RD Sharma Solutions for Class 11 Maths Chapter 5 - Trigonometric Functions PDF
Document Details
Tags
Summary
These are class 11 maths solutions to trigonometric function problems. The document includes solutions to exercises and problems related to trigonometric identities.
Full Transcript
RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions EXERCISE 5.1 PAGE NO: 5.18 Prove the following identities: 1. sec4 x – sec2 x = tan4 x + tan2 x Solution: Let us consider LHS: sec4 x – s...
RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions EXERCISE 5.1 PAGE NO: 5.18 Prove the following identities: 1. sec4 x – sec2 x = tan4 x + tan2 x Solution: Let us consider LHS: sec4 x – sec2 x (sec2 x)2 – sec2 x By using the formula, sec2 θ = 1 + tan2 θ. (1 + tan2 x) 2 – (1 + tan2 x) 1 + 2tan2 x + tan4 x – 1 - tan2 x tan4 x + tan2 x = RHS ∴ LHS = RHS Hence proved. 2. sin6 x + cos6 x = 1 – 3 sin2 x cos2 x Solution: Let us consider LHS: sin6 x + cos6 x (sin2 x) 3 + (cos2 x) 3 By using the formula, a3 + b3 = (a + b) (a2 + b2 – ab) (sin2 x + cos2 x) [(sin2 x) 2 + (cos2 x) 2 – sin2 x cos2 x] By using the formula, sin2 x + cos2 x = 1 and a2 + b2 = (a + b) 2 – 2ab 1 × [(sin2 x + cos2 x) 2 – 2sin2 x cos2 x – sin2 x cos2 x 12 - 3sin2 x cos2 x 1 - 3sin2 x cos2 x = RHS ∴ LHS = RHS Hence proved. 3. (cosec x – sin x) (sec x – cos x) (tan x + cot x) = 1 Solution: Let us consider LHS: (cosec x – sin x) (sec x – cos x) (tan x + cot x) By using the formulas cosec θ = 1/sin θ; sec θ = 1/cos θ; tan θ = sin θ / cos θ; cot θ = cos θ / sin θ Now, RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions 1 = RHS ∴ LHS = RHS Hence proved. 4. cosec x (sec x – 1) – cot x (1 – cos x) = tan x – sin x Solution: Let us consider LHS: cosec x (sec x – 1) – cot x (1 – cos x) By using the formulas cosec θ = 1/sin θ; sec θ = 1/cos θ; tan θ = sin θ / cos θ; cot θ = cos θ / sin θ Now, By using the formula, 1 – cos2x = sin2x; RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions = RHS ∴ LHS = RHS Hence Proved. 5. Solution: Let us consider the LHS: By using the formula, cosec θ = 1/sin θ; sec θ = 1/cos θ; Now, RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions sin x = RHS ∴ LHS = RHS Hence Proved. 6. Solution: Let us consider the LHS: By using the formula, tan θ = sin θ / cos θ; cot θ = cos θ / sin θ Now, RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions By using the formula, a3 - b3 = (a - b) (a2 + b2 + ab) By using the formula, cosec θ = 1/sin θ, sec θ = 1/cos θ; cosec x × sec x + 1 sec x cosec x + 1 =RHS ∴ LHS = RHS Hence Proved. 7. Solution: Let us consider LHS: By using the formula a3 ± b3 = (a ± b) (a2 + b2∓ ab) RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions We know, sin2x + cos2x = 1. 1 - sinx cosx + 1 + sinx cosx 2 = RHS ∴ LHS = RHS Hence Proved. 8. (sec x sec y + tan x tan y)2 – (sec x tan y + tan x sec y)2 = 1 Solution: Let us consider LHS: (sec x sec y + tan x tan y)2 – (sec x tan y + tan x sec y)2 Expanding the above equation we get, [(sec x sec y)2 + (tan x tan y)2 + 2 (sec x sec y) (tan x tan y)] – [(sec x tan y)2 + (tan x sec y)2 + 2 (sec x tan y) (tan x sec y)] [sec2 x sec2 y + tan2 x tan2 y + 2 (sec x sec y) (tan x tan y)] – [sec2 x tan2 y + tan2 x sec2 y + 2 (sec2 x tan2 y) (tan x sec y)] sec2 x sec2 y - sec2 x tan2 y + tan2 x tan2 y - tan2 x sec2 y sec2 x (sec2 y - tan2 y) + tan2 x (tan2 y - sec2 y) sec2 x (sec2 y - tan2 y) - tan2 x (sec2 y - tan2 y) We know, sec2 x – tan2 x = 1. sec2 x × 1 – tan2 x × 1 sec2 x – tan2 x 1 = RHS ∴ LHS = RHS Hence proved. 9. Solution: Let us Consider RHS: RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions = LHS ∴ LHS = RHS Hence Proved. 10. Solution: Let us consider LHS: By using the formulas, 1 + tan2x = sec2x and 1 + cot2x = cosec2x RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions = RHS ∴ LHS = RHS Hence Proved. 11. Solution: Let us consider LHS: By using the formula, tan θ = sin θ / cos θ; cot θ = cos θ / sin θ Now, RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions By using the formula, a3 + b3 = (a + b) (a2 + b2- ab) We know, sin2 x + cos2 x = 1. 1 – 1 + sin x cos x Sin x cos x = RHS ∴ LHS = RHS Hence proved. 12. Solution: Let us consider LHS: By using the formula, cosec θ = 1/sin θ, sec θ = 1/cos θ; RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions = RHS ∴ LHS = RHS Hence proved. 13. (1 + tan α tan β) 2 + (tan α – tan β) 2 = sec2 α sec2 β Solution: Let us consider LHS: (1 + tan α tan β) 2 + (tan α – tan β) 2 1+ tan2 α tan2 β + 2 tan α tan β + tan2 α + tan2 β – 2 tan α tan β 1 + tan2 α tan2 β + tan2 α + tan2 β tan2 α (tan2 β + 1) + 1 (1 + tan2 β) (1 + tan2 β) (1 + tan2 α) We know, 1 + tan2 θ = sec2 θ So, sec2 α sec2 β = RHS ∴ LHS = RHS Hence proved. RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions EXERCISE 5.2 PAGE NO: 5.25 1. Find the values of the other five trigonometric functions in each of the following: (i) cot x = 12/5, x in quadrant III (ii) cos x = -1/2, x in quadrant II (iii) tan x = 3/4, x in quadrant III (iv) sin x = 3/5, x in quadrant I Solution: (i) cot x = 12/5, x in quadrant III In third quadrant, tan x and cot x are positive. sin x, cos x, sec x, cosec x are negative. By using the formulas, tan x = 1/cot x = 1/(12/5) = 5/12 cosec x = -√(1 + cot2 x) = -√(1 + (12/5)2) = -√(25+144)/25 = -√(169/25) = -13/5 sin x = 1/cosec x = 1/(-13/5) = -5/13 cos x = - √(1 - sin2 x) = - √(1 – (-5/13)2) = - √(169-25)/169 = - √(144/169) = -12/13 sec x = 1/cos x = 1/(-12/13) = -13/12 ∴ sin x = -5/13, cos x = -12/13, tan x = 5/12, cosec x = -13/5, sec x = -13/12 (ii) cos x = -1/2, x in quadrant II In second quadrant, sin x and cosec x are positive. tan x, cot x, cos x, sec x are negative. RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions By using the formulas, sin x = √(1 – cos2 x) = √(1 – (-1/2)2) = √(4-1)/4 = √(3/4) = √3/2 tan x = sin x/cos x = (√3/2)/(-1/2) = -√3 cot x = 1/tan x = 1/-√3 = -1/√3 cosec x = 1/sin x = 1/(√3/2) = 2/√3 sec x = 1/cos x = 1/(-1/2) = -2 ∴ sin x = √3/2, tan x = -√3, cosec x = 2/√3, cot x = -1/√3 sec x = -2 (iii) tan x = 3/4, x in quadrant III In third quadrant, tan x and cot x are positive. sin x, cos x, sec x, cosec x are negative. By using the formulas, sin x = √(1 – cos2 x) = - √(1-(-4/5)2) = - √(25-16)/25 = - √(9/25) = - 3/5 cos x = 1/sec x = 1/(-5/4) = -4/5 cot x = 1/tan x RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions = 1/(3/4) = 4/3 cosec x = 1/sin x = 1/(-3/5) = -5/3 sec x = -√(1 + tan2 x) = - √(1+(3/4)2) = - √(16+9)/16 = - √ (25/16) = -5/4 ∴ sin x = -3/5, cos x = -4/5, cosec x = -5/3, sec x = -5/4, cot x = 4/3 (iv) sin x = 3/5, x in quadrant I In first quadrant, all trigonometric ratios are positive. So, by using the formulas, tan x = sin x/cos x = (3/5)/(4/5) = 3/4 cosec x = 1/sin x = 1/(3/5) = 5/3 cos x = √(1-sin2 x) = √(1 – (-3/5)2) = √(25-9)/25 = √(16/25) = 4/5 sec x = 1/cos x = 1/(4/5) = 5/4 cot x = 1/tan x = 1/(3/4) = 4/3 RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions ∴ cos x = 4/5, tan x = 3/4, cosec x = 5/3, sec x = 5/4, cot x = 4/3 2. If sin x = 12/13 and lies in the second quadrant, find the value of sec x + tan x. Solution: Given: Sin x = 12/13 and x lies in the second quadrant. We know, in second quadrant, sin x and cosec x are positive and all other ratios are negative. By using the formulas, Cos x = √(1-sin2 x) = - √(1-(12/13)2) = - √(1- (144/169)) = - √(169-144)/169 = -√(25/169) = - 5/13 We know, tan x = sin x/cos x sec x = 1/cos x Now, tan x = (12/13)/(-5/13) = -12/5 sec x = 1/(-5/13) = -13/5 Sec x + tan x = -13/5 + (-12/5) = (-13-12)/5 = -25/5 = -5 ∴ Sec x + tan x = -5 3. If sin x = 3/5, tan y = 1/2 and π/2 < x< π< y< 3π/2 find the value of 8 tan x -√5 sec y. Solution: Given: sin x = 3/5, tan y = 1/2 and π/2 < x< π< y< 3π/2 We know that, x is in second quadrant and y is in third quadrant. In second quadrant, cos x and tan x are negative. RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions In third quadrant, sec y is negative. By using the formula, cos x = - √(1-sin2 x) tan x = sin x/cos x Now, cos x = - √(1-sin2 x) = - √(1 – (3/5)2) = - √(1 – 9/25) = - √((25-9)/25) = - √(16/25) = - 4/5 tan x = sin x/cos x = (3/5)/(-4/5) = 3/5 × -5/4 = -3/4 We know that sec y = - √(1+tan2 y) = - √(1 + (1/2)2) = - √(1 + 1/4) = - √((4+1)/4) = - √(5/4) = - √5/2 Now, 8 tan x - √5 sec y = 8(-3/4) - √5(-√5/2) = -6 + 5/2 = (-12+5)/2 = -7/2 ∴ 8 tan x - √5 sec y = -7/2 4. If sin x + cos x = 0 and x lies in the fourth quadrant, find sin x and cos x. Solution: Given: Sin x + cos x = 0 and x lies in fourth quadrant. Sin x = -cos x Sin x/cos x = -1 So, tan x = -1 (since, tan x = sin x/cos x) We know that, in fourth quadrant, cos x and sec x are positive and all other ratios are negative. RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions By using the formulas, Sec x = √(1 + tan2 x) Cos x = 1/sec x Sin x = - √(1- cos2 x) Now, Sec x = √(1 + tan2 x) = √(1 + (-1)2) = √2 Cos x = 1/sec x = 1/√2 Sin x = - √(1 – cos2 x) = - √(1 – (1/√2)2) = - √(1 – (1/2)) = - √((2-1)/2) = - √(1/2) = -1/√2 ∴ sin x = -1/√2 and cos x = 1/√2 5. If cos x = -3/5 and π