Solutions IMP.POINTS PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document contains important points and concepts on solutions, including types of solutions, expressing concentration, Henry's Law, and examples of ideal and non-ideal solutions. It appears to be a study guide or notes for a chemistry class.
Full Transcript
# Solutions ## Must underline - Brass: CuZn - German silver: CuZn+Ni - Bronze: CuSn - 1ppm of F ions in H<sub>2</sub>O prevents tooth decay - 1.5 ppm of F ions causes the tooth to become mottled - High concentration of F ions can be poisonous - NaF is used in rat poison. ## Types of solutions - **S...
# Solutions ## Must underline - Brass: CuZn - German silver: CuZn+Ni - Bronze: CuSn - 1ppm of F ions in H<sub>2</sub>O prevents tooth decay - 1.5 ppm of F ions causes the tooth to become mottled - High concentration of F ions can be poisonous - NaF is used in rat poison. ## Types of solutions - **Solvent** determines the physical state of the solution. - **Example:** - Solute: CH<sub>3</sub>OH + N<sub>2</sub> gas - Solvent: Camphor in H<sub>2</sub>O - Solute: Hg (l) in Pb (s) - Amalgam of Hg - Solvent: Salt in water - **Expressing Conco. of soln:** - Commercial bleaching soln contains 3.62% (w/v) Sodium hypochlorite (NaOCl) in water. - 35% (w/v) soln of ethylene glycol (anti-freeze) is used in cars for cooling the engine. At this conc. anti-freeze lowers the FP of H<sub>2</sub>O to 255.4K (17.6°C). - Conc. of pollutants in H<sub>2</sub>O (or) atmosphere is expressed in terms of µg/mL (or) PPM. - **Henry's Law:** - P = Kn x - Slope of this line = Henry's Law constant - Mol of He in cyclo-hexane: - **Order of Kn/bar at 298K:** - H<sub>2</sub> < He < CH<sub>4</sub> < N<sub>2</sub> = CH<sub>2</sub>=CH<sub>2</sub> < C<sub>2</sub>H<sub>2</sub> < Ar - **Order of solubility of gas:** - H<sub>2</sub> > CH<sub>4</sub> > N<sub>2</sub> = CH<sub>2</sub>=CH<sub>2</sub> > CO<sub>2</sub> > Ar - **Order of K<sub>H</sub>:** - Ar > C<sub>2</sub>H<sub>2</sub> > CO<sub>2</sub> > CH<sub>2</sub>=CH<sub>2</sub> > N<sub>2</sub> > CH<sub>4</sub> > H<sub>2</sub> - **Order of K<sub>H</sub> at 293K:** - O<sub>2</sub> < H<sub>2</sub> < N<sub>2</sub> < He: 538 - **Solubility:** - <sup>o</sup>Order of K<sub>H</sub> at 293K: - O<sub>2</sub> > H<sub>2</sub> > N<sub>2</sub> > He. - **Tanks used by Scuba divers**: - Filled with air diluted with He: 11.7%, N<sub>2</sub>: 56-24-8%, O<sub>2</sub>: 32.1% - **According to Roult's Law:** P<sub>1</sub> = P<sub>1</sub><sup>o</sup>X<sub>1</sub> - **According to Henry's Law:** P = K<sub>H</sub>X - **Henry's Law becomes a special case in Roult's Law, which K<sub>H</sub> becomes equal to P<sub>1</sub><sup>o</sup>.** - **If a soln obeys R.L for all conc, it's vop would vary linearly from zero to the V.P of Pure Solvent.** - **M.F of Solvent:** - **Example: for Ideal Solutions:** - **ΔH=0, ΔV=0, ΔS=0, ΔG=0** - Bromo ethane + Chloroethane - n-hexane + n-heptane - Benzene + Toluene. - **Example: for +ve deviated non ideal soln:** - **P<sub>obs</sub> > P<sub>ideal</sub>**: Ethanol + Acetone (ΔH>0, ΔS>0, ΔV>0, ΔG<0) - CS<sub>2</sub> + acetone - **Example: for -ve deviated non-ideal soln:** - **P<sub>obs</sub> < P<sub>ideal</sub>:** Phenol + Acetone, H<sub>2</sub>NO, H<sub>2</sub>O - Chloroform + Acetone, HNO<sub>3</sub>, H<sub>2</sub>O - **Example: For Min. Boiling Azeotropic Mix:** - 95% C<sub>2</sub>H<sub>5</sub>OH + 5% H<sub>2</sub>O - **Example: For Max. Boiling Azeotropic Mix:** - 68% HNO<sub>3</sub> + 32% H<sub>2</sub>O with a B.P of 393.5K. - **Highest K<sub>H</sub> = CCl<sub>4</sub>** - H<sub>2</sub>O = 1.86 - C<sub>2</sub>H<sub>5</sub>OH = 0.52 ## **Isotonic Solutions** - Π = CRT - Π<sub>1</sub> = Π<sub>2</sub> - n<sub>1</sub>V<sub>1</sub> = n<sub>2</sub>V<sub>2</sub> - ΠV = nRT - M<sub>1</sub>V<sub>1</sub> = M<sub>2</sub>V<sub>2</sub> (if V<sub>1</sub> = V<sub>2</sub>, M<sub>1</sub> = M<sub>2</sub> ). - ΠV = WRT - M<sub>1</sub>M<sub>2</sub> - W<sub>1</sub> = W<sub>2</sub> ## **Abnormal Colligative Properties** - **Obs (or) Exp (or) abnormal C.P.** - **Normal (or) Theo (or) Normal C.P.** - **Obs (or) Exp (or) abnormal M.M.** - **Normal (or) Theo (or) cal. M.M.** - **i:** No. of particles after dissociation/association - **i:** No. of particles before disso/association - **For association i < 1** - **For dissociation i > 1** - **i = 1 for non electrolyte** - **i > 1 for electrolyte.** ## **Formula Sheet** - **Henry's Law:** P = Kx - **Roulli's Law (for volatile liquids):** - **Ag. phase:** - P = P<sub>A</sub>X<sub>A</sub> - P<sub>B</sub> = P<sub>B</sub>X<sub>B</sub> - P<sub>T</sub> = P<sub>A</sub> + P<sub>B</sub> - P<sub>T</sub> = P<sub>A</sub>X<sub>A</sub> + P<sub>B</sub>X<sub>B</sub> - P<sub>T</sub> = P<sub>A</sub> + X<sub>B</sub>(P<sub>B</sub>-P<sub>A</sub>) - P<sub>T</sub> = P<sub>B</sub> + X<sub>A</sub>(P<sub>A</sub> - P<sub>B</sub>) - R.L.V.P = P<sub>A</sub><sup>o</sup>P<sub>S</sub>, X<sub>B</sub> = m<sub>B</sub>/ m<sub>A</sub>+ m<sub>B</sub> - **Vapour phase:** - P<sub>A</sub> = P<sub>T</sub>Y<sub>A</sub> - P<sub>B</sub> = P<sub>T</sub>Y<sub>B</sub> - P = P<sub>S</sub>(1-X<sub>B</sub>) - P = P<sub>S</sub>X<sub>B</sub> - **Osmotic pressure method is widely used to determine molar mass of Proteins, Polymers & other molecules.** - **Value of i** - Salt: 0.1M, 0.01M, 0.001M - i value for complete dissociation of solute - NaD: 1.87, 1.94, 1.97: 2 - Ku: 1.85: 1.94: 1.98: 2 - MgSo<sub>4</sub>: 1.21: 1.53: 1.82: 2 - K<sub>2</sub>SO<sub>4</sub>: 2.32: 2.7: 2.84: 3 - **As dil ↑, Degree of dissociation ↑, Partily ↑** - **K<sub>H</sub> value depends on nature of solvent:** - K<sub>H</sub> = RXM.WH xT<sup>-1</sup> / O<sub>2</sub> - △T<sub>z</sub> = T<sub>z</sub>- T<sub>z</sub><sup>o</sup> = K<sub>Z</sub>M - K<sub>H</sub> value depends on nature of solvent - K<sub>z</sub> = R x 1000 x T<sub>1</sub><sup>-1</sup> x T<sub>2</sub><sup>-1</sup> - △T<sub>b</sub> = T<sub>b</sub> - T<sub>b</sub><sup>o</sup> = K<sub>b</sub>M - IT = CRT - IT = iCRT - **Polymers:** - **M.M of polymer** - **H<sub>2</sub>O Protein**