Some values are intrinsically more variable than others, and highly variable observations are given a lower weight. For example, if we are taking the average from multiple sensors and one of the sensors is less accurate, then we might downweight the data from that sensor. The data collected does not equally represent the different groups that we are interested in measuring. For example, because of the way an online experiment was conducted, we may not have a set of data that accurately reflects all groups in the user base. To correct that, we can give a higher weight to the values from the groups that were underrepresented. Median and Robust Estimates The median is the middle number on a sorted list of the data. If there is an even num‐ ber of data values, the middle value is one that is not actually in the data set, but rather the average of the two values that divide the sorted data into upper and lower halves. Compared to the mean, which uses all observations, the median depends only on the values in the center of the sorted data. While this might seem to be a disadvan‐ tage, since the mean is much more sensitive to the data, there are many instances in which the median is a better metric for location. Let’s say we want to look at typical household incomes in neighborhoods around Lake Washington in Seattle. In com‐ paring the Medina neighborhood to the Windermere neighborhood, using the mean would produce very different results because Bill Gates lives in Medina. If we use the median, it won’t matter how rich Bill Gates is—the position of the middle observation will remain the same. 10 | Chapter 1: Exploratory Data Analysis For the same reasons that one uses a weighted mean, it is also possible to compute a weighted median. As with the median, we first sort the data, although each data value has an associated weight. Instead of the middle number, the weighted median is a value such that the sum of the weights is equal for the lower and upper halves of the sorted list. Like the median, the weighted median is robust to outliers. Outliers The median is referred to as a robust estimate of location since it is not influenced by outliers (extreme cases) that could skew the results. An outlier is any value that is very distant from the other values in a data set. The exact definition of an outlier is some‐ what subjective, although certain conventions are used in various data summaries and plots (see “Percentiles and Boxplots” on page 20). Being an outlier in itself does not make a data value invalid or erroneous (as in the previous example with Bill Gates). Still, outliers are often the result of data errors such as mixing data of different units (kilometers versus meters) or bad readings from a sensor. When outliers are the result of bad data, the mean will result in a poor estimate of location, while the median will still be valid. In any case, outliers should be identified and are usually worthy of further investigation. Anomaly Detection In contrast to typical data analysis, where outliers are sometimes informative and sometimes a nuisance, in anomaly detection the points of interest are the outliers, and the greater mass of data serves primarily to define the “normal” against which anomalies are measured. The median is not the only robust estimate of location. In fact, a trimmed mean is widely used to avoid the influence of outliers. For example, trimming the bottom and top 10% (a common choice) of the data will provide protection against outliers in all but the smallest data sets. The trimmed mean can be thought of as a compromise between the median and the mean: it is robust to extreme values in the data, but uses more data to calculate the estimate for location. Other Robust Metrics for Location Statisticians have developed a plethora of other estimators for loca‐ tion, primarily with the goal of developing an estimator more robust than the mean and also more efficient (i.e., better able to discern small location differences between data sets). While these methods are potentially useful for small data sets, they are not likely to provide added benefit for large or even moderately sized data sets. Estimates of Location | 11 Example: Location Estimates of Population and Murder Rates Table 1-2 shows the first few rows in the data set containing population and murder rates (in units of murders per 100,000 people per year) for each US state (2010 Census). Table 1-2. A few rows of the data.frame state of population and murder rate by state State Population Murder rate Abbreviation 1 Alabama 4,779,736 5.7 AL 2 Alaska 710,231 5.6 AK 3 Arizona 6,392,017 4.7 AZ 4 Arkansas 2,915,918 5.6 AR 5 California 37,253,956 4.4 CA 6 Colorado 5,029,196 2.8 CO 7 Connecticut 3,574,097 2.4 CT 8 Delaware 897,934 5.8 DE Compute the mean, trimmed mean, and median for the population using R: > state mean(state[['Population']]) 6162876 > mean(state[['Population']], trim=0.1) 4783697 > median(state[['Population']]) 4436370 To compute mean and median in Python we can use the pandas methods of the data frame. The trimmed mean requires the trim_mean function in scipy.stats: state = pd.read_csv('state.csv') state['Population'].mean() trim_mean(state['Population'], 0.1) state['Population'].median() The mean is bigger than the trimmed mean, which is bigger than the median. This is because the trimmed mean excludes the largest and smallest five states (trim=0.1 drops 10% from each end). If we want to compute the average murder rate for the country, we need to use a weighted mean or median to account for different populations in the states. Since base R doesn’t have a function for weighted median, we need to install a package such as matrixStats: > weighted.mean(state[['Murder.Rate']], w=state[['Population']]) 4.445834 > library('matrixStats') 12 | Chapter 1: Exploratory Data Analysis > weightedMedian(state[['Murder.Rate']], w=state[['Population']]) 4.4 Weighted mean is available with NumPy. For weighted median, we can use the special‐ ized package wquantiles: np.average(state['Murder.Rate'], weights=state['Population']) wquantiles.median(state['Murder.Rate'], weights=state['Population']) In this case, the weighted mean and the weighted median are about the same. Key Ideas The basic metric for location is the mean, but it can be sensitive to extreme values (outlier). Other metrics (median, trimmed mean) are less sensitive to outliers and unusual distributions and hence are more robust. Further Reading The Wikipedia article on central tendency contains an extensive discussion of various measures of location. John Tukey’s 1977 classic Exploratory Data Analysis (Pearson) is still widely read. Estimates of Variability Location is just one dimension in summarizing a feature. A second dimension, varia‐ bility, also referred to as dispersion, measures whether the data values are tightly clus‐ tered or spread out. At the heart of statistics lies variability: measuring it, reducing it, distinguishing random from real variability, identifying the various sources of real variability, and making decisions in the presence of it. Key Terms for Variability Metrics Deviations The difference between the observed values and the estimate of location. Synonyms errors, residuals Variance The sum of squared deviations from the mean divided by n – 1 where n is the number of data values. Estimates of Variability | 13 Synonym mean-squared-error Standard deviation The square root of the variance. Mean absolute deviation The mean of the absolute values of the deviations from the mean. Synonyms l1-norm, Manhattan norm Median absolute deviation from the median The median of the absolute values of the deviations from the median. Range The difference between the largest and the smallest value in a data set. Order statistics Metrics based on the data values sorted from smallest to biggest. Synonym ranks Percentile The value such that P percent of the values take on this value or less and (100–P) percent take on this value or more. Synonym quantile Interquartile range The difference between the 75th percentile and the 25th percentile. Synonym IQR Just as there are different ways to measure location (mean, median, etc.), there are also different ways to measure variability. Standard Deviation and Related Estimates The most widely used estimates of variation are based on the differences, or devia‐ tions, between the estimate of location and the observed data. For a set of data {1, 4, 4}, the mean is 3 and the median is 4. The deviations from the mean are the differences: 1 – 3 = –2, 4 – 3 = 1, 4 – 3 = 1. These deviations tell us how dispersed the data is around the central value. 14 | Chapter 1: Exploratory Data Analysis One way to measure variability is to estimate a typical value for these deviations. Averaging the deviations themselves would not tell us much—the negative deviations offset the positive ones. In fact, the sum of the deviations from the mean is precisely zero. Instead, a simple approach is to take the average of the absolute values of the deviations from the mean. In the preceding example, the absolute value of the devia‐ tions is {2 1 1}, and their average is (2 + 1 + 1) / 3 = 1.33. This is known as the mean absolute deviation and is computed with the formula: ∑in= 1 xi − x Mean absolute deviation = n where x is the sample mean. The best-known estimates of variability are the variance and the standard deviation, which are based on squared deviations. The variance is an average of the squared deviations, and the standard deviation is the square root of the variance: ∑ni = 1 xi − x 2 Variance = s2 = n−1 Standard deviation = s = Variance The standard deviation is much easier to interpret than the variance since it is on the same scale as the original data. Still, with its more complicated and less intuitive for‐ mula, it might seem peculiar that the standard deviation is preferred in statistics over the mean absolute deviation. It owes its preeminence to statistical theory: mathemati‐ cally, working with squared values is much more convenient than absolute values, especially for statistical models. Degrees of Freedom, and n or n – 1? In statistics books, there is always some discussion of why we have n – 1 in the denominator in the variance formula, instead of n, leading into the concept of degrees of freedom. This distinction is not important since n is generally large enough that it won’t make much difference whether you divide by n or n – 1. But in case you are interested, here is the story. It is based on the premise that you want to make esti‐ mates about a population, based on a sample. If you use the intuitive denominator of n in the variance formula, you will underesti‐ mate the true value of the variance and the standard deviation in the population. This is referred to as a biased estimate. However, if you divide by n – 1 instead of n, the variance becomes an unbiased estimate. Estimates of Variability | 15 To fully explain why using n leads to a biased estimate involves the notion of degrees of freedom, which takes into account the number of constraints in computing an esti‐ mate. In this case, there are n – 1 degrees of freedom since there is one constraint: the standard deviation depends on calculating the sample mean. For most problems, data scientists do not need to worry about degrees of freedom. Neither the variance, the standard deviation, nor the mean absolute deviation is robust to outliers and extreme values (see “Median and Robust Estimates” on page 10 for a discussion of robust estimates for location). The variance and standard devia‐ tion are especially sensitive to outliers since they are based on the squared deviations. A robust estimate of variability is the median absolute deviation from the median or MAD: Median absolute deviation = Median x1 − m , x2 − m ,..., xN − m where m is the median. Like the median, the MAD is not influenced by extreme val‐ ues. It is also possible to compute a trimmed standard deviation analogous to the trimmed mean (see “Mean” on page 9). The variance, the standard deviation, the mean absolute deviation, and the median absolute deviation from the median are not equiv‐ alent estimates, even in the case where the data comes from a nor‐ mal distribution. In fact, the standard deviation is always greater than the mean absolute deviation, which itself is greater than the median absolute deviation. Sometimes, the median absolute devia‐ tion is multiplied by a constant scaling factor to put the MAD on the same scale as the standard deviation in the case of a normal dis‐ tribution. The commonly used factor of 1.4826 means that 50% of the normal distribution fall within the range ±MAD (see, e.g., https://oreil.ly/SfDk2). Estimates Based on Percentiles A different approach to estimating dispersion is based on looking at the spread of the sorted data. Statistics based on sorted (ranked) data are referred to as order statistics. The most basic measure is the range: the difference between the largest and smallest numbers. The minimum and maximum values themselves are useful to know and are helpful in identifying outliers, but the range is extremely sensitive to outliers and not very useful as a general measure of dispersion in the data. To avoid the sensitivity to outliers, we can look at the range of the data after dropping values from each end. Formally, these types of estimates are based on differences 16 | Chapter 1: Exploratory Data Analysis between percentiles. In a data set, the Pth percentile is a value such that at least P per‐ cent of the values take on this value or less and at least (100 – P) percent of the values take on this value or more. For example, to find the 80th percentile, sort the data. Then, starting with the smallest value, proceed 80 percent of the way to the largest value. Note that the median is the same thing as the 50th percentile. The percentile is essentially the same as a quantile, with quantiles indexed by fractions (so the.8 quan‐ tile is the same as the 80th percentile). A common measurement of variability is the difference between the 25th percentile and the 75th percentile, called the interquartile range (or IQR). Here is a simple exam‐ ple: {3,1,5,3,6,7,2,9}. We sort these to get {1,2,3,3,5,6,7,9}. The 25th percentile is at 2.5, and the 75th percentile is at 6.5, so the interquartile range is 6.5 – 2.5 = 4. Software can have slightly differing approaches that yield different answers (see the following tip); typically, these differences are smaller. For very large data sets, calculating exact percentiles can be computationally very expensive since it requires sorting all the data values. Machine learning and statistical software use special algorithms, such as [Zhang-Wang-2007], to get an approximate percentile that can be calculated very quickly and is guaranteed to have a certain accuracy. Percentile: Precise Definition If we have an even number of data (n is even), then the percentile is ambiguous under the preceding definition. In fact, we could take on any value between the order statistics x j and x j + 1 where j satisfies: j j+1 100 * ≤ P < 100 * n n Formally, the percentile is the weighted average: Percentile P = 1 − w x j + wx j+1 for some weight w between 0 and 1. Statistical software has slightly differing approaches to choosing w. In fact, the R function quan tile offers nine different alternatives to compute the quantile. Except for small data sets, you don’t usually need to worry about the precise way a percentile is calculated. At the time of this writ‐ ing, Python’s numpy.quantile supports only one approach, linear interpolation. Estimates of Variability | 17 Example: Variability Estimates of State Population Table 1-3 (repeated from Table 1-2 for convenience) shows the first few rows in the data set containing population and murder rates for each state. Table 1-3. A few rows of the data.frame state of population and murder rate by state State Population Murder rate Abbreviation 1 Alabama 4,779,736 5.7 AL 2 Alaska 710,231 5.6 AK 3 Arizona 6,392,017 4.7 AZ 4 Arkansas 2,915,918 5.6 AR 5 California 37,253,956 4.4 CA 6 Colorado 5,029,196 2.8 CO 7 Connecticut 3,574,097 2.4 CT 8 Delaware 897,934 5.8 DE Using R’s built-in functions for the standard deviation, the interquartile range (IQR), and the median absolute deviation from the median (MAD), we can compute esti‐ mates of variability for the state population data: > sd(state[['Population']]) 6848235 > IQR(state[['Population']]) 4847308 > mad(state[['Population']]) 3849870 The pandas data frame provides methods for calculating standard deviation and quantiles. Using the quantiles, we can easily determine the IQR. For the robust MAD, we use the function robust.scale.mad from the statsmodels package: state['Population'].std() state['Population'].quantile(0.75) - state['Population'].quantile(0.25) robust.scale.mad(state['Population']) The standard deviation is almost twice as large as the MAD (in R, by default, the scale of the MAD is adjusted to be on the same scale as the mean). This is not surprising since the standard deviation is sensitive to outliers. 18 | Chapter 1: Exploratory Data Analysis Key Ideas Variance and standard deviation are the most widespread and routinely reported statistics of variability. Both are sensitive to outliers. More robust metrics include mean absolute deviation, median absolute deviation from the median, and percentiles (quantiles). Further Reading David Lane’s online statistics resource has a section on percentiles. Kevin Davenport has a useful post on R-Bloggers about deviations from the median and their robust properties. Exploring the Data Distribution Each of the estimates we’ve covered sums up the data in a single number to describe the location or variability of the data. It is also useful to explore how the data is dis‐ tributed overall. Key Terms for Exploring the Distribution Boxplot A plot introduced by Tukey as a quick way to visualize the distribution of data. Synonym box and whiskers plot Frequency table A tally of the count of numeric data values that fall into a set of intervals (bins). Histogram A plot of the frequency table with the bins on the x-axis and the count (or pro‐ portion) on the y-axis. While visually similar, bar charts should not be confused with histograms. See “Exploring Binary and Categorical Data” on page 27 for a discussion of the difference. Density plot A smoothed version of the histogram, often based on a kernel density estimate. Exploring the Data Distribution | 19 Percentiles and Boxplots In “Estimates Based on Percentiles” on page 16, we explored how percentiles can be used to measure the spread of the data. Percentiles are also valuable for summarizing the entire distribution. It is common to report the quartiles (25th, 50th, and 75th per‐ centiles) and the deciles (the 10th, 20th, …, 90th percentiles). Percentiles are espe‐ cially valuable for summarizing the tails (the outer range) of the distribution. Popular culture has coined the term one-percenters to refer to the people in the top 99th per‐ centile of wealth. Table 1-4 displays some percentiles of the murder rate by state. In R, this would be produced by the quantile function: quantile(state[['Murder.Rate']], p=c(.05,.25,.5,.75,.95)) 5% 25% 50% 75% 95% 1.600 2.425 4.000 5.550 6.510 The pandas data frame method quantile provides it in Python: state['Murder.Rate'].quantile([0.05, 0.25, 0.5, 0.75, 0.95]) Table 1-4. Percentiles of murder rate by state 5% 25% 50% 75% 95% 1.60 2.42 4.00 5.55 6.51 The median is 4 murders per 100,000 people, although there is quite a bit of variabil‐ ity: the 5th percentile is only 1.6 and the 95th percentile is 6.51. Boxplots, introduced by Tukey [Tukey-1977], are based on percentiles and give a quick way to visualize the distribution of data. Figure 1-2 shows a boxplot of the pop‐ ulation by state produced by R: boxplot(state[['Population']]/1000000, ylab='Population (millions)') pandas provides a number of basic exploratory plots for data frame; one of them is boxplots: ax = (state['Population']/1_000_000).plot.box() ax.set_ylabel('Population (millions)') 20 | Chapter 1: Exploratory Data Analysis Figure 1-2. Boxplot of state populations From this boxplot we can immediately see that the median state population is about 5 million, half the states fall between about 2 million and about 7 million, and there are some high population outliers. The top and bottom of the box are the 75th and 25th percentiles, respectively. The median is shown by the horizontal line in the box. The dashed lines, referred to as whiskers, extend from the top and bottom of the box to indicate the range for the bulk of the data. There are many variations of a boxplot; see, for example, the documentation for the R function boxplot [R-base-2015]. By default, the R function extends the whiskers to the furthest point beyond the box, except that it will not go beyond 1.5 times the IQR. Matplotlib uses the same imple‐ mentation; other software may use a different rule. Any data outside of the whiskers is plotted as single points or circles (often consid‐ ered outliers). Exploring the Data Distribution | 21 Frequency Tables and Histograms A frequency table of a variable divides up the variable range into equally spaced seg‐ ments and tells us how many values fall within each segment. Table 1-5 shows a fre‐ quency table of the population by state computed in R: breaks 100) & (kc_tax.SqFtTotLiving < 3500), :] kc_tax0.shape (432693, 3) Figure 1-8 is a hexagonal binning plot of the relationship between the finished square feet and the tax-assessed value for homes in King County. Rather than plotting points, which would appear as a monolithic dark cloud, we grouped the records into hexagonal bins and plotted the hexagons with a color indicating the number of records in that bin. In this chart, the positive relationship between square feet and tax-assessed value is clear. An interesting feature is the hint of additional bands above the main (darkest) band at the bottom, indicating homes that have the same square footage as those in the main band but a higher tax-assessed value. Figure 1-8 was generated by the powerful R package ggplot2, developed by Hadley Wickham [ggplot2]. ggplot2 is one of several new software libraries for advanced exploratory visual analysis of data; see “Visualizing Multiple Variables” on page 43: ggplot(kc_tax0, (aes(x=SqFtTotLiving, y=TaxAssessedValue))) + stat_binhex(color='white') + theme_bw() + scale_fill_gradient(low='white', high='black') + labs(x='Finished Square Feet', y='Tax-Assessed Value') In Python, hexagonal binning plots are readily available using the pandas data frame method hexbin: ax = kc_tax0.plot.hexbin(x='SqFtTotLiving', y='TaxAssessedValue', gridsize=30, sharex=False, figsize=(5, 4)) ax.set_xlabel('Finished Square Feet') ax.set_ylabel('Tax-Assessed Value') Exploring Two or More Variables | 37 Figure 1-8. Hexagonal binning for tax-assessed value versus finished square feet Figure 1-9 uses contours overlaid onto a scatterplot to visualize the relationship between two numeric variables. The contours are essentially a topographical map to two variables; each contour band represents a specific density of points, increasing as one nears a “peak.” This plot shows a similar story as Figure 1-8: there is a secondary peak “north” of the main peak. This chart was also created using ggplot2 with the built-in geom_density2d function: ggplot(kc_tax0, aes(SqFtTotLiving, TaxAssessedValue)) + theme_bw() + geom_point(alpha=0.1) + geom_density2d(color='white') + labs(x='Finished Square Feet', y='Tax-Assessed Value') The seaborn kdeplot function in Python creates a contour plot: ax = sns.kdeplot(kc_tax0.SqFtTotLiving, kc_tax0.TaxAssessedValue, ax=ax) ax.set_xlabel('Finished Square Feet') ax.set_ylabel('Tax-Assessed Value') 38 | Chapter 1: Exploratory Data Analysis Figure 1-9. Contour plot for tax-assessed value versus finished square feet Other types of charts are used to show the relationship between two numeric vari‐ ables, including heat maps. Heat maps, hexagonal binning, and contour plots all give a visual representation of a two-dimensional density. In this way, they are natural analogs to histograms and density plots. Two Categorical Variables A useful way to summarize two categorical variables is a contingency table—a table of counts by category. Table 1-8 shows the contingency table between the grade of a per‐ sonal loan and the outcome of that loan. This is taken from data provided by Lending Club, a leader in the peer-to-peer lending business. The grade goes from A (high) to G (low). The outcome is either fully paid, current, late, or charged off (the balance of the loan is not expected to be collected). This table shows the count and row percen‐ tages. High-grade loans have a very low late/charge-off percentage as compared with lower-grade loans. Exploring Two or More Variables | 39 Table 1-8. Contingency table of loan grade and status Grade Charged off Current Fully paid Late Total A 1562 50051 20408 469 72490 0.022 0.690 0.282 0.006 0.161 B 5302 93852 31160 2056 132370 0.040 0.709 0.235 0.016 0.294 C 6023 88928 23147 2777 120875 0.050 0.736 0.191 0.023 0.268 D 5007 53281 13681 2308 74277 0.067 0.717 0.184 0.031 0.165 E 2842 24639 5949 1374 34804 0.082 0.708 0.171 0.039 0.077 F 1526 8444 2328 606 12904 0.118 0.654 0.180 0.047 0.029 G 409 1990 643 199 3241 0.126 0.614 0.198 0.061 0.007 Total 22671 321185 97316 9789 450961 Contingency tables can look only at counts, or they can also include column and total percentages. Pivot tables in Excel are perhaps the most common tool used to create contingency tables. In R, the CrossTable function in the descr package produces contingency tables, and the following code was used to create Table 1-8: library(descr) x_tab 0. Do we include all past customers? Do we include refunds? Internal test purchases? Resellers? Both billing agent and customer? Next, we need to specify a sampling procedure. It might be “select 100 customers at random.” Where a sampling from a flow is involved (e.g., real-time customer transac‐ tions or web visitors), timing considerations may be important (e.g., a web visitor at 10 a.m. on a weekday may be different from a web visitor at 10 p.m. on a weekend). In stratified sampling, the population is divided up into strata, and random samples are taken from each stratum. Political pollsters might seek to learn the electoral pref‐ erences of whites, blacks, and Hispanics. A simple random sample taken from the population would yield too few blacks and Hispanics, so those strata could be over‐ weighted in stratified sampling to yield equivalent sample sizes. Size Versus Quality: When Does Size Matter? In the era of big data, it is sometimes surprising that smaller is better. Time and effort spent on random sampling not only reduces bias but also allows greater attention to data exploration and data quality. For example, missing data and outliers may contain useful information. It might be prohibitively expensive to track down missing values or evaluate outliers in millions of records, but doing so in a sample of several thou‐ sand records may be feasible. Data plotting and manual inspection bog down if there is too much data. So when are massive amounts of data needed? The classic scenario for the value of big data is when the data is not only big but sparse as well. Consider the search queries received by Google, where columns are terms, rows are individual search queries, and cell values are either 0 or 1, depending on whether a query contains a term. The goal is to determine the best predicted search destination for a given query. There are over 150,000 words in the English lan‐ guage, and Google processes over one trillion queries per year. This yields a huge matrix, the vast majority of whose entries are “0.” This is a true big data problem—only when such enormous quantities of data are accumulated can effective search results be returned for most queries. And the more data accumulates, the better the results. For popular search terms this is not such a problem—effective data can be found fairly quickly for the handful of extremely pop‐ ular topics trending at a particular time. The real value of modern search technology lies in the ability to return detailed and useful results for a huge variety of search queries, including those that occur with a frequency, say, of only one in a million. Consider the search phrase “Ricky Ricardo and Little Red Riding Hood.” In the early days of the internet, this query would probably have returned results on the band‐ leader Ricky Ricardo, the television show I Love Lucy in which that character 52 | Chapter 2: Data and Sampling Distributions appeared, and the children’s story Little Red Riding Hood. Both of those individual items would have had many searches to refer to, but the combination would have had very few. Later, now that trillions of search queries have been accumulated, this search query returns the exact I Love Lucy episode in which Ricky narrates, in dramatic fash‐ ion, the Little Red Riding Hood story to his infant son in a comic mix of English and Spanish. Keep in mind that the number of actual pertinent records—ones in which this exact search query, or something very similar, appears (together with information on what link people ultimately clicked on)—might need only be in the thousands to be effec‐ tive. However, many trillions of data points are needed to obtain these pertinent records (and random sampling, of course, will not help). See also “Long-Tailed Dis‐ tributions” on page 73. Sample Mean Versus Population Mean The symbol x (pronounced “x-bar”) is used to represent the mean of a sample from a population, whereas μ is used to represent the mean of a population. Why make the distinction? Information about samples is observed, and information about large populations is often inferred from smaller samples. Statisticians like to keep the two things separate in the symbology. Key Ideas Even in the era of big data, random sampling remains an important arrow in the data scientist’s quiver. Bias occurs when measurements or observations are systematically in error because they are not representative of the full population. Data quality is often more important than data quantity, and random sampling can reduce bias and facilitate quality improvement that would otherwise be pro‐ hibitively expensive. Further Reading A useful review of sampling procedures can be found in Ronald Fricker’s chapter “Sampling Methods for Online Surveys” in The SAGE Handbook of Online Research Methods, 2nd ed., edited by Nigel G. Fielding, Raymond M. Lee, and Grant Blank (SAGE Publications, 2016). This chapter includes a review of the modifications to random sampling that are often used for practical reasons of cost or feasibility. Random Sampling and Sample Bias | 53 The story of the Literary Digest poll failure can be found on the Capital Century website. Selection Bias To paraphrase Yogi Berra: if you don’t know what you’re looking for, look hard enough and you’ll find it. Selection bias refers to the practice of selectively choosing data—consciously or unconsciously—in a way that leads to a conclusion that is misleading or ephemeral. Key Terms for Selection Bias Selection bias Bias resulting from the way in which observations are selected. Data snooping Extensive hunting through data in search of something interesting. Vast search effect Bias or nonreproducibility resulting from repeated data modeling, or modeling data with large numbers of predictor variables. If you specify a hypothesis and conduct a well-designed experiment to test it, you can have high confidence in the conclusion. This is frequently not what occurs, however. Often, one looks at available data and tries to discern patterns. But are the patterns real? Or are they just the product of data snooping—that is, extensive hunting through the data until something interesting emerges? There is a saying among statis‐ ticians: “If you torture the data long enough, sooner or later it will confess.” The difference between a phenomenon that you verify when you test a hypothesis using an experiment and a phenomenon that you discover by perusing available data can be

Use Quizgecko on...
Browser
Browser