Fourier Series Formulas PDF

Summary

This document provides formulas for calculating Fourier Series expansions for various intervals and types of functions, including even and odd functions. It covers definitions and applications in different ranges. The content is suitable for undergraduate-level mathematics and engineering courses.

Full Transcript

FOURIER SERIES 1. A function f(x) can be expressed as a Fourier series in (0, 2π) as a0 ∞ f ( x) = + ∑ [a n cos nx + bn sin nx] 2 n=1 2π 1 Where a 0 =...

FOURIER SERIES 1. A function f(x) can be expressed as a Fourier series in (0, 2π) as a0 ∞ f ( x) = + ∑ [a n cos nx + bn sin nx] 2 n=1 2π 1 Where a 0 = π ∫0 f ( x ) dx 2π 1 an = π ∫ f ( x) cos nxdx 0 2π 1 bn = π ∫ f ( x ) sin nxdx 0 2. A function f(x) can be expressed as a Fourier series in (-π, π) as a0 ∞ f ( x) = + ∑ [a n cos nx + bn sin nx] 2 n=1 π 1 Where a0 = π ∫π f ( x ) dx − π 1 an = π − ∫π f ( x ) cos nxdx π 1 bn = π − ∫π f ( x ) sin nxdx 3. A function f(x) can be expressed as a Fourier series in (0, 2L) as a0 ∞  nπx nπx  f ( x) = + ∑ an cos + bn sin 2 n=1  L L  2L 1 Where a 0 = L ∫ 0 f ( x ) dx n πx 2L 1 an = L ∫ 0 f ( x ) cos L dx n πx 2L 1 bn = L ∫ f ( x ) sin 0 L dx 4. A function f(x) can be expressed as a Fourier series in (-L, L) as a0 ∞  nπ x nπ x  f ( x) = + ∑ an cos + bn sin 2 n=1  L L  L 1 a0 = L −L ∫ f ( x ) dx nπx L 1 an = ∫ f ( x ) cos dx L −L L n πx L 1 bn = L ∫ −L f ( x ) sin L dx 5. If a function f(x) is an even function in (-π, π) then its Fourier series expansion contains a0 ∞ cosine terms only, i.e. f ( x) = + ∑ [an cos nx ] 2 n=1 π 2 Where a0 = π ∫ 0 f ( x ) dx π 2 an = π ∫ f ( x ) cos nxdx 0 6. If a function f(x) is an odd function in (-π, π) then its Fourier series expansion contains ∞ sine terms only, i.e. f ( x) = ∑ [ bn sin nx] n=1 π 2 bn = π ∫ f ( x ) sin nxdx 0 7. If a function f(x) is an even function in (-L, L) then its Fourier series expansion contains a0 ∞  nπ x  cosine terms only, i.e. f ( x) = + ∑ an cos 2 n=1  L  L 2 a0 = L ∫ 0 f ( x ) dx nπx L 2 a n = ∫ f ( x ) cos dx L0 L 8. If a function f(x) is an odd function in (-L, L) then its Fourier series expansion contains ∞  nπx  f ( x) = ∑  bn sin L  sine terms only, i.e. n=1  n πx L 2 bn = L ∫ f ( x ) sin 0 L dx 9. A function f(x) can be expressed as a half range Fourier cosine series in (0, π) as a0 ∞ f ( x) = + ∑ [an cos nx ] 2 n=1 π 2 Where a0 = π ∫ 0 f ( x ) dx π 2 an = π ∫ f ( x ) cos nxdx 0 10. A function f(x) can be expressed as a half range Fourier sine series in (0, π) as ∞ f ( x) = ∑ [ bn sin nx] n =1 π 2 bn = π ∫ f ( x ) sin nxdx 0 11. A function f(x) can be expressed as a half range Fourier cosine series in (0, L) as a0 ∞  nπ x  f ( x) = + ∑ an cos 2 n=1  L  L 2 a0 = L ∫ 0 f ( x ) dx nπx L 2 L ∫0 an = f ( x ) cos dx L 12. A function f(x) can be expressed as a half range Fourier sine series in (0, L) as ∞  nπx  f ( x) = ∑  bn sin n=1  L  n πx L 2 bn = L ∫ 0 f ( x ) sin L dx 13. Parseval’s identity in (0, 2π) [ ] 2π  a0 2 ∞ 2  ∫ f ( x) dx = π  + ∑ an + bn  2 2 0  2 n =1  14. Parseval’s identity in (-π, π) [ ]  π  a0 2 ∞ ∫ f ( x) dx = π  + ∑ a n + bn 2 2 2 −π  2 n =1  15. Parseval’s identity in (0, 2L)  a0 2 2  [ ] 2L ∞ ∫ f ( x) dx = L  + ∑ an + bn  2 2 0  2 n =1  16. Parseval’s identity in (-L, L)  a0 2 2  [ ] L ∞ ∫ f ( x) dx = L  + ∑ an + bn  2 2 −L  2 n =1  17. Parseval’s identity in (0, π) provided half range cosine series [ ]  π π  a0 ∞ 2 ∫ f ( x) dx = + ∑ an 2 2  0 2 2 n=1  18. Parseval’s identity in (0, π) provided half range sine series [ ]  π π ∞ ∫ f ( x) dx = ∑ bn 2 2 0 2  n=1  19. Parseval’s identity in (0, L) provided half range cosine series L  a0  [ ] L 2 ∞ ∫ f ( x) dx =  + ∑ an  2 2 0 2 2 n =1  20. Parseval’s identity in (0, L) provided half range sine series L ∞ 2  [ ] L ∫ f ( x) dx =  ∑ bn  2 0 2  n=1 

Use Quizgecko on...
Browser
Browser