Solutions IMP.POINTS PDF

Summary

This document contains important points and concepts on solutions, including types of solutions, expressing concentration, Henry's Law, and examples of ideal and non-ideal solutions. It appears to be a study guide or notes for a chemistry class.

Full Transcript

# Solutions ## Must underline - Brass: CuZn - German silver: CuZn+Ni - Bronze: CuSn - 1ppm of F ions in H<sub>2</sub>O prevents tooth decay - 1.5 ppm of F ions causes the tooth to become mottled - High concentration of F ions can be poisonous - NaF is used in rat poison. ## Types of solutions - **S...

# Solutions ## Must underline - Brass: CuZn - German silver: CuZn+Ni - Bronze: CuSn - 1ppm of F ions in H<sub>2</sub>O prevents tooth decay - 1.5 ppm of F ions causes the tooth to become mottled - High concentration of F ions can be poisonous - NaF is used in rat poison. ## Types of solutions - **Solvent** determines the physical state of the solution. - **Example:** - Solute: CH<sub>3</sub>OH + N<sub>2</sub> gas - Solvent: Camphor in H<sub>2</sub>O - Solute: Hg (l) in Pb (s) - Amalgam of Hg - Solvent: Salt in water - **Expressing Conco. of soln:** - Commercial bleaching soln contains 3.62% (w/v) Sodium hypochlorite (NaOCl) in water. - 35% (w/v) soln of ethylene glycol (anti-freeze) is used in cars for cooling the engine. At this conc. anti-freeze lowers the FP of H<sub>2</sub>O to 255.4K (17.6°C). - Conc. of pollutants in H<sub>2</sub>O (or) atmosphere is expressed in terms of µg/mL (or) PPM. - **Henry's Law:** - P = Kn x - Slope of this line = Henry's Law constant - Mol of He in cyclo-hexane: - **Order of Kn/bar at 298K:** - H<sub>2</sub> < He < CH<sub>4</sub> < N<sub>2</sub> = CH<sub>2</sub>=CH<sub>2</sub> < C<sub>2</sub>H<sub>2</sub> < Ar - **Order of solubility of gas:** - H<sub>2</sub> > CH<sub>4</sub> > N<sub>2</sub> = CH<sub>2</sub>=CH<sub>2</sub> > CO<sub>2</sub> > Ar - **Order of K<sub>H</sub>:** - Ar > C<sub>2</sub>H<sub>2</sub> > CO<sub>2</sub> > CH<sub>2</sub>=CH<sub>2</sub> > N<sub>2</sub> > CH<sub>4</sub> > H<sub>2</sub> - **Order of K<sub>H</sub> at 293K:** - O<sub>2</sub> < H<sub>2</sub> < N<sub>2</sub> < He: 538 - **Solubility:** - <sup>o</sup>Order of K<sub>H</sub> at 293K: - O<sub>2</sub> > H<sub>2</sub> > N<sub>2</sub> > He. - **Tanks used by Scuba divers**: - Filled with air diluted with He: 11.7%, N<sub>2</sub>: 56-24-8%, O<sub>2</sub>: 32.1% - **According to Roult's Law:** P<sub>1</sub> = P<sub>1</sub><sup>o</sup>X<sub>1</sub> - **According to Henry's Law:** P = K<sub>H</sub>X - **Henry's Law becomes a special case in Roult's Law, which K<sub>H</sub> becomes equal to P<sub>1</sub><sup>o</sup>.** - **If a soln obeys R.L for all conc, it's vop would vary linearly from zero to the V.P of Pure Solvent.** - **M.F of Solvent:** - **Example: for Ideal Solutions:** - **ΔH=0, ΔV=0, ΔS=0, ΔG=0** - Bromo ethane + Chloroethane - n-hexane + n-heptane - Benzene + Toluene. - **Example: for +ve deviated non ideal soln:** - **P<sub>obs</sub> > P<sub>ideal</sub>**: Ethanol + Acetone (ΔH>0, ΔS>0, ΔV>0, ΔG<0) - CS<sub>2</sub> + acetone - **Example: for -ve deviated non-ideal soln:** - **P<sub>obs</sub> < P<sub>ideal</sub>:** Phenol + Acetone, H<sub>2</sub>NO, H<sub>2</sub>O - Chloroform + Acetone, HNO<sub>3</sub>, H<sub>2</sub>O - **Example: For Min. Boiling Azeotropic Mix:** - 95% C<sub>2</sub>H<sub>5</sub>OH + 5% H<sub>2</sub>O - **Example: For Max. Boiling Azeotropic Mix:** - 68% HNO<sub>3</sub> + 32% H<sub>2</sub>O with a B.P of 393.5K. - **Highest K<sub>H</sub> = CCl<sub>4</sub>** - H<sub>2</sub>O = 1.86 - C<sub>2</sub>H<sub>5</sub>OH = 0.52 ## **Isotonic Solutions** - Π = CRT - Π<sub>1</sub> = Π<sub>2</sub> - n<sub>1</sub>V<sub>1</sub> = n<sub>2</sub>V<sub>2</sub> - ΠV = nRT - M<sub>1</sub>V<sub>1</sub> = M<sub>2</sub>V<sub>2</sub> (if V<sub>1</sub> = V<sub>2</sub>, M<sub>1</sub> = M<sub>2</sub> ). - ΠV = WRT - M<sub>1</sub>M<sub>2</sub> - W<sub>1</sub> = W<sub>2</sub> ## **Abnormal Colligative Properties** - **Obs (or) Exp (or) abnormal C.P.** - **Normal (or) Theo (or) Normal C.P.** - **Obs (or) Exp (or) abnormal M.M.** - **Normal (or) Theo (or) cal. M.M.** - **i:** No. of particles after dissociation/association - **i:** No. of particles before disso/association - **For association i < 1** - **For dissociation i > 1** - **i = 1 for non electrolyte** - **i > 1 for electrolyte.** ## **Formula Sheet** - **Henry's Law:** P = Kx - **Roulli's Law (for volatile liquids):** - **Ag. phase:** - P = P<sub>A</sub>X<sub>A</sub> - P<sub>B</sub> = P<sub>B</sub>X<sub>B</sub> - P<sub>T</sub> = P<sub>A</sub> + P<sub>B</sub> - P<sub>T</sub> = P<sub>A</sub>X<sub>A</sub> + P<sub>B</sub>X<sub>B</sub> - P<sub>T</sub> = P<sub>A</sub> + X<sub>B</sub>(P<sub>B</sub>-P<sub>A</sub>) - P<sub>T</sub> = P<sub>B</sub> + X<sub>A</sub>(P<sub>A</sub> - P<sub>B</sub>) - R.L.V.P = P<sub>A</sub><sup>o</sup>P<sub>S</sub>, X<sub>B</sub> = m<sub>B</sub>/ m<sub>A</sub>+ m<sub>B</sub> - **Vapour phase:** - P<sub>A</sub> = P<sub>T</sub>Y<sub>A</sub> - P<sub>B</sub> = P<sub>T</sub>Y<sub>B</sub> - P = P<sub>S</sub>(1-X<sub>B</sub>) - P = P<sub>S</sub>X<sub>B</sub> - **Osmotic pressure method is widely used to determine molar mass of Proteins, Polymers & other molecules.** - **Value of i** - Salt: 0.1M, 0.01M, 0.001M - i value for complete dissociation of solute - NaD: 1.87, 1.94, 1.97: 2 - Ku: 1.85: 1.94: 1.98: 2 - MgSo<sub>4</sub>: 1.21: 1.53: 1.82: 2 - K<sub>2</sub>SO<sub>4</sub>: 2.32: 2.7: 2.84: 3 - **As dil ↑, Degree of dissociation ↑, Partily ↑** - **K<sub>H</sub> value depends on nature of solvent:** - K<sub>H</sub> = RXM.WH xT<sup>-1</sup> / O<sub>2</sub> - △T<sub>z</sub> = T<sub>z</sub>- T<sub>z</sub><sup>o</sup> = K<sub>Z</sub>M - K<sub>H</sub> value depends on nature of solvent - K<sub>z</sub> = R x 1000 x T<sub>1</sub><sup>-1</sup> x T<sub>2</sub><sup>-1</sup> - △T<sub>b</sub> = T<sub>b</sub> - T<sub>b</sub><sup>o</sup> = K<sub>b</sub>M - IT = CRT - IT = iCRT - **Polymers:** - **M.M of polymer** - **H<sub>2</sub>O Protein**

Use Quizgecko on...
Browser
Browser