Engineering Mathematics I - Unit 1 Notes PDF

Summary

These notes cover key theorems in differential calculus, including Rolle's Theorem, Lagrange's Mean Value Theorem, Cauchy's Mean Value Theorem, and Taylor's Theorem. The notes also include examples and solutions for each theorem.

Full Transcript

For more Subjects https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐”๐ง๐ข๐ญ ๐ˆ โˆถ ๐ƒ๐ข๐Ÿ๐Ÿ๐ž๐ซ๐ž๐ง๐ญ๐ข๐š๐ฅ ๐‚๐š๐ฅ๐œ๐ฎ๐ฅ๐ฎ๐ฌ ๐‘๐จ๐ฅ๐ฅ๐žโ€™๐ฌ ๐“๐ก๐ž๐จ๐ซ๐ž๐ฆ: Let f(x) be a function defined in [a, b] i) function f(x) is continuous on the closed interval [a, b] ii) differentiable...

For more Subjects https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐”๐ง๐ข๐ญ ๐ˆ โˆถ ๐ƒ๐ข๐Ÿ๐Ÿ๐ž๐ซ๐ž๐ง๐ญ๐ข๐š๐ฅ ๐‚๐š๐ฅ๐œ๐ฎ๐ฅ๐ฎ๐ฌ ๐‘๐จ๐ฅ๐ฅ๐žโ€™๐ฌ ๐“๐ก๐ž๐จ๐ซ๐ž๐ฆ: Let f(x) be a function defined in [a, b] i) function f(x) is continuous on the closed interval [a, b] ii) differentiable on the open interval (a, b) iii) f(a) = f(b) then there exists at least one point ๐‘ฅ = ๐‘ in the open interval (a, b) such that fโ€ฒ(c) = 0. ๐†๐ž๐จ๐ฆ๐ž๐ญ๐ซ๐ข๐œ ๐ข๐ง๐ญ๐ž๐ซ๐ฉ๐ซ๐ž๐ญ๐š๐ญ๐ข๐จ๐ง There is a point c on the interval (๐‘Ž, ๐‘) where the tangent to the graph of the function is horizontal. ๐‹๐š๐ ๐ซ๐š๐ง๐ ๐žโ€™๐ฌ ๐Œ๐ž๐š๐ง ๐•๐š๐ฅ๐ฎ๐ž ๐“๐ก๐ž๐จ๐ซ๐ž๐ฆ: Let f(x) be a function defined in [a, b] i) Function f(x) is continuous on a closed interval [a , b] ii) Function f(x) differentiable on the open interval (a, b) then there is at least one point x = c on this interval (a, b), such that ๐‘“(๐‘) โˆ’ ๐‘“(๐‘Ž) ๐‘“ โ€ฒ (๐‘) = ๐‘โˆ’๐‘Ž ๐†๐ž๐จ๐ฆ๐ž๐ญ๐ซ๐ข๐œ ๐ˆ๐ง๐ญ๐ž๐ซ๐ฉ๐ซ๐ž๐ญ๐š๐ญ๐ข๐จ๐ง The chord passing through the points of the graph corresponding to the ends of the segment a and b has the slope equal to ๐‘˜= ๐‘“(๐‘) โˆ’ ๐‘“(๐‘Ž) tan ๐›ผ = ๐‘โˆ’๐‘Ž Then there is a point ๐‘ฅ = ๐‘ inside the interval [a , b] where the tangent to the graph is parallel to the chord. "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐‚๐š๐ฎ๐œ๐ก๐ฒโ€™๐ฌ ๐Œ๐ž๐š๐ง ๐•๐š๐ฅ๐ฎ๐ž ๐“๐ก๐ž๐จ๐ซ๐ž๐ฆ: Let f(x) be a function defined in [a, b] i) Function f(x) and g(๐‘ฅ) is continuous on a closed interval [a , b] ii) Function f(x) and g(๐‘ฅ) differentiable on the open interval (a, b) iii) g โ€ฒ (๐‘ฅ) โ‰  0 for all value of x in (a, b) then there is at least one point x = c on this interval (a, b), such that ๐‘“ โ€ฒ (๐‘) ๐‘“(๐‘) โˆ’ ๐‘“(๐‘Ž) = g โ€ฒ (๐‘) g(๐‘) โˆ’ g(๐‘Ž) *********** Example 1: Verify Rolleโ€™s Mean Value theorem for ๐’‡(๐’™) = ๐’™๐Ÿ โˆ’ ๐Ÿ“๐’™ + ๐Ÿ’ ๐‘–๐‘› [๐Ÿ, ๐Ÿ’] Solution : ๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’ 5๐‘ฅ + 4 ๐ด๐‘  ๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’ 5๐‘ฅ + 4 is a polynomial Every polynomial is continuous and differentiable everywhere โˆด ๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’ 5๐‘ฅ + 4 is continuous in [1 , 4] and differetiable in (1, 4) ๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’ 5๐‘ฅ + 4 ๐‘“(๐‘Ž) = ๐‘“(1) = 12 โˆ’ 5(1) + 4 = 1 โˆ’ 5 + 4 = 0 ๐‘“(๐‘) = ๐‘“(4) = 42 โˆ’ 5(4) + 4 = 16 โˆ’ 20 + 4 = 0 ๐‘“(๐‘Ž) = ๐‘“(๐‘) All condition of Rolleโ€™s Mean Value theorem satisfied. then their exist at least one c โˆˆ (1, 4) such that ๐‘“ โ€ฒ (๐‘) = 0 ๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’ 5๐‘ฅ + 4 ๐‘“ โ€ฒ (๐‘ฅ) = 2๐‘ฅ โˆ’ 5 put ๐‘ฅ = ๐‘ ๐‘“ โ€ฒ (๐‘) = 2๐‘ โˆ’ 5 5 โˆด ๐‘“ โ€ฒ (๐‘) = 0 โ‡’ 2๐‘ โˆ’ 5 = 0 โˆด 2๐‘ = 5 โˆด ๐‘ = = 2.5 2 โˆด ๐‘ = 2.5 โˆˆ (1, 4) hence Lagrangeโ€™s Mean Value theorem verified. ********** "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ Example 2: Verify Rolleโ€™s Mean Value theorem for ๐œ‹ 5๐œ‹ ๐‘“(๐‘ฅ) = ๐‘’ ๐‘ฅ (๐‘ ๐‘–๐‘› ๐‘ฅ โˆ’ ๐‘๐‘œ๐‘  ๐‘ฅ) ๐‘–๐‘› [ , ] 4 4 Solution : ๐‘“(๐‘ฅ) = ๐‘’ ๐‘ฅ (๐‘ ๐‘–๐‘› ๐‘ฅ โˆ’ ๐‘๐‘œ๐‘  ๐‘ฅ) ๐ด๐‘  ๐‘“(๐‘ฅ) is a combination of exponational and sine, cosine functions Exponational and Sine, Cosine function are continuous and differentiable ๐œ‹ 5๐œ‹ ๐œ‹ 5๐œ‹ โˆด ๐‘“(๐‘ฅ) = ๐‘’ ๐‘ฅ (๐‘ ๐‘–๐‘› ๐‘ฅ โˆ’ ๐‘๐‘œ๐‘  ๐‘ฅ) is continuous in [ , ] and differetiable in ( , ) 4 4 4 4 ๐‘“(๐‘ฅ) = ๐‘’ ๐‘ฅ (๐‘ ๐‘–๐‘› ๐‘ฅ โˆ’ ๐‘๐‘œ๐‘  ๐‘ฅ) = ๐œ‹ ๐œ‹ ๐œ‹ ๐œ‹ ๐œ‹ 1 1 ๐‘“(๐‘Ž) = ๐‘“ ( ) = ๐‘’ 4 (๐‘ ๐‘–๐‘› โˆ’ ๐‘๐‘œ๐‘  ) = ๐‘’ 4 ( โˆ’ )=0 4 4 4 โˆš2 โˆš2 5๐œ‹ 5๐œ‹ 5๐œ‹ 5๐œ‹ 5๐œ‹ 1 1 ๐‘“(๐‘) = ๐‘“ ( ) = ๐‘’ 4 (๐‘ ๐‘–๐‘› โˆ’ ๐‘๐‘œ๐‘  )=๐‘’4 (โˆ’ โˆ’ (โˆ’ )) = 0 4 4 4 โˆš2 โˆš2 ๐‘“(๐‘Ž) = ๐‘“(๐‘) All condition of Rolleโ€™s Mean Value theorem satisfied. ๐œ‹ 5๐œ‹ then their exist at least one c โˆˆ ( , ) such that ๐‘“ โ€ฒ (๐‘) = 0 4 4 ๐‘“(๐‘ฅ) = ๐‘’ ๐‘ฅ (๐‘ ๐‘–๐‘› ๐‘ฅ โˆ’ ๐‘๐‘œ๐‘  ๐‘ฅ) ๐‘“ โ€ฒ (๐‘ฅ) = ๐‘’ ๐‘ฅ (๐‘๐‘œ๐‘  ๐‘ฅ + ๐‘ ๐‘–๐‘› ๐‘ฅ) + ๐‘’ ๐‘ฅ (๐‘ ๐‘–๐‘› ๐‘ฅ โˆ’ ๐‘๐‘œ๐‘  ๐‘ฅ) ๐‘“ โ€ฒ (๐‘ฅ) = 2๐‘’ ๐‘ฅ sin ๐‘ฅ put ๐‘ฅ = ๐‘ ๐‘“ โ€ฒ (๐‘) = 2๐‘’ ๐‘ sin ๐‘ โˆด ๐‘“ โ€ฒ (๐‘) = 0 โ‡’ 2๐‘’ ๐‘ sin ๐‘ = 0 โˆด sin ๐‘ = 0 โˆด ๐‘ = sinโˆ’1 0 โˆด ๐‘ = ๐‘›๐œ‹ ๐‘› = 0,1,2,3 โ€ฆ. ๐‘ = 0, ๐œ‹, 2๐œ‹, 3๐œ‹, 4๐œ‹ โ€ฆ ๐œ‹ 5๐œ‹ โˆด๐‘=๐œ‹ โˆˆ( , ) hence Rolleโ€™s Mean Value theorem verified. 4 4 "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ Example 3: Verify Lagrangeโ€™s Mean Value theorem for ๐’‡(๐’™) = (๐’™ โˆ’ ๐Ÿ)(๐’™ โˆ’ ๐Ÿ)(๐’™ โˆ’ ๐Ÿ‘) ๐‘–๐‘› [๐ŸŽ ๐Ÿ‘] Solution : ๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ 1)(๐‘ฅ โˆ’ 2)(๐‘ฅ โˆ’ 3) ๐‘“(๐‘ฅ) = ๐‘ฅ 3 โˆ’ 6๐‘ฅ 2 + 11๐‘ฅ โˆ’ 6 ๐ด๐‘  ๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ 1)(๐‘ฅ โˆ’ 2)(๐‘ฅ โˆ’ 3) is a polynomial Every polynomial is continuous and differentiable everywhere โˆด ๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ 1)(๐‘ฅ โˆ’ 2)(๐‘ฅ โˆ’ 3) is continuous in [0, 3] and differetiable in (0 3) All condition of Lagrangeโ€™s Mean Value theorem satisfied. ๐‘“(๐‘)โˆ’ ๐‘“(๐‘Ž) then their exist at least one c โˆˆ (๐‘Ž, ๐‘) such that ๐‘“ โ€ฒ (๐‘) = ๐‘โˆ’๐‘Ž ๐‘“(๐‘ฅ) = ๐‘ฅ 3 โˆ’ 6๐‘ฅ 2 + 11๐‘ฅ โˆ’ 6 ๐‘“(๐‘Ž) = ๐‘“(0) = (0)3 โˆ’ 6(0)2 + 11(0) โˆ’ 6 = โˆ’6 ๐‘“(๐‘) = ๐‘“(3) = (3)3 โˆ’ 6(3)2 + 11(3) โˆ’ 6 = 27 โˆ’ 54 + 33 โˆ’ 6 = 0 ๐‘“ โ€ฒ (๐‘ฅ) = 3๐‘ฅ 2 โˆ’ 12๐‘ฅ + 11 put ๐‘ฅ = ๐‘ ๐‘“ โ€ฒ (๐‘) = 3๐‘ 2 โˆ’ 12๐‘ + 11 ๐‘“(๐‘)โˆ’ ๐‘“(๐‘Ž) ๐‘“ โ€ฒ (๐‘) = ๐‘โˆ’๐‘Ž 0โˆ’(โˆ’6) 6 โˆด 3๐‘ 2 โˆ’ 12๐‘ + 11 = = 3โˆ’0 3 โˆด 3๐‘ 2 โˆ’ 12๐‘ + 11 = 2 โˆด 3๐‘ 2 โˆ’ 12๐‘ + 11 โˆ’ 2 = 0 โˆด 3๐‘ 2 โˆ’ 12๐‘ + 9 = 0 โˆด ๐‘ 2 โˆ’ 4๐‘ + 3 = 0 โˆด ๐‘ 2 โˆ’ 3๐‘ โˆ’ ๐‘ + 3 = 0 โˆด ๐‘(๐‘ โˆ’ 3) โˆ’ 1(๐‘ โˆ’ 3) = 0 โˆด (๐‘ โˆ’ 3)(๐‘ โˆ’ 1) = 0 โˆด ๐‘ = 3 ,1 โˆด ๐‘ = 1 โˆˆ (0, 3) hence Lagrangeโ€™s Mean Value theorem verified. "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ Example 4: Verify Lagrangeโ€™s Mean Value theorem for ๐’‡(๐’™) = ๐’๐’๐’ˆ ๐’™ ๐‘–๐‘› [๐Ÿ, ๐’†] Solution : ๐‘“(๐‘ฅ) = ๐‘™๐‘œ๐‘” ๐‘ฅ ๐ด๐‘  ๐‘“(๐‘ฅ) = ๐‘™๐‘œ๐‘” ๐‘ฅ is a logarithmic function Every logarithmic function is continuous and differentiable in its domain โˆด ๐‘“(๐‘ฅ) = ๐‘™๐‘œ๐‘” ๐‘ฅ is continuous in [1, e] and differetiable in (1 e) All condition of Lagrangeโ€™s Mean Value theorem satisfied. ๐‘“(๐‘)โˆ’ ๐‘“(๐‘Ž) then their exist at least one c โˆˆ (1 e) such that ๐‘“ โ€ฒ (๐‘) = ๐‘โˆ’๐‘Ž ๐‘“(๐‘ฅ) = ๐‘™๐‘œ๐‘” ๐‘ฅ ๐‘“(๐‘Ž) = ๐‘“(0) = ๐‘™๐‘œ๐‘” 1 = 0 ๐‘“(๐‘) = ๐‘“(๐‘’) = ๐‘™๐‘œ๐‘” ๐‘’ = 1 1 1 ๐‘“ โ€ฒ (๐‘ฅ) = put ๐‘ฅ = ๐‘ ๐‘“ โ€ฒ (๐‘) = ๐‘ฅ ๐‘ 1 1โˆ’0 = โˆด๐‘ = ๐‘’โˆ’1 ๐‘ ๐‘’โˆ’1 โˆด ๐‘ = ๐‘’ โˆ’ 1 โˆˆ (1 e) hence Lagrangeโ€™s Mean Value theorem verified. *********** Example 5: Verify Cauchyโ€™s Mean value theorem theorem for ๐’‡(๐’™) = ๐’™๐Ÿ‘ ๐‘Ž๐‘›๐‘‘ ๐ (๐’™) = ๐’™๐Ÿ’ ๐‘–๐‘› [๐ŸŽ ๐Ÿ] Solution : ๐‘“(๐‘ฅ) = ๐‘ฅ 3 and g(๐‘ฅ) = ๐‘ฅ 4 ๐ด๐‘  ๐‘“(๐‘ฅ) = ๐‘ฅ 3 and g(๐‘ฅ) = ๐‘ฅ 4 are a polynomials Every polynomial is continuous and differentiable everywhere โˆด ๐‘“(๐‘ฅ) = ๐‘ฅ 3 and g(๐‘ฅ) = ๐‘ฅ 4 is continuous in [0, 2] and differetiable in (0 2) As g(๐‘ฅ) = ๐‘ฅ 4 g โ€ฒ (๐‘ฅ) = 4๐‘ฅ 3 โ‰  0 for ๐‘ฅ in (0, 2) All condition of Cauchyโ€™s Mean Value theorem satisfied. "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐‘“โ€ฒ (๐‘) ๐‘“(๐‘)โˆ’ ๐‘“(๐‘Ž) then their exist at least point c โˆˆ (0, 2) such that = gโ€ฒ (c) g(๐‘)โˆ’ g(๐‘Ž) ๐ด๐‘  ๐‘“(๐‘ฅ) = ๐‘ฅ 3 and g(๐‘ฅ) = ๐‘ฅ 4 ๐‘“(๐‘) = ๐‘“(2) = 23 = 8 and g(๐‘) = g(2) = 24 = 16 ๐‘“(๐‘Ž) = ๐‘“(0) = 0 and g(๐‘Ž) = g(0) = 0 f โ€ฒ (๐‘ฅ) = 3๐‘ฅ 2 and g โ€ฒ (๐‘ฅ) = 4๐‘ฅ 3 Put x = c f โ€ฒ (๐‘) = 3๐‘ 2 and g โ€ฒ (๐‘) = 4๐‘ 3 3๐‘ 2 8โˆ’ 0 = 4๐‘ 3 16 โˆ’ 0 3 1 6 3 = โˆด 4c = 6 โˆด c= โˆด c= 4๐‘ 2 4 2 3 โˆด c= โˆˆ (0, 2) hence Cauchyโ€™s Mean value theorem verified. 2 *********** "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐„๐ฑ๐ฉ๐š๐ง๐ฌ๐ข๐จ๐ง ๐จ๐Ÿ ๐…๐ฎ๐ง๐œ๐ญ๐ข๐จ๐ง ๐“๐š๐ฒ๐ฅ๐จ๐ซ โ€ฒ ๐ฌ ๐“๐ก๐ž๐จ๐ซ๐ž๐ฆ: Statement โˆถ Let ๐‘“(๐‘Ž + โ„Ž) be a function of h which can be expanded in powers of h and let the expansion be differentiable term by term any number of times w. r. t. h โ„Ž2 โ„Ž3 โ„Ž๐‘› then ๐‘“(๐‘Ž + โ„Ž) = ๐‘“(๐‘Ž) + โ„Ž ๐‘“ โ€ฒ (๐‘Ž) + ๐‘“ โ€ฒโ€ฒ (๐‘Ž) + ๐‘“ โ€ฒโ€ฒโ€ฒ (๐‘Ž) + โ€ฆ โ€ฆ + ๐‘“ ๐‘› (๐‘Ž)+... 2! 3! ๐‘›! ๐„๐ฑ๐ฉ๐š๐ง๐ฌ๐ข๐จ๐ง ๐จ๐Ÿ ๐Ÿ(๐ฑ + ๐ก) ๐ข๐ง ๐ฉ๐จ๐ฐ๐ž๐ซ ๐จ๐Ÿ โ€ฒ๐กโ€ฒ โ„Ž2 โ„Ž3 โ„Ž๐‘› ๐‘“(๐‘ฅ + โ„Ž) = ๐‘“(๐‘ฅ) + โ„Ž ๐‘“ โ€ฒ (๐‘ฅ) + ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) + ๐‘“ โ€ฒโ€ฒโ€ฒ (๐‘ฅ) + โ€ฆ โ€ฆ.. + ๐‘“ ๐‘› (๐‘ฅ) + โ€ฆ โ€ฆ. 2! 3! ๐‘›! ๐„๐ฑ๐ฉ๐š๐ง๐ฌ๐ข๐จ๐ง ๐จ๐Ÿ ๐Ÿ(๐ฑ + ๐ก) ๐ข๐ง ๐ฉ๐จ๐ฐ๐ž๐ซ ๐จ๐Ÿ โ€ฒ๐ฑโ€ฒ ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ๐‘› ๐‘“(๐‘ฅ + โ„Ž) = ๐‘“(โ„Ž) + ๐‘ฅ ๐‘“ โ€ฒ (โ„Ž) + ๐‘“ โ€ฒโ€ฒ (โ„Ž) + ๐‘“ โ€ฒโ€ฒโ€ฒ (โ„Ž) + โ€ฆ โ€ฆ.. + ๐‘“ ๐‘› (โ„Ž) + โ€ฆ โ€ฆ. 2! 3! ๐‘›! ๐„๐ฑ๐ฉ๐š๐ง๐ฌ๐ข๐จ๐ง ๐Ÿ(๐ฑ) ๐ข๐ง ๐ฉ๐จ๐ฐ๐ž๐ซ ๐จ๐Ÿ (๐ฑ โˆ’ ๐š) = ๐ŸŽ ๐จ๐ซ ๐š๐›๐จ๐ฎ๐ญ ๐ฑ = ๐š (๐‘ฅ โ€“ ๐‘Ž)2 (๐‘ฅ โ€“ ๐‘Ž)3 (๐‘ฅ โ€“ ๐‘Ž)๐‘› ๐‘“(๐‘ฅ) = ๐‘“(๐‘Ž) + (๐‘ฅ โˆ’ ๐‘Ž) ๐‘“ โ€ฒ (๐‘Ž) + ๐‘“ โ€ฒโ€ฒ (๐‘Ž) + ๐‘“ โ€ฒโ€ฒโ€ฒ (๐‘Ž) + โ€ฆ + ๐‘“ ๐‘› (๐‘Ž) โ€ฆ. 2! 3! ๐‘›! ******** "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ Example 1: Using Taylorโ€™s theorem express (x โˆ’ 2)4 โˆ’ 3(x โˆ’ 2)3 + 4(x โˆ’ 2)2 + 5 in powers of x Solution: Let f(x + h) = (x โˆ’ 2)4 โˆ’ 3(x โˆ’ 2)3 + 4(x โˆ’ 2)2 + 5 Here ๐‘ฅ + โ„Ž = ๐‘ฅ โˆ’ 2 โˆด โ„Ž = โˆ’2 By using Taylorโ€™s theorem, ๐„๐ฑ๐ฉ๐š๐ง๐ฌ๐ข๐จ๐ง ๐จ๐Ÿ ๐Ÿ(๐ฑ + ๐ก) ๐ข๐ง ๐ฉ๐จ๐ฐ๐ž๐ซ ๐จ๐Ÿ ๐ฑ โ€ฒ (โ„Ž) ๐‘ฅ 2 โ€ฒโ€ฒ ๐‘ฅ 3 โ€ฒโ€ฒโ€ฒ ๐‘ฅ 4 โ€ฒ๐‘ฃ ๐‘“(๐‘ฅ + โ„Ž) = ๐‘“(โ„Ž) + ๐‘ฅ ๐‘“ + ๐‘“ (โ„Ž) + ๐‘“ (โ„Ž) + ๐‘“ (โ„Ž) + โ€ฆ โ€ฆ โ€ฆ โ€ฆ 2! 3! 4! ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ4 ๐‘“(๐‘ฅ โˆ’ 2) = ๐‘“(โˆ’2) + ๐‘ฅ ๐‘“ โ€ฒ (โˆ’2) + ๐‘“ โ€ฒโ€ฒ (โˆ’2) + ๐‘“ โ€ฒโ€ฒโ€ฒ (โˆ’2) + ๐‘“ โ€ฒ๐‘ฃ (โˆ’2) + โ€ฆ โ€ฆ (๐ด) 2! 3! 4! โˆด ๐‘“(๐‘ฅ) = ๐‘ฅ 4 โˆ’ 3๐‘ฅ 3 + 4๐‘ฅ 2 + 5 ๐‘“(๐‘ฅ) = ๐‘ฅ 4 โˆ’ 3๐‘ฅ 3 + 4๐‘ฅ 2 + 5 โˆด ๐‘“(โ„Ž) = ๐‘“(โˆ’2) = 61 ๐‘“ โ€ฒ (๐‘ฅ) = 4๐‘ฅ 3 โˆ’ 9๐‘ฅ 2 + 8๐‘ฅ โˆด ๐‘“ โ€ฒ (โ„Ž) = ๐‘“ โ€ฒ (โˆ’2) = โˆ’84 ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) = 12๐‘ฅ 2 โˆ’ 18๐‘ฅ + 8 โˆด ๐‘“ โ€ฒโ€ฒ (โˆ’2) = ๐‘“ โ€ฒโ€ฒ (โˆ’2) = 92 ๐‘“ โ€ฒโ€ฒโ€ฒ (๐‘ฅ) = 24๐‘ฅ โˆ’ 18 โˆด ๐‘“ โ€ฒโ€ฒโ€ฒ (โˆ’2) = ๐‘“ โ€ฒโ€ฒโ€ฒ (โˆ’2) = โˆ’66 ๐‘“ โ€ฒ๐‘ฃ (๐‘ฅ) = 24 โˆด ๐‘“ โ€ฒ๐‘ฃ (โˆ’2) = ๐‘“ โ€ฒ๐‘ฃ (โˆ’2) = 24 ๐‘“ ๐‘ฃ (๐‘ฅ) = 0 โˆด ๐‘“ ๐‘ฃ (โˆ’2) = ๐‘“ ๐‘ฃ (โˆ’2) = 0 Equation (A) becomes ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ4 ๐‘“(๐‘ฅ โˆ’ 2) = 61 + ๐‘ฅ (โˆ’84) + (92) + (โˆ’66) + (24) 2 6 24 ๐‘“(๐‘ฅ โˆ’ 2) = 61 โˆ’ 84๐‘ฅ + 46๐‘ฅ 2 โˆ’ 11๐‘ฅ 3 + ๐‘ฅ 4 ********* "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ Example 2: Using Taylorโ€™s theorem express (๐‘ฅ + 2)4 + 3(๐‘ฅ + 2)3 + (๐‘ฅ + 2) + 7 in powers of x Solution: Let ๐‘“(๐‘ฅ + โ„Ž) = (๐‘ฅ + 2)4 + 3(๐‘ฅ + 2)3 + (๐‘ฅ + 2) + 7 Here ๐‘ฅ + โ„Ž = ๐‘ฅ + 2 โˆดโ„Ž=2 By using Taylorโ€™s theorem, ๐„๐ฑ๐ฉ๐š๐ง๐ฌ๐ข๐จ๐ง ๐จ๐Ÿ ๐Ÿ(๐ฑ + ๐ก) ๐ข๐ง ๐ฉ๐จ๐ฐ๐ž๐ซ ๐จ๐Ÿ ๐ฑ โ€ฒ (โ„Ž) ๐‘ฅ 2 โ€ฒโ€ฒ ๐‘ฅ 3 โ€ฒโ€ฒโ€ฒ ๐‘ฅ 4 โ€ฒ๐‘ฃ ๐‘“(๐‘ฅ + โ„Ž) = ๐‘“(โ„Ž) + ๐‘ฅ ๐‘“ + ๐‘“ (โ„Ž) + ๐‘“ (โ„Ž) + ๐‘“ (โ„Ž) + โ€ฆ โ€ฆ โ€ฆ โ€ฆ 2! 3! 4! ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ4 ๐‘“(๐‘ฅ โˆ’ 2) = ๐‘“(2) + ๐‘ฅ ๐‘“ โ€ฒ (2) + ๐‘“ โ€ฒโ€ฒ (2) + ๐‘“ โ€ฒโ€ฒโ€ฒ (2) + ๐‘“ โ€ฒ๐‘ฃ (2) + โ€ฆ โ€ฆ (๐ด) 2! 3! 4! โˆด ๐‘“(๐‘ฅ) = ๐‘ฅ 4 + 3๐‘ฅ 3 + ๐‘ฅ + 7 ๐‘“(๐‘ฅ) = ๐‘ฅ 4 + 3๐‘ฅ 3 + ๐‘ฅ + 7 โˆด ๐‘“(2) = 49 ๐‘“ โ€ฒ (๐‘ฅ) = 4๐‘ฅ 3 + 9๐‘ฅ 2 + 1 โˆด ๐‘“ โ€ฒ (2) = 69 ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) = 12๐‘ฅ 2 + 18๐‘ฅ โˆด ๐‘“ โ€ฒโ€ฒ (2) = 84 ๐‘“ โ€ฒโ€ฒโ€ฒ (๐‘ฅ) = 24๐‘ฅ + 18 โˆด ๐‘“ โ€ฒโ€ฒโ€ฒ (2) = 66 ๐‘“ โ€ฒ๐‘ฃ (๐‘ฅ) = 24 โˆด ๐‘“ โ€ฒ๐‘ฃ (2) = 24 ๐‘“ ๐‘ฃ (๐‘ฅ) = 0 โˆด ๐‘“ ๐‘ฃ (2) = 0 Equation (A) becomes ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ4 ๐‘“(๐‘ฅ + 2) = 49 + ๐‘ฅ (69) + (84) + (66) + (24) + 0 2 6 24 ๐‘“(๐‘ฅ + 2) = 49 + 69๐‘ฅ + 42๐‘ฅ 2 + 11๐‘ฅ 3 + ๐‘ฅ 4 ********** "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ Example 3: Using Taylorโ€™s theorem express 49 + 69๐‘ฅ + 42๐‘ฅ 2 + 11๐‘ฅ 3 + ๐‘ฅ 4 in powers of (๐‘ฅ + 2) Solution: Let ๐‘“(๐‘ฅ) = 49 + 69๐‘ฅ + 42๐‘ฅ 2 + 11๐‘ฅ 3 + ๐‘ฅ 4 Here ๐‘ฅโˆ’๐‘Ž =๐‘ฅ+2 โˆด โˆ’๐‘Ž = 2 โˆด ๐‘Ž = โˆ’2 By using Taylorโ€™s theorem, ๐„๐ฑ๐ฉ๐š๐ง๐ฌ๐ข๐จ๐ง ๐Ÿ(๐ฑ) ๐ข๐ง ๐ฉ๐จ๐ฐ๐ž๐ซ ๐จ๐Ÿ (๐ฑ โˆ’ ๐š) ๐จ๐ซ ๐š๐›๐จ๐ฎ๐ญ ๐ฑ = ๐š (๐‘ฅ โ€“ ๐‘Ž)2 (๐‘ฅ โ€“ ๐‘Ž)3 (๐‘ฅ โ€“ ๐‘Ž)๐‘› ๐‘“(๐‘ฅ) = ๐‘“(๐‘Ž) + (๐‘ฅ โˆ’ ๐‘Ž) ๐‘“ โ€ฒ (๐‘Ž) + ๐‘“ โ€ฒโ€ฒ (๐‘Ž) + ๐‘“ โ€ฒโ€ฒโ€ฒ (๐‘Ž) + โ€ฆ + ๐‘“ ๐‘› (๐‘Ž) โ€ฆ. 2! 3! ๐‘›! (๐‘ฅ + 2)2 (๐‘ฅ + 2)3 (๐‘ฅ + 2)4 ๐‘“ (๐‘ฅ ) = ๐‘“(โˆ’2) + (๐‘ฅ + 2)๐‘“ โ€ฒ (โˆ’2) + ๐‘“ โ€ฒโ€ฒ (โˆ’2) + ๐‘“ โ€ฒโ€ฒโ€ฒ (โˆ’2) + ๐‘“ โ€ฒ๐‘ฃ (โˆ’2) โ€ฆ. (๐ด) 2 6 24 โˆด ๐‘“(๐‘ฅ) = 49 + 69๐‘ฅ + 42๐‘ฅ 2 + 11๐‘ฅ 3 + ๐‘ฅ 4 ๐‘“(๐‘ฅ) = 49 + 69๐‘ฅ + 42๐‘ฅ 2 + 11๐‘ฅ 3 + ๐‘ฅ 4 โˆด ๐‘“(โˆ’2) = 7 ๐‘“ โ€ฒ (๐‘ฅ) = 69 + 84๐‘ฅ + 33๐‘ฅ 2 + 4๐‘ฅ 3 โˆด ๐‘“ โ€ฒ (โˆ’2) = 1 ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) = 84 + 66๐‘ฅ + 12๐‘ฅ 2 โˆด ๐‘“ โ€ฒโ€ฒ (โˆ’2) = 0 ๐‘“ โ€ฒโ€ฒโ€ฒ (๐‘ฅ) = 66 + 24๐‘ฅ โˆด ๐‘“ โ€ฒโ€ฒโ€ฒ (โˆ’2) = 18 ๐‘“ โ€ฒ๐‘ฃ (๐‘ฅ) = 24 โˆด ๐‘“ โ€ฒ๐‘ฃ (โˆ’2) = 24 ๐‘“ ๐‘ฃ (๐‘ฅ) = 0 โˆด ๐‘“ ๐‘ฃ (โˆ’2) = 0 Equation (A) becomes (๐‘ฅ + 2)2 (๐‘ฅ+2)3 (๐‘ฅ+2)4 ๐‘“(๐‘ฅ ) = 7 + (๐‘ฅ + 2)1 + (0) + 18 + 24 2 6 24 ๐‘“(๐‘ฅ ) = 7 + (๐‘ฅ + 2) + 3(๐‘ฅ + 2)3 + (๐‘ฅ + 2)4 ********** "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ Example 4: Using Taylorโ€™s theorem express ๐‘ฅ 3 + 7๐‘ฅ 2 + ๐‘ฅ โˆ’ 6 in powers of (๐‘ฅ โˆ’ 3) Solution: Let ๐‘“(๐‘ฅ) = ๐‘ฅ 3 + 7๐‘ฅ 2 + ๐‘ฅ โˆ’ 6 Here ๐‘ฅ โˆ’ ๐‘Ž = ๐‘ฅ โˆ’ 3 โˆด๐‘Ž=3 By using Taylorโ€™s theorem, ๐„๐ฑ๐ฉ๐š๐ง๐ฌ๐ข๐จ๐ง ๐Ÿ(๐ฑ) ๐ข๐ง ๐ฉ๐จ๐ฐ๐ž๐ซ ๐จ๐Ÿ (๐ฑ โˆ’ ๐š) ๐จ๐ซ ๐š๐›๐จ๐ฎ๐ญ ๐ฑ = ๐š (๐‘ฅ โ€“ ๐‘Ž)2 (๐‘ฅ โ€“ ๐‘Ž)3 (๐‘ฅ โ€“ ๐‘Ž)๐‘› ๐‘“(๐‘ฅ) = ๐‘“(๐‘Ž) + (๐‘ฅ โˆ’ ๐‘Ž) ๐‘“ โ€ฒ (๐‘Ž) + ๐‘“ โ€ฒโ€ฒ (๐‘Ž) + ๐‘“ โ€ฒโ€ฒโ€ฒ (๐‘Ž) + โ€ฆ + ๐‘“ ๐‘› (๐‘Ž) โ€ฆ. 2! 3! ๐‘›! (๐‘ฅ โ€“ 3)2 (๐‘ฅ โ€“ 3)3 (๐‘ฅ โ€“ 3)4 ๐‘“(๐‘ฅ ) = ๐‘“(3) + (๐‘ฅ โˆ’ 3)๐‘“ โ€ฒ (3) + ๐‘“ โ€ฒโ€ฒ (โ„Ž) + ๐‘“ โ€ฒโ€ฒโ€ฒ (3) + ๐‘“ โ€ฒ๐‘ฃ (3)+...(A) 2! 3! 4! โˆด ๐‘“(๐‘ฅ) = ๐‘ฅ 3 + 7๐‘ฅ 2 + ๐‘ฅ โˆ’ 6 ๐‘“(๐‘ฅ) = ๐‘ฅ 3 + 7๐‘ฅ 2 + ๐‘ฅ โˆ’ 6 โˆด ๐‘“(3) = 87 ๐‘“ โ€ฒ (๐‘ฅ) = 3๐‘ฅ 2 + 14๐‘ฅ + 1 โˆด ๐‘“ โ€ฒ (3) = 70 ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) = 6๐‘ฅ + 14 โˆด ๐‘“ โ€ฒโ€ฒ (3) = 32 ๐‘“ โ€ฒโ€ฒโ€ฒ (๐‘ฅ) = 6 โˆด ๐‘“ โ€ฒโ€ฒโ€ฒ (3) = 6 ๐‘“ โ€ฒ๐‘ฃ (๐‘ฅ) = 0 โˆด ๐‘“ โ€ฒ๐‘ฃ (3) = 0 Equation (A) becomes (๐‘ฅ โˆ’ 3)2 (๐‘ฅ โˆ’ 3)3 ๐‘“(๐‘ฅ ) = 87 + (๐‘ฅ โˆ’ 3)69 + 32 + 6 2 6 ๐‘“(๐‘ฅ ) = 87 + 70(๐‘ฅ โˆ’ 3) + 16(๐‘ฅ โˆ’ 3)2 + (๐‘ฅ โˆ’ 3)3 ********** Example 5: Using Taylorโ€™s theorem express (๐‘ฅ โˆ’ 1)4 โˆ’ 3(๐‘ฅ โˆ’ 1)3 + 4(๐‘ฅ โˆ’ 1)2 + 5 in powers of x. Example 6: Using Taylorโ€™s theorem express 2(๐‘ฅ โˆ’ 2)3 + 19(๐‘ฅ โˆ’ 2)2 + 53(๐‘ฅ โˆ’ 2) + 40 in powers of x. Example 7: Using Taylorโ€™s theorem express 3๐‘ฅ 3 โˆ’ 2๐‘ฅ 2 + ๐‘ฅ โˆ’ 6 in powers of ๐‘ฅ โˆ’ 2 Example 8: Using Taylorโ€™s theorem express 1 + 2๐‘ฅ + 3๐‘ฅ 2 + 4๐‘ฅ 3 in powers of ๐‘ฅ + 1 "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐Œ๐š๐œ๐ฅ๐š๐ฎ๐ซ๐ข๐งโ€ฒ ๐ฌ ๐“๐ก๐ž๐จ๐ซ๐ž๐ฆ: ๐’๐ญ๐š๐ญ๐ž๐ฆ๐ž๐ง๐ญ: Let f(x) be a function of x which can be expanded in ascending powers and let the expansion be differentiable term by term any number of times then โ€ฒ (0) ๐‘ฅ 2 โ€ฒโ€ฒ ๐‘ฅ 3 โ€ฒโ€ฒโ€ฒ ๐‘ฅ๐‘› ๐‘› ๐‘“(๐‘ฅ) = ๐‘“(0) + ๐‘ฅ ๐‘“ + ๐‘“ (0) + ๐‘“ (0) + โ€ฆ โ€ฆ.. + ๐‘“ (0) + โ€ฆ โ€ฆ. 2! 3! ๐‘›! ๐๐จ๐ญ๐ž: 1) If y = f(x) then f(0) = (y)0 , f โ€ฒ (0) = (y1 )0 , f โ€ฒโ€ฒ (0) = (y2 )0 โ€ฆ โ€ฆ f n (0) = (yn )0 Maclaurinโ€ฒ s Theorem stated as x2 x3 xn y = (y)0 + x(y1 )0 + (y2 )0 + (y3 )0 + โ€ฆ โ€ฆ.. + (yn )0 + โ€ฆ โ€ฆ. 2! 3! n! xn n 2) The (n + 1)๐‘กโ„Ž term of expansion f (0) is called general term. n! ex + eโˆ’x ex โˆ’ eโˆ’x 3) cosh x = sinh x = 2 2 d 4) (cosh x) = sinh x dx d 5) (sinh x) = cosh x dx 6) โˆซ sinh x ๐‘‘๐‘ฅ = cosh ๐‘ฅ + c 7) โˆซ cosh x ๐‘‘๐‘ฅ = sinh ๐‘ฅ + c "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ Example : Expansion of ex Solution : ๐ฟ๐‘’๐‘ก ๐‘“(๐‘ฅ) = ๐‘’ ๐‘ฅ by Maclaurinโ€ฒ s theorem โ€ฒ (0) ๐‘ฅ 2 โ€ฒโ€ฒ ๐‘ฅ 3 โ€ฒโ€ฒโ€ฒ ๐‘ฅ๐‘› ๐‘› ๐‘“(๐‘ฅ) = ๐‘“(0) + ๐‘ฅ ๐‘“ + ๐‘“ (0) + ๐‘“ (0) + โ€ฆโ€ฆ..+ ๐‘“ (0) + โ€ฆ โ€ฆ. 2! 3! ๐‘›! ๐‘“(๐‘ฅ) = ๐‘’ ๐‘ฅ โˆด ๐‘“(0) = ๐‘’ 0 = 1 ๐‘“ โ€ฒ (๐‘ฅ) = ๐‘’ ๐‘ฅ โˆด ๐‘“ โ€ฒ (0) = ๐‘’ 0 = 1 ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) = ๐‘’ ๐‘ฅ โˆด ๐‘“ โ€ฒโ€ฒ (0) = ๐‘’ 0 = 1 ๐‘“ โ€ฒโ€ฒโ€ฒ (๐‘ฅ) = ๐‘’ ๐‘ฅ โˆด ๐‘“ โ€ฒโ€ฒโ€ฒ (0) = ๐‘’ 0 = 1 ๐‘“ โ€ฒ๐‘ฃ (๐‘ฅ) = ๐‘’ ๐‘ฅ โˆด ๐‘“ โ€ฒ๐‘ฃ (0) = ๐‘’ 0 = 1 ๐‘“ ๐‘ฃ (๐‘ฅ) = ๐‘’ ๐‘ฅ โˆด ๐‘“ ๐‘ฃ (0) = ๐‘’ 0 = 1 โ€ฆโ€ฆโ€ฆโ€ฆ.. ๐‘“ ๐‘› (๐‘ฅ) = ๐‘’ ๐‘ฅ โˆด ๐‘“ ๐‘› (0) = ๐‘’ 0 = 1 by Maclaurinโ€ฒ s Theorem: โ€ฒ (0) ๐‘ฅ 2 โ€ฒโ€ฒ ๐‘ฅ 3 โ€ฒโ€ฒโ€ฒ ๐‘ฅ๐‘› ๐‘› ๐‘“(๐‘ฅ) = ๐‘“(0) + ๐‘ฅ ๐‘“ + ๐‘“ (0) + ๐‘“ (0) + โ€ฆ โ€ฆ.. + ๐‘“ (0) + โ€ฆ โ€ฆ. 2! 3! ๐‘›! ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ๐‘› ๐‘“(๐‘ฅ) = 1 + ๐‘ฅ (1) + 1 + 1 + โ€ฆ โ€ฆ.. + 1 + โ€ฆ โ€ฆ. 2! 3! ๐‘›! ๐‘ฅ ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ4 ๐‘ฅ๐‘› ๐‘“(๐‘ฅ) = ๐‘’ = 1 + ๐‘ฅ + + + โ€ฆโ€ฆ..+ + โ€ฆ โ€ฆ. 2! 3! 4! ๐‘›! ********** "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ Example : Expansion of eโˆ’x Solution : ๐ฟ๐‘’๐‘ก ๐‘“(๐‘ฅ) = ๐‘’ โˆ’๐‘ฅ by Maclaurinโ€ฒ s Theorem: โ€ฒ (0) ๐‘ฅ 2 โ€ฒโ€ฒ ๐‘ฅ 3 โ€ฒโ€ฒโ€ฒ ๐‘ฅ๐‘› ๐‘› ๐‘“(๐‘ฅ) = ๐‘“(0) + ๐‘ฅ ๐‘“ + ๐‘“ (0) + ๐‘“ (0) + โ€ฆโ€ฆ..+ ๐‘“ (0) + โ€ฆ โ€ฆ. 2! 3! ๐‘›! ๐‘“(๐‘ฅ) = ๐‘’ โˆ’๐‘ฅ โˆด ๐‘“(0) = ๐‘’ 0 =1 ๐‘“ โ€ฒ (๐‘ฅ) = โˆ’๐‘’ โˆ’๐‘ฅ โˆด ๐‘“ โ€ฒ (0) = โˆ’๐‘’ 0 = โˆ’1 ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) = ๐‘’ โˆ’๐‘ฅ โˆด ๐‘“ โ€ฒโ€ฒ (0) = ๐‘’ 0 =1 ๐‘“ โ€ฒโ€ฒโ€ฒ (๐‘ฅ) = โˆ’๐‘’ โˆ’๐‘ฅ โˆด ๐‘“ โ€ฒโ€ฒโ€ฒ (0) = โˆ’๐‘’ 0 = โˆ’1 ๐‘“ โ€ฒ๐‘ฃ (๐‘ฅ) = ๐‘’ โˆ’๐‘ฅ โˆด ๐‘“ โ€ฒ๐‘ฃ (0) = ๐‘’ 0 =1 ๐‘“ ๐‘ฃ (๐‘ฅ) = โˆ’๐‘’ โˆ’๐‘ฅ โˆด ๐‘“ ๐‘ฃ (0) = โˆ’๐‘’ 0 = โˆ’1 โ€ฆโ€ฆโ€ฆโ€ฆ.. ๐‘“ ๐‘› (๐‘ฅ) = (โˆ’1)๐‘› ๐‘’ โˆ’๐‘ฅ โˆด ๐‘“ ๐‘› (0) = (โˆ’1)๐‘› ๐‘’ 0 = (โˆ’1)๐‘› by Maclaurinโ€ฒ s Theorem: โ€ฒ (0) ๐‘ฅ 2 โ€ฒโ€ฒ ๐‘ฅ 3 โ€ฒโ€ฒโ€ฒ ๐‘ฅ๐‘› ๐‘› ๐‘“(๐‘ฅ) = ๐‘“(0) + ๐‘ฅ ๐‘“ + ๐‘“ (0) + ๐‘“ (0) + โ€ฆ โ€ฆ.. + ๐‘“ (0) + โ€ฆ โ€ฆ. 2! 3! ๐‘›! ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ๐‘› ๐‘“(๐‘ฅ) = 1 + ๐‘ฅ (โˆ’1) + 1+ (โˆ’1) + โ€ฆ โ€ฆ.. + (โˆ’1)๐‘› + โ€ฆ โ€ฆ. 2! 3! ๐‘›! โˆ’๐‘ฅ ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ4 ๐‘› ๐‘ฅ๐‘› ๐‘“(๐‘ฅ) = ๐‘’ = 1 โˆ’ ๐‘ฅ + โˆ’ + โˆ’ โ€ฆ โ€ฆ.. +(โˆ’1) + โ€ฆ โ€ฆ. 2! 3! 4! ๐‘›! ********** "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ Example : Expansion of sin x Solution : ๐ฟ๐‘’๐‘ก ๐‘“(๐‘ฅ) = sin ๐‘ฅ by Maclaurinโ€ฒ s Theorem: โ€ฒ (0) ๐‘ฅ 2 โ€ฒโ€ฒ ๐‘ฅ 3 โ€ฒโ€ฒโ€ฒ ๐‘ฅ๐‘› ๐‘› ๐‘“(๐‘ฅ) = ๐‘“(0) + ๐‘ฅ ๐‘“ + ๐‘“ (0) + ๐‘“ (0) + โ€ฆโ€ฆ..+ ๐‘“ (0) + โ€ฆ โ€ฆ. 2! 3! ๐‘›! ๐‘“(๐‘ฅ) = sin ๐‘ฅ โˆด ๐‘“(0) = sin 0 =0 ๐‘“ โ€ฒ (๐‘ฅ) = cos ๐‘ฅ โˆด ๐‘“ โ€ฒ (0) = cos 0 = 1 ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) = โˆ’ sin ๐‘ฅ โˆด ๐‘“ โ€ฒโ€ฒ (0) = โˆ’ sin 0 =0 ๐‘“ โ€ฒโ€ฒโ€ฒ (๐‘ฅ) = โˆ’ cos ๐‘ฅ โˆด ๐‘“ โ€ฒโ€ฒโ€ฒ (0) = โˆ’ cos 0 = โˆ’1 ๐‘“ โ€ฒ๐‘ฃ (๐‘ฅ) = sin ๐‘ฅ โˆด ๐‘“ โ€ฒ๐‘ฃ (0) = sin ๐‘ฅ =0 ๐‘“ ๐‘ฃ (๐‘ฅ) = cos ๐‘ฅ โˆด ๐‘“ ๐‘ฃ (0) = cos 0 = 1 by Maclaurinโ€ฒ s Theorem: ๐‘ฅ 2 โ€ฒโ€ฒ ๐‘ฅ3 ๐‘ฅ๐‘› ๐‘› ๐‘“(๐‘ฅ) = ๐‘“(0) + ๐‘ฅ ๐‘“ โ€ฒ (0) + ๐‘“ (0) + ๐‘“ โ€ฒโ€ฒโ€ฒ (0) + โ€ฆ โ€ฆ.. + ๐‘“ (0) + โ€ฆ โ€ฆ. 2! 3! ๐‘›! ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ4 ๐‘ฅ5 ๐‘“(๐‘ฅ) = 0 + ๐‘ฅ (1) + (0) + (โˆ’1) + (0) + (1) โ€ฆ โ€ฆ. 2! 3! 4! 5! ๐‘ฅ 3 ๐‘ฅ 5 ๐‘ฅ 7 ๐‘ฅ 9 ๐‘ฅ 11 ๐‘“(๐‘ฅ) = sin ๐‘ฅ = ๐‘ฅ โˆ’ + โˆ’ + โˆ’ โˆ’ โ€ฆ โ€ฆ.. 3! 5! 7! 9! 11! *********** "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ Example : Expansion of sinh x Solution : ๐ฟ๐‘’๐‘ก ๐‘“(๐‘ฅ) = sinh x by Maclaurinโ€ฒ s Theorem: โ€ฒ (0) ๐‘ฅ 2 โ€ฒโ€ฒ ๐‘ฅ 3 โ€ฒโ€ฒโ€ฒ ๐‘ฅ๐‘› ๐‘› ๐‘“(๐‘ฅ) = ๐‘“(0) + ๐‘ฅ ๐‘“ + ๐‘“ (0) + ๐‘“ (0) + โ€ฆ โ€ฆ.. + ๐‘“ (0) + โ€ฆ โ€ฆ. 2! 3! ๐‘›! ๐‘“(๐‘ฅ) = sinh x โˆด ๐‘“(0) = sin 0 =0 ๐‘“ โ€ฒ (๐‘ฅ) = cosh ๐‘ฅ โˆด ๐‘“ โ€ฒ (0) = cos 0 = 1 ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) = sinh x โˆด ๐‘“ โ€ฒโ€ฒ (0) = sin 0 =0 ๐‘“ โ€ฒโ€ฒโ€ฒ (๐‘ฅ) = cosh ๐‘ฅ โˆด ๐‘“ โ€ฒโ€ฒโ€ฒ (0) = cos 0 = 1 ๐‘“ โ€ฒ๐‘ฃ (๐‘ฅ) = sinh x โˆด ๐‘“ โ€ฒ๐‘ฃ (0) = sin ๐‘ฅ =0 ๐‘“ ๐‘ฃ (๐‘ฅ) = cosh ๐‘ฅ โˆด ๐‘“ ๐‘ฃ (0) = cos 0 = 1 by Maclaurinโ€ฒ s Theorem: โ€ฒ (0) ๐‘ฅ 2 โ€ฒโ€ฒ ๐‘ฅ 3 โ€ฒโ€ฒโ€ฒ ๐‘ฅ๐‘› ๐‘› ๐‘“(๐‘ฅ) = ๐‘“(0) + ๐‘ฅ ๐‘“ + ๐‘“ (0) + ๐‘“ (0) + โ€ฆ โ€ฆ.. + ๐‘“ (0) + โ€ฆ โ€ฆ. 2! 3! ๐‘›! ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ4 ๐‘ฅ5 ๐‘“(๐‘ฅ) = 0 + ๐‘ฅ (1) + (0) + (โˆ’1) + (0) + (1) โ€ฆ โ€ฆ. 2! 3! 4! 5! ๐‘ฅ 3 ๐‘ฅ 5 ๐‘ฅ 7 ๐‘ฅ 9 ๐‘ฅ 11 ๐‘“(๐‘ฅ) = sin ๐‘ฅ = ๐‘ฅ + + + + + โˆ’ โ€ฆ โ€ฆ.. 3! 5! 7! 9! 11! ********** ๐’๐ญ๐š๐ง๐๐š๐ซ๐ ๐„๐ฑ๐ฉ๐š๐ง๐ฌ๐ข๐จ๐ง๐ฌ: x2 x3 x4 x5 1) ex = 1 + x + + + + + โ€ฆโ€ฆโ€ฆโ€ฆ 2! 3! 4! 5! x2 x3 x4 x5 2) eโˆ’x = 1 โˆ’ x + โˆ’ + โˆ’ + โ€ฆโ€ฆโ€ฆโ€ฆ 2! 3! 4! 5! x3 x5 x7 x9 3) sin x = x โˆ’ + โˆ’ + โˆ’ โ€ฆโ€ฆโ€ฆโ€ฆ 3! 5! 7! 9! x3 x5 x7 x9 4) sinh x = x + + + + + โ€ฆโ€ฆโ€ฆโ€ฆ 3! 5! 7! 9! x2 x4 x6 x8 5) cos x = 1 โˆ’ + โˆ’ + โˆ’ โ€ฆโ€ฆโ€ฆโ€ฆ 2! 4! 6! 8! x2 x4 x6 x8 6) cosh x = 1 + + + + + โ€ฆโ€ฆโ€ฆโ€ฆ 2! 4! 6! 8! "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ x3 2x5 17x7 7) tan x = x + + + + โ€ฆโ€ฆโ€ฆโ€ฆ 3 15 315 x3 2x5 17x7 8) tanh x = x โˆ’ + โˆ’ + โ€ฆโ€ฆโ€ฆโ€ฆ 3 15 315 x2 x3 x4 x5 9) log(1 + x) = x โˆ’ + โˆ’ + โˆ’ โ€ฆโ€ฆโ€ฆโ€ฆ 2 3 4 5 x2 x3 x4 x5 10) log(1 โˆ’ x) = โˆ’x โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โ€ฆโ€ฆโ€ฆโ€ฆ 2 3 4 5 n(nโˆ’1)x2 n(nโˆ’1)(nโˆ’2)x3 11) (1 + x)n = 1 + nx + + + โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 2! 3! 1 12) = (1 + x)โˆ’1 = 1 โˆ’ x + x 2 โˆ’ x 3 + x 4 โˆ’ x 5 + โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1+x) 1 13) = (1 โˆ’ x)โˆ’1 = 1 + x + x 2 + x 3 + x 4 + x 5 + โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1โˆ’x) 1 x3 1 3 x5 1 3 5 x7 14) sinโˆ’1 x = x + + + + โ€ฆโ€ฆโ€ฆโ€ฆ 2 3 24 5 246 7 1 x3 1 3 x5 1 3 5 x7 15) sinhโˆ’1 x = x โˆ’ + โˆ’ + โ€ฆโ€ฆโ€ฆโ€ฆ 2 3 24 5 246 7 ฯ€ 1 x3 1 3 x5 1 3 5 x7 16) cos โˆ’1 x = โ€“ [x + + + + โ€ฆโ€ฆโ€ฆโ€ฆ] 2 2 3 24 5 246 7 x3 x5 x7 17) tanโˆ’1 x = x โˆ’ + โˆ’ + โ€ฆโ€ฆโ€ฆโ€ฆ 3 5 7 x3 x5 x7 18) tanhโˆ’1 x = x + + + + โ€ฆโ€ฆโ€ฆโ€ฆ 3 5 7 ********* "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ Examples: Expand of ex cos x in ascending powers of x upto a term in ๐‘ฅ 4 Solution: Let f(x) = ex cos x We know that x x2 x3 x4 e = 1 + x + + + + โ€ฆโ€ฆโ€ฆโ€ฆ 2! 3! 4! x2 x4 x6 x8 cos x = 1 โˆ’ + โˆ’ + โˆ’ โ€ฆ โ€ฆ โ€ฆ โ€ฆ 2! 4! 6! 8! x x2 x3 x4 x2 x4 f(x) = e cos x = (1 + x + + + + โ‹ฏ ) (1 โˆ’ + โ€ฆ โ€ฆ โ€ฆ โ€ฆ ) 2! 3! 4! 2! 4! x2 x4 x2 x4 x2 x2 x4 ex cos x = 1 (1 โˆ’ + โ€ฆ ) + x (1 โˆ’ + โ€ฆ)+ (1 โˆ’ 2! + 4! โ€ฆ ) + 2! 4! 2! 4! 2! x3 x2 x4 x4 x2 x4 3! (1 โˆ’ 2! + 4! โ€ฆ ) + 4! (1 โˆ’ 2! + 4! โ€ฆ ) x2 x4 x2 x4 x2 x2 x4 ex cos x = 1 (1 โˆ’ + โ€ฆ ) + x (1 โˆ’ + โ€ฆ)+ (1 โˆ’ + โ€ฆ) + 2 24 2 24 2 2 24 x3 x2 x4 x4 x2 x4 6 (1 โˆ’ 2 + 24 โ€ฆ)+ 24 (1 โˆ’ 2 + 24 โ€ฆ) x x2 x4 x3 x2 x4 x3 x4 e cos x = 1 โˆ’ + +xโˆ’ + โˆ’ + + 2 24 2 2 4 6 24 x3 x4 ex cos x = 1 + x โˆ’ โˆ’ 3 6 OR Examples: Expand of ๐‘’ ๐‘ฅ cos x in ascending powers of x upto a term in ๐‘ฅ 4 Solution: ๐ฟ๐‘’๐‘ก ๐‘“(๐‘ฅ) = ๐‘’ ๐‘ฅ cos x by Maclaurinโ€ฒ s Theorem ๐‘ฅ 2 โ€ฒโ€ฒ ๐‘ฅ3 ๐‘ฅ 4 โ€ฒ๐‘ฃ ๐‘ฅ๐‘› ๐‘› ๐‘“(๐‘ฅ) = ๐‘“(0) + ๐‘ฅ ๐‘“ โ€ฒ (0) + ๐‘“ (0) + ๐‘“ โ€ฒโ€ฒโ€ฒ (0) + ๐‘“ (0) โ€ฆ โ€ฆ.. + ๐‘“ (0) + โ€ฆ โ€ฆ. 2! 3! 4! ๐‘›! ๐‘“(๐‘ฅ) = ๐‘’ ๐‘ฅ cos x โˆด ๐‘“(0) = ๐‘’ 0 cos 0 =1 ๐‘“ โ€ฒ (๐‘ฅ) = ๐‘’ ๐‘ฅ cos x โˆ’ ๐‘’ ๐‘ฅ sin x โˆด ๐‘“ โ€ฒ (0) = ๐‘’ 0 cos 0 โˆ’ ๐‘’ 0 sin 0 = 1 ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) = ๐‘’ ๐‘ฅ cos x โˆ’ ๐‘’ ๐‘ฅ sin x โˆ’ ๐‘’ ๐‘ฅ cos x โˆ’ ๐‘’ ๐‘ฅ sin x = โˆ’2๐‘’ ๐‘ฅ sin x โˆด ๐‘“ โ€ฒโ€ฒ (0) = 0 "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐‘“ โ€ฒโ€ฒโ€ฒ (๐‘ฅ) = โˆ’2๐‘’ ๐‘ฅ sin x โˆ’ 2๐‘’ ๐‘ฅ cos x โˆด ๐‘“ โ€ฒโ€ฒโ€ฒ (0) = โˆ’2 ๐‘“ โ€ฒ๐‘ฃ (๐‘ฅ) = โˆ’2๐‘’ ๐‘ฅ sin x โˆ’ 2๐‘’ ๐‘ฅ cos x + 2๐‘’ ๐‘ฅ sin x โˆ’ 2๐‘’ ๐‘ฅ cos x โˆด ๐‘“ โ€ฒ๐‘ฃ (0) = โˆ’4 by Maclaurinโ€ฒ s Theorem: ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ4 ๐‘“(๐‘ฅ) = ๐‘“(0) + ๐‘ฅ ๐‘“ โ€ฒ (0) + ๐‘“ โ€ฒโ€ฒ (0) + ๐‘“ โ€ฒโ€ฒโ€ฒ (0) + ๐‘“ โ€ฒ๐‘ฃ (0) + โ€ฆ โ€ฆ. 2! 3! 4! ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ4 ๐‘“(๐‘ฅ) = 1 + ๐‘ฅ (1) + (0) + (โˆ’2) + (โˆ’4) 2 6 24 ๐‘ฅ3 ๐‘ฅ4 ๐‘“(๐‘ฅ) = 1 + ๐‘ฅ โˆ’ โˆ’ 3 6 *********** Examples : Expand โˆš1 + sin ๐‘ฅ in ascending powers of x upto a term in ๐‘ฅ 6 ๐’๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง โˆถ ๐ฟ๐‘’๐‘ก ๐‘“(๐‘ฅ) = โˆš1 + sin ๐‘ฅ ๐‘ฅ ๐‘ฅ ๐‘ฅ ๐‘ฅ ๐‘“(๐‘ฅ) = โˆšsin2 ( ) + cos 2 ( ) + 2 sin ( ) cos ( ) 2 2 2 2 ๐‘ฅ ๐‘ฅ 2 ๐‘“(๐‘ฅ) = โˆš(sin ( ) + cos ( )) โˆต (๐‘Ž + ๐‘)2 = ๐‘Ž2 + 2๐‘Ž๐‘ + ๐‘ 2 2 2 ๐‘ฅ ๐‘ฅ ๐‘“(๐‘ฅ) = โˆš1 + sin ๐‘ฅ = sin ( ) + cos ( ) 2 2 We know that x3 x5 x7 x9 sin x = x โˆ’ + โˆ’ + โˆ’ โ€ฆโ€ฆโ€ฆโ€ฆ 3! 5! 7! 9! x2 x4 x6 x8 cos x = 1 โˆ’ + โˆ’ + โˆ’ โ€ฆโ€ฆโ€ฆโ€ฆ 2! 4! 6! 8! x Put x = in above expansion 2 x x 1 x 3 1 x 5 sin ( ) = โˆ’ ( ) + ( ) โˆ’ โ€ฆ โ€ฆ โ€ฆ โ€ฆ 2 2 3! 2 5! 2 x 1 x 2 1 x 4 cos ( ) = 1 โˆ’ ( ) + ( ) โˆ’ โ€ฆ โ€ฆ โ€ฆ โ€ฆ 2 2! 2 4! 2 ๐‘ฅ ๐‘ฅ ๐‘“(๐‘ฅ) = โˆš1 + sin ๐‘ฅ = sin ( ) + cos ( ) 2 2 x 1 x 3 1 x 5 1 x 2 1 x 4 1 x 6 ๐‘“(๐‘ฅ) = โˆ’ ( ) + ( ) โˆ’ โ€ฆ โ€ฆ โ€ฆ + 1 โˆ’ ( ) + ( ) โˆ’ ( ) โ€ฆ โ€ฆ 2 3! 2 5! 2 2! 2 4! 2 6! 2 3 5 2 4 x 1 x 1 x 1 x 1 x 1 x6 ๐‘“(๐‘ฅ) = โˆ’ โˆ— + โˆ— โˆ’ โ€ฆโ€ฆโ€ฆ + 1 โˆ’ โˆ— + โˆ— โˆ’ โˆ— โ€ฆโ€ฆ 2 6 8 120 32 2 4 24 16 720 64 x x2 x3 x4 x5 x6 ๐‘“(๐‘ฅ) = 1 + โˆ’ โˆ’ + + โˆ’ 2 8 48 384 3840 46080 "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ Type: Expansions of functions by using substitution:- 2๐‘ฅ Ex.1 โ€“ Expand sinโˆ’1 ( ) in ascending powers of x 1 + ๐‘ฅ2 Solution: 2x Let f(x) = sinโˆ’1 ( ) 1 + x2 Put x = tanฮธ (โˆด ฮธ = tanโˆ’1 x) 2 tan ฮธ โˆด f(x) = sinโˆ’1 ( ) 1 + tan2 ฮธ = sinโˆ’1 (sin 2ฮธ) =2ฮธ =2(tanโˆ’1 x) (If x = tanฮธ then ฮธ = tanโˆ’1 x) x3 x5 x7 We know that tanโˆ’1 x = x โˆ’ + โˆ’ + โ€ฆโ€ฆโ€ฆโ€ฆ 3 5 7 2x x3 x5 x7 โˆด sinโˆ’1 ( ) =2 [ x โˆ’ + โˆ’ + โ€ฆ โ€ฆ โ€ฆ โ€ฆ] 1+x2 3 5 7 ********* 1 1 x3 1 3 x5 Ex.2- Prove that sec โˆ’1 [ 2 ] = 2 [x + + โ€ฆ..] 1โˆ’2๐‘ฅ 2 3 24 5 Solution: 1 Let ๐‘“(๐‘ฅ) = sec โˆ’1 [ ] 1 โˆ’ 2๐‘ฅ 2 Put ๐‘ฅ = sin ๐œƒ (โˆด ๐œƒ = sinโˆ’1 ๐‘ฅ) 1 โˆด ๐‘“(๐‘ฅ) = sec โˆ’1 [ ] 1 โˆ’ 2๐‘ ๐‘–๐‘›2 ๐œƒ 1 =sec โˆ’1 [ ] cos 2๐œƒ = sec โˆ’1 [sec 2๐œƒ] =2๐œƒ (๐ผ๐‘“ ๐‘ฅ = ๐‘ ๐‘–๐‘›๐œƒ ๐‘กโ„Ž๐‘’๐‘› ๐œƒ = sinโˆ’1 ๐‘ฅ) =2 sinโˆ’1 ๐‘ฅ 1 1 x3 1 3 x5 sec โˆ’1 [ 2 ] = 2 [x + + โ€ฆ.. ] Hence Proved. 1โˆ’2๐‘ฅ 2 3 24 5 ********** "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ Ex.3 โ€“ Expand cos โˆ’1 (4๐‘ฅ 3 โˆ’ 3๐‘ฅ) in ascending powers of x. Solution: Let ๐‘“(๐‘ฅ) = cos โˆ’1 (4๐‘ฅ 3 โˆ’ 3๐‘ฅ) Put ๐‘ฅ = ๐‘๐‘œ๐‘ ๐œƒ ๐‘“(๐‘ฅ) = cos โˆ’1 (4๐‘๐‘œ๐‘  3 ๐œƒ โˆ’ 3๐‘๐‘œ๐‘ ๐œƒ) = cos โˆ’1 (๐‘๐‘œ๐‘ 3๐œƒ) =3๐œƒ = 3 cos โˆ’1 ๐‘ฅ (๐ผ๐‘“ ๐‘ฅ = ๐‘๐‘œ๐‘ ๐œƒ ๐‘กโ„Ž๐‘’๐‘› ๐œƒ = cos โˆ’1 ๐‘ฅ ) ฯ€ 1 x3 1 3 x5 1 3 5 x7 = 3 [ โ€“ (x + + + + โ€ฆ โ€ฆ โ€ฆ โ€ฆ )] 2 2 3 24 5 246 7 ฯ€ 1 x3 1 3 x5 1 3 5 x7 =3 โ€“ 3 [x + + + + โ€ฆโ€ฆโ€ฆโ€ฆ] 2 2 3 24 5 246 7 ********** 3๐‘ฅ โˆ’ ๐‘ฅ 3 ๐œ‹ x3 x5 x7 Ex.4- Prove that cot โˆ’1 ( ) = 2 โˆ’ 3 (x โˆ’ + โˆ’ + โ€ฆโ€ฆโ€ฆโ€ฆ) 1 โˆ’ 3๐‘ฅ 2 3 5 7 x3 3x5 Ex.5- Prove that sinโˆ’1 (3๐‘ฅ โˆ’ 4๐‘ฅ 3 ) = 3 (x + + + โ€ฆโ€ฆโ€ฆโ€ฆ) 6 40 "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐ˆ๐ง๐๐ž๐ญ๐ž๐ซ๐ฆ๐ข๐ง๐š๐ญ๐ž ๐…๐จ๐ซ๐ฆ๐ฌ ๐ƒ๐ž๐Ÿ๐ข๐ง๐š๐ญ๐ข๐จ๐ง: Let f(x) and g(x) be any two function of x such that f(a) = 0 and g(a) = 0 f(x) 0 then the ratio is said to be the indeterminate form at x = a g(x) 0 0 โˆž There are several Indeterminate Forms , , 0 ร— โˆž, โˆž โˆ’ โˆž, 00 , โˆž0 , 1โˆž 0 โˆž ๐“๐ซ๐ฎ๐ž ๐•๐š๐ฅ๐ฎ๐ž (๐‹๐ข๐ฆ๐ข๐ญ): The limiting value of an indeterminate form is called its true value. ๐ŸŽ ๐“๐ฒ๐ฉ๐ž ๐ˆ โˆถ ๐ˆ๐ง๐๐ž๐ญ๐ž๐ซ๐ฆ๐ข๐ง๐š๐ญ๐ž ๐…๐จ๐ซ๐ฆ (๐‹โ€ฒ ๐‡๐จ๐ฌ๐ฉ๐ข๐ญ๐š๐ฅ ๐‘๐ฎ๐ฅ๐ž) ๐ŸŽ Let f(x) and g(x) be any two function of x such that f(a) = 0 and g(a) = 0 f(x) f โ€ฒ (x) If lim f(x) = 0 and lim g(x) = 0 then lim = lim โ€ฒ xโ†’a xโ†’a x โ†’ a g(x) x โ†’ a g (x) โˆž ๐“๐ฒ๐ฉ๐ž ๐ˆ๐ˆ โˆถ ๐ˆ๐ง๐๐ž๐ญ๐ž๐ซ๐ฆ๐ข๐ง๐š๐ญ๐ž ๐…๐จ๐ซ๐ฆ โˆž f(x) โˆž 0 If lim f(x) = โˆž and lim g(x) = โˆž then lim in form then reduces to by xโ†’a xโ†’a xโ†’a g(x) โˆž 0 f(x) 1/f(x) = and Lโ€ฒ Hospital Rule is applicable. g(x) 1/g(x) โ€ฒ โˆž f(x) f โ€ฒ (x) L Hospital Rule is applied to the form Thus lim = lim โ€ฒ โˆž x โ†’ a g(x) x โ†’ a g (x) ๐“๐ฒ๐ฉ๐ž ๐ˆ๐ˆ๐ˆ โˆถ ๐ˆ๐ง๐๐ž๐ญ๐ž๐ซ๐ฆ๐ข๐ง๐š๐ญ๐ž ๐…๐จ๐ซ๐ฆ ๐ŸŽ ร— โˆž If lim f(x) = 0 and lim g(x) = โˆž then lim f(x) โˆ™ g(x) takes 0 ร— โˆž xโ†’a xโ†’a xโ†’a f(x) g(x) 0 โˆž f(x) โˆ™ g(x) = 1 or 1 and the limit reduces to either form or form 0 โˆž g(x) f(x) and Lโ€ฒ Hospital Rule is applicable. ๐“๐ฒ๐ฉ๐ž ๐ˆ๐• โˆถ ๐ˆ๐ง๐๐ž๐ญ๐ž๐ซ๐ฆ๐ข๐ง๐š๐ญ๐ž ๐…๐จ๐ซ๐ฆ โˆž โˆ’ โˆž If lim f(x) = โˆž and lim g(x) = โˆž then lim [f(x) โˆ’ g(x)] takes โˆž โˆ’ โˆž xโ†’a xโ†’a xโ†’a 0 โˆž simplify the expression f(x) โˆ’ g(x) and the limit reduces to either form or form 0 โˆž and Lโ€ฒ Hospital Rule is applicable. "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐๐จ๐ญ๐ž: ๐Ÿ๐Ÿ (๐ฑ) ๐  ๐Ÿ (๐ฑ) ๐Ÿ๐Ÿ (๐ฑ)๐  ๐Ÿ (๐ฑ) โˆ’ ๐  ๐Ÿ (๐ฑ)๐Ÿ๐Ÿ (๐ฑ) 0 1) If ๐ฅ๐ข๐ฆ โˆ’ in โˆž โˆ’ โˆž form then ๐ฅ๐ข๐ฆ is in ๐ฑ โ†’ ๐š ๐Ÿ๐Ÿ (๐ฑ) ๐  ๐Ÿ (๐ฑ) ๐ฑโ†’๐š ๐Ÿ๐Ÿ (๐ฑ)๐  ๐Ÿ (๐ฑ) 0 2) If f โ€ฒ (x), f โ€ฒโ€ฒ (x) โ€ฆ โ€ฆ f nโˆ’1 (x) and g โ€ฒ (x), g โ€ฒโ€ฒ (x) โ€ฆ โ€ฆ g nโˆ’1 (x) all are zero, f(x) fn (x) But f n (x)and g n (x)are not both zero then lim = lim x โ†’ a g(x) x โ†’ a gn (x) 3) Use of Lโ€ฒ Hospital Rule โˆถ Differentiate numerator and denominator separately and then put x = a. If this reduces to indeterminate form then apply the rule again. 4) If logrithmic term is present in 0 โˆ— โˆž form then keep logritmic term in numerator ๐“๐ฒ๐ฉ๐ž ๐• โˆถ ๐ˆ๐ง๐๐ž๐ญ๐ž๐ซ๐ฆ๐ข๐ง๐š๐ญ๐ž ๐…๐จ๐ซ๐ฆ ๐ŸŽ๐ŸŽ , โˆž๐ŸŽ , ๐Ÿโˆž 1) If lim f(x) = 0 and lim g(x) = 0 then lim {f(x)}g(x) takes 00 xโ†’a xโ†’a xโ†’a 2) If lim f(x) = โˆž and lim g(x) = 0 then lim {f(x)}g(x) takes โˆž0 xโ†’a xโ†’a xโ†’a 3) If lim f(x) = 1 and lim g(x) = โˆž then lim {f(x)}g(x) takes 10 xโ†’a xโ†’a xโ†’a If the true value of limit is denoted by L Then L = lim {f(x)}g(x) xโ†’a Taking Log on both sides log L = log lim {f(x)}g(x) xโ†’a log L = lim g(x) log f(x) xโ†’a limit can be determined by 0 ร— โˆž form, true value is b log L = b L = eb ๐๐จ๐ญ๐ž: eโˆž = โˆž eโˆ’โˆž = 0 "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐’๐ญ๐š๐ง๐๐š๐ซ๐ ๐‹๐ข๐ฆ๐ข๐ญ๐ฌ: sin x tan x 1) lim =1 3) lim =1 6) lim (1 + x)1/x = e xโ†’0 x xโ†’0 x xโ†’0 sinโˆ’1 x tanโˆ’1 x 1 x 2) lim =1 4) lim =1 7) lim (1 + ) = e xโ†’0 x xโ†’0 x x โ†’โˆž x sinh x ex โˆ’ 1 x a โˆ’1 3) lim =1 5) lim =1 8) lim = log a xโ†’0 x xโ†’0 x xโ†’0 x ********** ๐ฑ๐ž๐ฑ โˆ’ ๐ฅ๐จ๐ (๐Ÿ + ๐ฑ) ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ) ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ž ๐ฅ๐ข๐ฆ ๐ฑโ†’๐ŸŽ ๐ฑ๐Ÿ xex โˆ’ log(1 + x) ๐’๐จ๐ฅ๐ฎ๐ญ๐จ๐ข๐ง: Let L = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) xโ†’0 x2 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ (0)e0 โˆ’ log(1 + 0) 0(1) โˆ’ log 1 0โˆ’0 0 0 L = = = = โˆด form 02 0 0 0 0 1 xex + ex โˆ’ (1 + x) From (1) L = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ (2) xโ†’0 2 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ 1 1 (0)e0 + e0 โˆ’ 0(1) + 1 โˆ’ L = 1+0 = 1โˆ’0 = 0 โˆด 0 form 2(0) 2(0) 0 0 โˆ’1 xex + ex + ex โˆ’ (1 + x)2 From (2) L = lim xโ†’0 2 1 xex + ex + ex + (1 + x)2 L = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ (3) xโ†’0 2 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ 1 (0)e0 + e0 + e0 + (1 + 0)2 L = 2 0+1+1+1 3 L= = 2 2 "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐œ๐จ๐ฌ ๐Ÿ (๐›‘๐ฑ) ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ) ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ž ๐ฅ๐ข๐ฆ ๐Ÿ๐ฑ ๐ฑ โ†’ ๐ž โˆ’ ๐Ÿ๐ฑ๐ž ๐Ÿ ๐Ÿ cos 2 ฯ€x ๐’๐จ๐ฅ๐ฎ๐ญ๐จ๐ข๐ง: Let L = lim 2x โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) x โ†’ e โˆ’ 2xe 1 2 ๐Ÿ ๐Ÿ ๐ฑ โ†’ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐Ÿ ๐Ÿ cos 2 ฯ€(1/2) 0 0 L = 2(1/2) = = e โˆ’ 2(1/2)e eโˆ’e 0 2 cos ฯ€x (โˆ’ sin ฯ€x) ฯ€ From (1) L = lim โˆต sin 2x = 2 sin x cos x xโ†’ 1 2e2x โˆ’ 2e 2 โˆ’ ฯ€ sin(2ฯ€x) L = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ (2) xโ†’ 1 2e2x โˆ’ 2e 2 ๐Ÿ ๐Ÿ ๐ฑ โ†’ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐Ÿ ๐Ÿ โˆ’ ฯ€ sin(2ฯ€/2) โˆ’ ฯ€(0 ) 0 L = = = 2e2(1/2) โˆ’ 2e 2e โˆ’ 2e 0 โ€“ ฯ€ cos(2ฯ€x) (2ฯ€) L = lim 2x โˆ’ 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ (3) xโ†’ 1 4e 2 ๐Ÿ ๐Ÿ ๐ฑ โ†’ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐Ÿ ๐Ÿ โ€“ 2ฯ€2 cos(2ฯ€/2) L = 4e2(1/2) โ€“ 2ฯ€2 (โˆ’1) L = 4e 2ฯ€2 ฯ€2 L = = 4e 2e ********** "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐ฅ๐จ๐  ๐ฌ๐ข๐ง ๐Ÿ๐ฑ ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ‘) ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ž ๐ฅ๐ข๐ฆ ๐ฑโ†’๐ŸŽ ๐ฅ๐จ๐  ๐ฌ๐ข๐ง ๐ฑ log sin 2x ๐’๐จ๐ฅ๐ฎ๐ญ๐จ๐ข๐ง: Let L = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) xโ†’0 log sin x ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ log sin 2(0) log 0 โˆž L = = = from log sin (0) log 0 โˆž 1 cos 2x (2) d 1 From (1) L = lim sin 2x โˆต log x = xโ†’0 1 dx x cos x sin x 2 cot 2x cos x 1 L = lim โˆต = cot x = tan ๐‘ฅ x โ†’ 0 cot x sin x cot x 2 2 tan x L = lim tan 2x = lim โ€ฆ โ€ฆ โ€ฆ (2) xโ†’0 1 x โ†’ 0 tan 2x tan x ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ 2 tan 0 0 L = = from tan 20 0 2 sec 2 x 2 sec 2 0 1 L = lim = = =1 x โ†’ 0 sec 2 2x (2) 2 sec 2 2(0) 1 OR ๐ฅ๐จ๐  ๐ฌ๐ข๐ง ๐Ÿ๐ฑ ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ‘) ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ž ๐ฅ๐ข๐ฆ ๐ฑโ†’๐ŸŽ ๐ฅ๐จ๐  ๐ฌ๐ข๐ง ๐ฑ log sin 2x ๐’๐จ๐ฅ๐ฎ๐ญ๐จ๐ข๐ง: Let L = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) xโ†’0 log sin x ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ log sin 2(0) log 0 โˆž L = = form log sin (0) log 0 โˆž 1 cos 2x (2) L = lim sin 2x xโ†’0 1 cos x sin x "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ 2 cos 2x sin x L = lim x โ†’ 0 sin 2x cos x 2 cos 2x sin x L = lim โˆต sin 2x = 2 sin x cos x x โ†’ 0 2 sin x cos x cos x cos 2x L = lim โˆต cos 2x = cos 2 x โˆ’ sin2 x x โ†’ 0 cos 2 x cos 2 x โˆ’ sin2 x L = lim xโ†’0 cos 2 x cos 2 x sin2 x L = lim โˆ’ x โ†’ 0 cos 2 x cos 2 x L = lim 1 โˆ’ tan2 ๐‘ฅ xโ†’0 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ L = 1 โˆ’ tan2 0 L=1โˆ’0=1 โˆ—โˆ—โˆ—โˆ—โˆ—โˆ—โˆ—โˆ—โˆ—โˆ—โˆ— ๐ž๐ฑ โˆ’ ๐Ÿ โˆ’ ๐ฑ ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ’) ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ž ๐ฅ๐ข๐ฆ ๐ฑ โ†’ ๐ŸŽ ๐ฅ๐จ๐  (๐Ÿ + ๐ฑ) โˆ’ ๐ฑ ex โˆ’ 1 โˆ’ x ๐’๐จ๐ฅ๐ฎ๐ญ๐จ๐ข๐ง: Let L = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) x โ†’ 0 log (1 + x) โˆ’ x ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ e0 โˆ’ 1 โˆ’ 0 1โˆ’1 0 L = = form log (1 + 0) โˆ’ 0 log (1) 0 ex โˆ’ 0 โˆ’ 1 From (1) L = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ (2) xโ†’0 1 โˆ’1 1+x e0 โˆ’ 0 โˆ’ 1 0 L= form 1 0 โˆ’1 1+0 ex From (2) L = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ (3) xโ†’0 โˆ’1 (1 + x)2 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ e0 L= โˆ’1 = โˆ’1 (1+0)2 "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐ฑ (๐Ÿ + ๐š ๐œ๐จ๐ฌ ๐ฑ) โˆ’ ๐› ๐ฌ๐ข๐ง ๐ฑ ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ“) ๐…๐ข๐ง๐ ๐š ๐š๐ง๐ ๐› ๐ข๐Ÿ ๐ฅ๐ข๐ฆ =๐Ÿ ๐ฑโ†’๐ŸŽ ๐ฑ๐Ÿ‘ x(1 + acos x) โˆ’ bsin x ๐’๐จ๐ฅ๐ฎ๐ญ๐จ๐ข๐ง: Let L = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) xโ†’0 x3 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ (0)(1 + a cos 0) โˆ’ b sin 0 0 L = 3 = form 0 0 x (0 โˆ’ a sin x) + (1 + a cos x) โˆ’ bcos x From (1) L = lim xโ†’0 3x 2 โˆ’a x sin x + 1 + a cos x โˆ’ bcos x L = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ (2) xโ†’0 3x 2 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ 0 (0 โˆ’ a sin 0) + (1 + a cos 0) โˆ’ b cos 0 (1 + a ) โˆ’ b L = = =โˆž 3(0)2 0 (1 + a ) โˆ’ b but limit is finite i. e. 1 1โ‰  =โˆž 0 0 (1 + a ) โˆ’ b 0 โˆด For Finite limit it should be from = from 0 0 0 โˆด (1 + a ) โˆ’ b = 0 โˆด a โˆ’ b = โˆ’1 โ€ฆ โ€ฆ โ€ฆ (A) โ€“ a x cos x โˆ’ a sin x + 0 โˆ’ a sin x + b sin x From (2) L = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ (3) xโ†’0 6x ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ โ€“ a (0) cos (0) โˆ’ a sin(0) โˆ’ a sin (0) + b sin(0) 0 L = = 6(0) 0 a x sin x โ€“ a cos x โˆ’ a cos x โˆ’ a cos x + b cos x From (3) L = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ (4) xโ†’0 6 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ a(0) sin(0) โ€“ a cos (0) โˆ’ a cos(0) โˆ’ a cos (0) + b cos(0) L = 6 0 โ€“aโˆ’ aโˆ’ a + b L = 6 โ€“ 3a + b L = but limit value L = 1 is given 6 "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ โ€“ 3a + b but limit is finite 1 โˆด1 = 6 โˆด โ€“ 3a + b = 6 โ€ฆ โ€ฆ โ€ฆ (B) โˆด a โˆ’ b = โˆ’1 โ€ฆ โ€ฆ โ€ฆ (A) Solving (A) and (B) a โˆ’ b = โˆ’1 โ€“ 3a + b = 6 5 Add (A) and (B) โˆ’2a=5 โˆด a=โˆ’ 2 5 5 3 Put a = โˆ’ in (A) โˆด โˆ’ โˆ’b=1 โˆดb=โˆ’ 2 2 2 5 3 โˆดa=โˆ’ ๐‘=โˆ’ 2 2 ********** ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ”) ๐…๐ข๐ง๐ ๐š ๐š๐ง๐ ๐› ๐ข๐Ÿ ๐ฅ๐ข๐ฆ [๐ฑ โˆ’๐Ÿ‘ ๐ฌ๐ข๐ง ๐ฑ + ๐š๐ฑ โˆ’๐Ÿ + ๐›] = ๐ŸŽ ๐ฑโ†’๐ŸŽ ๐’๐จ๐ฅ๐ฎ๐ญ๐จ๐ข๐ง: Let L = lim [x โˆ’3 sin x + ax โˆ’2 + b] xโ†’0 sin x a L = lim [ 3 + 2 + b] xโ†’0 ๐‘ฅ ๐‘ฅ sin x + ax + bx 3 L = lim [ ] โ€ฆ โ€ฆ โ€ฆ. (1) xโ†’0 ๐‘ฅ3 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ sin (0) + a(0) + b(0)3 0 L= = form (0)3 0 cos x + a + 3x 2 b From (1) L = lim [ ] โ€ฆ โ€ฆ โ€ฆ. (2) xโ†’0 3๐‘ฅ 2 cos (0) + a + 3x(0)2 b 1+a L= = =โˆž 3(0)2 0 but limit is finite L = 0 0 1+a 0 โˆด For Finite limit it should be โˆด = 0 0 0 โˆด 1+a=0 โˆด a = โˆ’1 "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ โˆ’sin x + 6xb From (2) L = lim [ ] โ€ฆ โ€ฆ โ€ฆ. (3) xโ†’0 6๐‘ฅ ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ โˆ’sin (0) + 6(0)b 0 L= form 6(0) 0 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ โˆ’cos x + 6b From (3) L = lim [ ] โ€ฆ โ€ฆ โ€ฆ. (4) xโ†’0 6 โˆ’cos (0) + 6b ๐ฟ= 6 โˆ’1 + 6b ๐ฟ= 6 โˆ’1 + 6b but limit is finite 0 โˆด =0 6 1 โˆด โˆ’1 + 6b = 0 ๐‘= 6 1 โˆด a = โˆ’1 ๐‘= 6 ********** a cos x โˆ’ a + bx 2 1 ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ•) Find a and b if lim = xโ†’0 x4 12 a cos x โˆ’ a + bx 2 ๐’๐จ๐ฅ๐ฎ๐ญ๐จ๐ข๐ง: Let L = lim โ€ฆ โ€ฆ โ€ฆ. (1) xโ†’0 x4 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ a cos (0) โˆ’ a + b(0)2 a โˆ’a 0 L= = form (0)4 0 0 โˆ’a sin x + 2xb From (1) L = lim โ€ฆ โ€ฆ โ€ฆ. (2) xโ†’0 4x 3 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ โˆ’a sin (0) + 2(0)b 0 L= form 4(0)3 0 โ€“ a cos x + 2b From (2) L = lim [ ] โ€ฆ โ€ฆ โ€ฆ. (3) xโ†’0 12๐‘ฅ 2 "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ โ€“ a cos(0) + 2b โˆ’a + 2b 1 L= = โ‰  12(0)2 0 12 1 but limit is finite 12 0 โˆด For Finite limit it should be 0 โˆด โˆ’a + 2b = 0 โ€ฆ โ€ฆ โ€ฆ. (A) a sin x From (3) L = lim [ ] โ€ฆ โ€ฆ โ€ฆ. (3) xโ†’0 24๐‘ฅ a sin x L= lim [ ] 24 x โ†’ 0 ๐‘ฅ 1 a = (1) 12 24 ๐‘Ž=2 โˆด โˆ’a + 2b = 0 โˆด โˆ’2 + 2b = 0 ๐‘=1 ๐‘Ž = 2 and ๐‘ = 1 ******** a sin2 x + b log cos x 1 ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ–) Find a and b if lim = โˆ’ xโ†’0 x4 2 sin 2x + p sin x ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ—) If lim is finite then find the value of p xโ†’0 x3 and hence find the value of limit ************** "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ๐ŸŽ) ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ž ๐ฅ๐ข๐ฆ ๐ฌ๐ข๐ง ๐ฑ ๐ฅ๐จ๐  ๐ฑ ๐ฑโ†’๐ŸŽ ๐’๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง: Let L = lim sin x log x โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) xโ†’0 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ L = sin 0 log 0 ๐ŸŽ ร— โˆž ๐Ÿ๐จ๐ซ๐ฆ log x log x L = lim = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ. (2) xโ†’0 1 x โ†’ 0 cosec x sin ๐‘ฅ ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ log 0 โˆž L= ๐Ÿ๐จ๐ซ๐ฆ cosec 0 โˆž 1/x From (2) L = lim x โ†’ 0 โˆ’cosec x cotx sinx tan x L = lim xโ†’0 โˆ’x sinx tan x ๐ŸŽ L = lim ๐Ÿ๐จ๐ซ๐ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ. (๐Ÿ‘) xโ†’0 โˆ’x ๐ŸŽ sin x sec 2 x + tan x cos x From (3) L = lim โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (4) xโ†’0 โˆ’1 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ sin(0) sec 2 (0) + tan(0) cos(0) L= โˆ’1 L= 0 ********** "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ๐Ÿ) ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ž ๐ฅ๐ข๐ฆ (๐Ÿ โˆ’ ๐ฌ๐ข๐ง ๐ฑ)๐ญ๐š๐ง ๐ฑ ๐ฑ โ†’ ๐›‘/๐Ÿ ๐’๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง: Let L = lim (1 โˆ’ sin x) tan x โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) x โ†’ ฯ€/2 ๐ฑ โ†’ ๐›‘/๐Ÿ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐›‘/๐Ÿ L = (1 โˆ’ sin ฯ€/2)tan ฯ€/2 0 ร— โˆž form (1 โˆ’ sin x) (1 โˆ’ sin x) From (1) L = lim = lim โ€ฆ โ€ฆ โ€ฆ.. (2) ๐ฑ โ†’ ๐›‘/๐Ÿ 1 ๐ฑ โ†’ ๐›‘/๐Ÿ cot x tan x ๐ฑ โ†’ ๐›‘/๐Ÿ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐›‘/๐Ÿ (1 โˆ’ sin ฯ€/2) 0 L= form cot ฯ€/2 0 โ€“ cos x From (2) L = lim ๐ฑ โ†’ ๐›‘/๐Ÿ โˆ’cosec 2 x ๐ฑ โ†’ ๐›‘/๐Ÿ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐›‘/๐Ÿ โ€“ cos ฯ€/2 L= โˆ’cosec 2 ฯ€/2 0 L= 12 L= 0 ***************** ๐›‘ ๐›‘ ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ๐Ÿ) ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ž ๐ฅ๐ข๐ฆ [ โˆ’ ] ๐ฑ โ†’ ๐ŸŽ ๐Ÿ’๐ฑ ๐Ÿ๐ฑ(๐ž๐›‘๐ฑ + ๐Ÿ) ฯ€ ฯ€ ๐’๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง โˆถ Let L = lim [ โˆ’ ] โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) x โ†’ 0 4x 2x(eฯ€x + 1) ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ ฯ€ ฯ€ L= โˆ’ โˆž โˆ’ โˆž form 4(0) 2(0)(eฯ€0 + 1) 2xฯ€(eฯ€x + 1) โˆ’ 4xฯ€ From (1) L = lim [ ] xโ†’0 8x 2 (eฯ€x + 1) ฯ€(eฯ€x + 1) โˆ’ 2ฯ€ L = lim [ ] xโ†’0 4x(eฯ€x + 1) "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ ฯ€eฯ€x + ฯ€ โˆ’ 2ฯ€ L = lim [ ] xโ†’0 4x(eฯ€x + 1) ฯ€eฯ€x โˆ’ ฯ€ L = lim [ ] โ€ฆ โ€ฆ โ€ฆ.. (2) xโ†’0 4x(eฯ€x + 1) ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ ฯ€e0x โˆ’ ฯ€ ฯ€ โˆ’ฯ€ ๐ŸŽ L= = ๐Ÿ๐จ๐ซ๐ฆ 4(0)(eฯ€0 + 1) 0 ๐ŸŽ ฯ€2 eฯ€x From (2) L = lim [ ] xโ†’0 4x(ฯ€eฯ€x + 0) + 4(ฯ€eฯ€x + 1) ฯ€2 eฯ€0 L= 4(0)(ฯ€e0 + 0) + 4(e0 + 1) ฯ€2 L= 4(1 + 1) ฯ€2 L= 8 ******************* ๐Ÿ ๐Ÿ ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ๐Ÿ‘) ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ž ๐ฅ๐ข๐ฆ [ โˆ’ ๐Ÿ ๐ฅ๐จ๐  (๐Ÿ + ๐ฑ)] ๐ฑโ†’๐ŸŽ ๐ฑ ๐ฑ Solution: 1 1 Let L = lim [ โˆ’ 2 log (1 + x)] โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) xโ†’0 x x ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ 1 1 0 L= โˆ’ log(1 + 0) โˆž โˆ’ form 0 0 0 x 1 From (1) L = lim [ 2 โˆ’ 2 log (1 + x) ] xโ†’0 x x x โˆ— x 2 โˆ’ x 2 log(1 + x) L = lim [ ] xโ†’0 x2x2 x 2 (x โˆ’ log(1 + x)) L = lim [ ] xโ†’0 x2x2 x โˆ’ log(1 + x) 0 L = lim [ ] form โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) xโ†’0 x2 0 "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ 1 1โˆ’ From (1) L = lim [ 1+x] โ€ฆ โ€ฆ โ€ฆ (2) xโ†’0 2x ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ 1 1โˆ’ ๐ŸŽ L= 1+0 ๐Ÿ๐จ๐ซ๐ฆ 2(0) ๐ŸŽ โˆ’1 0โˆ’ (1 + x)2 From (2) L = lim [ ] xโ†’0 2 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ 1 (1 + 0)2 L = 2 1 L= 2 ******************** ๐Ÿ ๐Ÿ ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ๐Ÿ’) ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ž ๐ฅ๐ข๐ฆ [ โˆ’ ๐Ÿ ] ๐ฑโ†’๐Ÿ ๐ฑ โˆ’ ๐Ÿ ๐ฑ โˆ’๐Ÿ 1 2 ๐’๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง โˆถ Let L = lim [ โˆ’ 2 ] โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) xโ†’1 x โˆ’ 1 x โˆ’1 ๐ฑ โ†’ ๐Ÿ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐Ÿ 1 2 1 2 L= โˆ’ 2 = โˆ’ โˆž โˆ’ โˆž ๐Ÿ๐จ๐ซ๐ฆ 1โˆ’1 1 โˆ’1 0 0 (x 2 โˆ’ 1) โˆ’ 2(x โˆ’ 1) From (1) L = lim [ ] xโ†’0 (x โˆ’ 1)(x 2 โˆ’ 1) (x โˆ’ 1)(x + 1) โˆ’ 2(x โˆ’ 1) L = lim [ ] xโ†’0 (x โˆ’ 1)(x 2 โˆ’ 1) (x + 1) โˆ’ 2 L = lim [ ] xโ†’0 (x 2 โˆ’ 1) xโˆ’1 L = lim [ 2 ] xโ†’0 (x โˆ’ 1) "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ xโˆ’1 L = lim [ ] xโ†’0 (x โˆ’ 1)(x + 1) 1 L = lim [ ] xโ†’0 (x + 1) ๐ฑ โ†’ ๐Ÿ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐Ÿ 1 L= 1+1 1 L= 2 *********** ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ๐Ÿ“) ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ž ๐ฅ๐ข๐ฆ {๐ฌ๐ข๐ง ๐ฑ}๐ญ๐š๐ง ๐ฑ ๐ฑโ†’๐ŸŽ ๐’๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง: Let L= lim {sin x}tan x โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) xโ†’0 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ L = {sin 0}tan 0 ๐ŸŽ๐ŸŽ ๐Ÿ๐จ๐ซ๐ฆ Taking log on both sides log L = log lim {sin x}tan x xโ†’0 log L = lim log{sin x}tan x โˆต log an = n โˆ— log a xโ†’0 log L = lim tan x log sin x โ€ฆ โ€ฆ โ€ฆ โ€ฆ (2) xโ†’0 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ log L = tan 0 log sin 0 = tan 0 log 0 ๐ŸŽ ร— โˆž ๐Ÿ๐จ๐ซ๐ฆ log sin x From (2) log L = lim xโ†’0 1/ tan x log sin x 1 log L = lim โˆด = cot ๐‘ฅ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (3) xโ†’0 cot x tan x ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ log sin 0 โˆž log L = ๐Ÿ๐จ๐ซ๐ฆ cot 0 โˆž 1 d cos x ( ) sin x From (3) log L = lim sin x dx2 = sin x 2 xโ†’0 โˆ’cosec x โˆ’cosce x "๐‘‡โ„Ž๐‘’ ๐‘‚๐‘›๐‘™๐‘ฆ ๐‘กโ„Ž๐‘–๐‘›๐‘”๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ค๐‘–๐‘™๐‘™ ๐‘ ๐‘ก๐‘œ๐‘ ๐‘ฆ๐‘œ๐‘ข ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘“๐‘ข๐‘™๐‘“๐‘–๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘ฆ๐‘œ๐‘ข๐‘Ÿ ๐‘‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘  ๐‘–๐‘  ๐‘ฆ๐‘œ๐‘ข" Other Subjects: https://www.studymedia.in/fe/notes ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐ˆ cot x โˆž log L = lim ๐Ÿ๐จ๐ซ๐ฆ โ€ฆ โ€ฆ โ€ฆ. (๐Ÿ’) xโ†’0 โˆ’cosec 2 x โˆž โˆ’cosec 2 x d From (4) log L = lim โˆต x n = nx nโˆ’1 (x) x โ†’ 0 โˆ’2cosec 1 x cosec x cot x dx 1 1 log L = lim = lim tan x x โ†’ 0 2 cot x xโ†’0 2 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ 1 log L = tan 0 2 log L = 0 elog L = e0 L = e0 = 1 ****************** ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ๐Ÿ”) ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ž ๐ฅ๐ข๐ฆ {๐œ๐จ๐ญ ๐ฑ}๐ฌ๐ข๐ง ๐ฑ ๐ฑโ†’๐ŸŽ ๐’๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง: Let L= lim {cot x}sin x xโ†’0 ๐ฑ โ†’ ๐ŸŽ ๐ฉ๐ฎ๐ญ ๐ฑ = ๐ŸŽ L= lim {cot 0}sin 0 โˆž๐ŸŽ ๐Ÿ๐จ?

Use Quizgecko on...
Browser
Browser