Engineering Mathematics I - Unit 1 Notes PDF
Document Details
Uploaded by Deleted User
Tags
Summary
These notes cover key theorems in differential calculus, including Rolle's Theorem, Lagrange's Mean Value Theorem, Cauchy's Mean Value Theorem, and Taylor's Theorem. The notes also include examples and solutions for each theorem.
Full Transcript
For more Subjects https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝐔𝐧𝐢𝐭 𝐈 ∶ 𝐃𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭𝐢𝐚𝐥 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬 𝐑𝐨𝐥𝐥𝐞’𝐬 𝐓𝐡𝐞𝐨𝐫𝐞𝐦: Let f(x) be a function defined in [a, b] i) function f(x) is continuous on the closed interval [a, b] ii) differentiable...
For more Subjects https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝐔𝐧𝐢𝐭 𝐈 ∶ 𝐃𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭𝐢𝐚𝐥 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬 𝐑𝐨𝐥𝐥𝐞’𝐬 𝐓𝐡𝐞𝐨𝐫𝐞𝐦: Let f(x) be a function defined in [a, b] i) function f(x) is continuous on the closed interval [a, b] ii) differentiable on the open interval (a, b) iii) f(a) = f(b) then there exists at least one point 𝑥 = 𝑐 in the open interval (a, b) such that f′(c) = 0. 𝐆𝐞𝐨𝐦𝐞𝐭𝐫𝐢𝐜 𝐢𝐧𝐭𝐞𝐫𝐩𝐫𝐞𝐭𝐚𝐭𝐢𝐨𝐧 There is a point c on the interval (𝑎, 𝑏) where the tangent to the graph of the function is horizontal. 𝐋𝐚𝐠𝐫𝐚𝐧𝐠𝐞’𝐬 𝐌𝐞𝐚𝐧 𝐕𝐚𝐥𝐮𝐞 𝐓𝐡𝐞𝐨𝐫𝐞𝐦: Let f(x) be a function defined in [a, b] i) Function f(x) is continuous on a closed interval [a , b] ii) Function f(x) differentiable on the open interval (a, b) then there is at least one point x = c on this interval (a, b), such that 𝑓(𝑏) − 𝑓(𝑎) 𝑓 ′ (𝑐) = 𝑏−𝑎 𝐆𝐞𝐨𝐦𝐞𝐭𝐫𝐢𝐜 𝐈𝐧𝐭𝐞𝐫𝐩𝐫𝐞𝐭𝐚𝐭𝐢𝐨𝐧 The chord passing through the points of the graph corresponding to the ends of the segment a and b has the slope equal to 𝑘= 𝑓(𝑏) − 𝑓(𝑎) tan 𝛼 = 𝑏−𝑎 Then there is a point 𝑥 = 𝑐 inside the interval [a , b] where the tangent to the graph is parallel to the chord. "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝐂𝐚𝐮𝐜𝐡𝐲’𝐬 𝐌𝐞𝐚𝐧 𝐕𝐚𝐥𝐮𝐞 𝐓𝐡𝐞𝐨𝐫𝐞𝐦: Let f(x) be a function defined in [a, b] i) Function f(x) and g(𝑥) is continuous on a closed interval [a , b] ii) Function f(x) and g(𝑥) differentiable on the open interval (a, b) iii) g ′ (𝑥) ≠ 0 for all value of x in (a, b) then there is at least one point x = c on this interval (a, b), such that 𝑓 ′ (𝑐) 𝑓(𝑏) − 𝑓(𝑎) = g ′ (𝑐) g(𝑏) − g(𝑎) *********** Example 1: Verify Rolle’s Mean Value theorem for 𝒇(𝒙) = 𝒙𝟐 − 𝟓𝒙 + 𝟒 𝑖𝑛 [𝟏, 𝟒] Solution : 𝑓(𝑥) = 𝑥 2 − 5𝑥 + 4 𝐴𝑠 𝑓(𝑥) = 𝑥 2 − 5𝑥 + 4 is a polynomial Every polynomial is continuous and differentiable everywhere ∴ 𝑓(𝑥) = 𝑥 2 − 5𝑥 + 4 is continuous in [1 , 4] and differetiable in (1, 4) 𝑓(𝑥) = 𝑥 2 − 5𝑥 + 4 𝑓(𝑎) = 𝑓(1) = 12 − 5(1) + 4 = 1 − 5 + 4 = 0 𝑓(𝑏) = 𝑓(4) = 42 − 5(4) + 4 = 16 − 20 + 4 = 0 𝑓(𝑎) = 𝑓(𝑏) All condition of Rolle’s Mean Value theorem satisfied. then their exist at least one c ∈ (1, 4) such that 𝑓 ′ (𝑐) = 0 𝑓(𝑥) = 𝑥 2 − 5𝑥 + 4 𝑓 ′ (𝑥) = 2𝑥 − 5 put 𝑥 = 𝑐 𝑓 ′ (𝑐) = 2𝑐 − 5 5 ∴ 𝑓 ′ (𝑐) = 0 ⇒ 2𝑐 − 5 = 0 ∴ 2𝑐 = 5 ∴ 𝑐 = = 2.5 2 ∴ 𝑐 = 2.5 ∈ (1, 4) hence Lagrange’s Mean Value theorem verified. ********** "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 Example 2: Verify Rolle’s Mean Value theorem for 𝜋 5𝜋 𝑓(𝑥) = 𝑒 𝑥 (𝑠𝑖𝑛 𝑥 − 𝑐𝑜𝑠 𝑥) 𝑖𝑛 [ , ] 4 4 Solution : 𝑓(𝑥) = 𝑒 𝑥 (𝑠𝑖𝑛 𝑥 − 𝑐𝑜𝑠 𝑥) 𝐴𝑠 𝑓(𝑥) is a combination of exponational and sine, cosine functions Exponational and Sine, Cosine function are continuous and differentiable 𝜋 5𝜋 𝜋 5𝜋 ∴ 𝑓(𝑥) = 𝑒 𝑥 (𝑠𝑖𝑛 𝑥 − 𝑐𝑜𝑠 𝑥) is continuous in [ , ] and differetiable in ( , ) 4 4 4 4 𝑓(𝑥) = 𝑒 𝑥 (𝑠𝑖𝑛 𝑥 − 𝑐𝑜𝑠 𝑥) = 𝜋 𝜋 𝜋 𝜋 𝜋 1 1 𝑓(𝑎) = 𝑓 ( ) = 𝑒 4 (𝑠𝑖𝑛 − 𝑐𝑜𝑠 ) = 𝑒 4 ( − )=0 4 4 4 √2 √2 5𝜋 5𝜋 5𝜋 5𝜋 5𝜋 1 1 𝑓(𝑏) = 𝑓 ( ) = 𝑒 4 (𝑠𝑖𝑛 − 𝑐𝑜𝑠 )=𝑒4 (− − (− )) = 0 4 4 4 √2 √2 𝑓(𝑎) = 𝑓(𝑏) All condition of Rolle’s Mean Value theorem satisfied. 𝜋 5𝜋 then their exist at least one c ∈ ( , ) such that 𝑓 ′ (𝑐) = 0 4 4 𝑓(𝑥) = 𝑒 𝑥 (𝑠𝑖𝑛 𝑥 − 𝑐𝑜𝑠 𝑥) 𝑓 ′ (𝑥) = 𝑒 𝑥 (𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥) + 𝑒 𝑥 (𝑠𝑖𝑛 𝑥 − 𝑐𝑜𝑠 𝑥) 𝑓 ′ (𝑥) = 2𝑒 𝑥 sin 𝑥 put 𝑥 = 𝑐 𝑓 ′ (𝑐) = 2𝑒 𝑐 sin 𝑐 ∴ 𝑓 ′ (𝑐) = 0 ⇒ 2𝑒 𝑐 sin 𝑐 = 0 ∴ sin 𝑐 = 0 ∴ 𝑐 = sin−1 0 ∴ 𝑐 = 𝑛𝜋 𝑛 = 0,1,2,3 …. 𝑐 = 0, 𝜋, 2𝜋, 3𝜋, 4𝜋 … 𝜋 5𝜋 ∴𝑐=𝜋 ∈( , ) hence Rolle’s Mean Value theorem verified. 4 4 "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 Example 3: Verify Lagrange’s Mean Value theorem for 𝒇(𝒙) = (𝒙 − 𝟏)(𝒙 − 𝟐)(𝒙 − 𝟑) 𝑖𝑛 [𝟎 𝟑] Solution : 𝑓(𝑥) = (𝑥 − 1)(𝑥 − 2)(𝑥 − 3) 𝑓(𝑥) = 𝑥 3 − 6𝑥 2 + 11𝑥 − 6 𝐴𝑠 𝑓(𝑥) = (𝑥 − 1)(𝑥 − 2)(𝑥 − 3) is a polynomial Every polynomial is continuous and differentiable everywhere ∴ 𝑓(𝑥) = (𝑥 − 1)(𝑥 − 2)(𝑥 − 3) is continuous in [0, 3] and differetiable in (0 3) All condition of Lagrange’s Mean Value theorem satisfied. 𝑓(𝑏)− 𝑓(𝑎) then their exist at least one c ∈ (𝑎, 𝑏) such that 𝑓 ′ (𝑐) = 𝑏−𝑎 𝑓(𝑥) = 𝑥 3 − 6𝑥 2 + 11𝑥 − 6 𝑓(𝑎) = 𝑓(0) = (0)3 − 6(0)2 + 11(0) − 6 = −6 𝑓(𝑏) = 𝑓(3) = (3)3 − 6(3)2 + 11(3) − 6 = 27 − 54 + 33 − 6 = 0 𝑓 ′ (𝑥) = 3𝑥 2 − 12𝑥 + 11 put 𝑥 = 𝑐 𝑓 ′ (𝑐) = 3𝑐 2 − 12𝑐 + 11 𝑓(𝑏)− 𝑓(𝑎) 𝑓 ′ (𝑐) = 𝑏−𝑎 0−(−6) 6 ∴ 3𝑐 2 − 12𝑐 + 11 = = 3−0 3 ∴ 3𝑐 2 − 12𝑐 + 11 = 2 ∴ 3𝑐 2 − 12𝑐 + 11 − 2 = 0 ∴ 3𝑐 2 − 12𝑐 + 9 = 0 ∴ 𝑐 2 − 4𝑐 + 3 = 0 ∴ 𝑐 2 − 3𝑐 − 𝑐 + 3 = 0 ∴ 𝑐(𝑐 − 3) − 1(𝑐 − 3) = 0 ∴ (𝑐 − 3)(𝑐 − 1) = 0 ∴ 𝑐 = 3 ,1 ∴ 𝑐 = 1 ∈ (0, 3) hence Lagrange’s Mean Value theorem verified. "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 Example 4: Verify Lagrange’s Mean Value theorem for 𝒇(𝒙) = 𝒍𝒐𝒈 𝒙 𝑖𝑛 [𝟏, 𝒆] Solution : 𝑓(𝑥) = 𝑙𝑜𝑔 𝑥 𝐴𝑠 𝑓(𝑥) = 𝑙𝑜𝑔 𝑥 is a logarithmic function Every logarithmic function is continuous and differentiable in its domain ∴ 𝑓(𝑥) = 𝑙𝑜𝑔 𝑥 is continuous in [1, e] and differetiable in (1 e) All condition of Lagrange’s Mean Value theorem satisfied. 𝑓(𝑏)− 𝑓(𝑎) then their exist at least one c ∈ (1 e) such that 𝑓 ′ (𝑐) = 𝑏−𝑎 𝑓(𝑥) = 𝑙𝑜𝑔 𝑥 𝑓(𝑎) = 𝑓(0) = 𝑙𝑜𝑔 1 = 0 𝑓(𝑏) = 𝑓(𝑒) = 𝑙𝑜𝑔 𝑒 = 1 1 1 𝑓 ′ (𝑥) = put 𝑥 = 𝑐 𝑓 ′ (𝑐) = 𝑥 𝑐 1 1−0 = ∴𝑐 = 𝑒−1 𝑐 𝑒−1 ∴ 𝑐 = 𝑒 − 1 ∈ (1 e) hence Lagrange’s Mean Value theorem verified. *********** Example 5: Verify Cauchy’s Mean value theorem theorem for 𝒇(𝒙) = 𝒙𝟑 𝑎𝑛𝑑 𝐠(𝒙) = 𝒙𝟒 𝑖𝑛 [𝟎 𝟐] Solution : 𝑓(𝑥) = 𝑥 3 and g(𝑥) = 𝑥 4 𝐴𝑠 𝑓(𝑥) = 𝑥 3 and g(𝑥) = 𝑥 4 are a polynomials Every polynomial is continuous and differentiable everywhere ∴ 𝑓(𝑥) = 𝑥 3 and g(𝑥) = 𝑥 4 is continuous in [0, 2] and differetiable in (0 2) As g(𝑥) = 𝑥 4 g ′ (𝑥) = 4𝑥 3 ≠ 0 for 𝑥 in (0, 2) All condition of Cauchy’s Mean Value theorem satisfied. "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝑓′ (𝑐) 𝑓(𝑏)− 𝑓(𝑎) then their exist at least point c ∈ (0, 2) such that = g′ (c) g(𝑏)− g(𝑎) 𝐴𝑠 𝑓(𝑥) = 𝑥 3 and g(𝑥) = 𝑥 4 𝑓(𝑏) = 𝑓(2) = 23 = 8 and g(𝑏) = g(2) = 24 = 16 𝑓(𝑎) = 𝑓(0) = 0 and g(𝑎) = g(0) = 0 f ′ (𝑥) = 3𝑥 2 and g ′ (𝑥) = 4𝑥 3 Put x = c f ′ (𝑐) = 3𝑐 2 and g ′ (𝑐) = 4𝑐 3 3𝑐 2 8− 0 = 4𝑐 3 16 − 0 3 1 6 3 = ∴ 4c = 6 ∴ c= ∴ c= 4𝑐 2 4 2 3 ∴ c= ∈ (0, 2) hence Cauchy’s Mean value theorem verified. 2 *********** "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝐄𝐱𝐩𝐚𝐧𝐬𝐢𝐨𝐧 𝐨𝐟 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐓𝐚𝐲𝐥𝐨𝐫 ′ 𝐬 𝐓𝐡𝐞𝐨𝐫𝐞𝐦: Statement ∶ Let 𝑓(𝑎 + ℎ) be a function of h which can be expanded in powers of h and let the expansion be differentiable term by term any number of times w. r. t. h ℎ2 ℎ3 ℎ𝑛 then 𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ 𝑓 ′ (𝑎) + 𝑓 ′′ (𝑎) + 𝑓 ′′′ (𝑎) + … … + 𝑓 𝑛 (𝑎)+... 2! 3! 𝑛! 𝐄𝐱𝐩𝐚𝐧𝐬𝐢𝐨𝐧 𝐨𝐟 𝐟(𝐱 + 𝐡) 𝐢𝐧 𝐩𝐨𝐰𝐞𝐫 𝐨𝐟 ′𝐡′ ℎ2 ℎ3 ℎ𝑛 𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ 𝑓 ′ (𝑥) + 𝑓 ′′ (𝑥) + 𝑓 ′′′ (𝑥) + … ….. + 𝑓 𝑛 (𝑥) + … …. 2! 3! 𝑛! 𝐄𝐱𝐩𝐚𝐧𝐬𝐢𝐨𝐧 𝐨𝐟 𝐟(𝐱 + 𝐡) 𝐢𝐧 𝐩𝐨𝐰𝐞𝐫 𝐨𝐟 ′𝐱′ 𝑥2 𝑥3 𝑥𝑛 𝑓(𝑥 + ℎ) = 𝑓(ℎ) + 𝑥 𝑓 ′ (ℎ) + 𝑓 ′′ (ℎ) + 𝑓 ′′′ (ℎ) + … ….. + 𝑓 𝑛 (ℎ) + … …. 2! 3! 𝑛! 𝐄𝐱𝐩𝐚𝐧𝐬𝐢𝐨𝐧 𝐟(𝐱) 𝐢𝐧 𝐩𝐨𝐰𝐞𝐫 𝐨𝐟 (𝐱 − 𝐚) = 𝟎 𝐨𝐫 𝐚𝐛𝐨𝐮𝐭 𝐱 = 𝐚 (𝑥 – 𝑎)2 (𝑥 – 𝑎)3 (𝑥 – 𝑎)𝑛 𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎) 𝑓 ′ (𝑎) + 𝑓 ′′ (𝑎) + 𝑓 ′′′ (𝑎) + … + 𝑓 𝑛 (𝑎) …. 2! 3! 𝑛! ******** "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 Example 1: Using Taylor’s theorem express (x − 2)4 − 3(x − 2)3 + 4(x − 2)2 + 5 in powers of x Solution: Let f(x + h) = (x − 2)4 − 3(x − 2)3 + 4(x − 2)2 + 5 Here 𝑥 + ℎ = 𝑥 − 2 ∴ ℎ = −2 By using Taylor’s theorem, 𝐄𝐱𝐩𝐚𝐧𝐬𝐢𝐨𝐧 𝐨𝐟 𝐟(𝐱 + 𝐡) 𝐢𝐧 𝐩𝐨𝐰𝐞𝐫 𝐨𝐟 𝐱 ′ (ℎ) 𝑥 2 ′′ 𝑥 3 ′′′ 𝑥 4 ′𝑣 𝑓(𝑥 + ℎ) = 𝑓(ℎ) + 𝑥 𝑓 + 𝑓 (ℎ) + 𝑓 (ℎ) + 𝑓 (ℎ) + … … … … 2! 3! 4! 𝑥2 𝑥3 𝑥4 𝑓(𝑥 − 2) = 𝑓(−2) + 𝑥 𝑓 ′ (−2) + 𝑓 ′′ (−2) + 𝑓 ′′′ (−2) + 𝑓 ′𝑣 (−2) + … … (𝐴) 2! 3! 4! ∴ 𝑓(𝑥) = 𝑥 4 − 3𝑥 3 + 4𝑥 2 + 5 𝑓(𝑥) = 𝑥 4 − 3𝑥 3 + 4𝑥 2 + 5 ∴ 𝑓(ℎ) = 𝑓(−2) = 61 𝑓 ′ (𝑥) = 4𝑥 3 − 9𝑥 2 + 8𝑥 ∴ 𝑓 ′ (ℎ) = 𝑓 ′ (−2) = −84 𝑓 ′′ (𝑥) = 12𝑥 2 − 18𝑥 + 8 ∴ 𝑓 ′′ (−2) = 𝑓 ′′ (−2) = 92 𝑓 ′′′ (𝑥) = 24𝑥 − 18 ∴ 𝑓 ′′′ (−2) = 𝑓 ′′′ (−2) = −66 𝑓 ′𝑣 (𝑥) = 24 ∴ 𝑓 ′𝑣 (−2) = 𝑓 ′𝑣 (−2) = 24 𝑓 𝑣 (𝑥) = 0 ∴ 𝑓 𝑣 (−2) = 𝑓 𝑣 (−2) = 0 Equation (A) becomes 𝑥2 𝑥3 𝑥4 𝑓(𝑥 − 2) = 61 + 𝑥 (−84) + (92) + (−66) + (24) 2 6 24 𝑓(𝑥 − 2) = 61 − 84𝑥 + 46𝑥 2 − 11𝑥 3 + 𝑥 4 ********* "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 Example 2: Using Taylor’s theorem express (𝑥 + 2)4 + 3(𝑥 + 2)3 + (𝑥 + 2) + 7 in powers of x Solution: Let 𝑓(𝑥 + ℎ) = (𝑥 + 2)4 + 3(𝑥 + 2)3 + (𝑥 + 2) + 7 Here 𝑥 + ℎ = 𝑥 + 2 ∴ℎ=2 By using Taylor’s theorem, 𝐄𝐱𝐩𝐚𝐧𝐬𝐢𝐨𝐧 𝐨𝐟 𝐟(𝐱 + 𝐡) 𝐢𝐧 𝐩𝐨𝐰𝐞𝐫 𝐨𝐟 𝐱 ′ (ℎ) 𝑥 2 ′′ 𝑥 3 ′′′ 𝑥 4 ′𝑣 𝑓(𝑥 + ℎ) = 𝑓(ℎ) + 𝑥 𝑓 + 𝑓 (ℎ) + 𝑓 (ℎ) + 𝑓 (ℎ) + … … … … 2! 3! 4! 𝑥2 𝑥3 𝑥4 𝑓(𝑥 − 2) = 𝑓(2) + 𝑥 𝑓 ′ (2) + 𝑓 ′′ (2) + 𝑓 ′′′ (2) + 𝑓 ′𝑣 (2) + … … (𝐴) 2! 3! 4! ∴ 𝑓(𝑥) = 𝑥 4 + 3𝑥 3 + 𝑥 + 7 𝑓(𝑥) = 𝑥 4 + 3𝑥 3 + 𝑥 + 7 ∴ 𝑓(2) = 49 𝑓 ′ (𝑥) = 4𝑥 3 + 9𝑥 2 + 1 ∴ 𝑓 ′ (2) = 69 𝑓 ′′ (𝑥) = 12𝑥 2 + 18𝑥 ∴ 𝑓 ′′ (2) = 84 𝑓 ′′′ (𝑥) = 24𝑥 + 18 ∴ 𝑓 ′′′ (2) = 66 𝑓 ′𝑣 (𝑥) = 24 ∴ 𝑓 ′𝑣 (2) = 24 𝑓 𝑣 (𝑥) = 0 ∴ 𝑓 𝑣 (2) = 0 Equation (A) becomes 𝑥2 𝑥3 𝑥4 𝑓(𝑥 + 2) = 49 + 𝑥 (69) + (84) + (66) + (24) + 0 2 6 24 𝑓(𝑥 + 2) = 49 + 69𝑥 + 42𝑥 2 + 11𝑥 3 + 𝑥 4 ********** "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 Example 3: Using Taylor’s theorem express 49 + 69𝑥 + 42𝑥 2 + 11𝑥 3 + 𝑥 4 in powers of (𝑥 + 2) Solution: Let 𝑓(𝑥) = 49 + 69𝑥 + 42𝑥 2 + 11𝑥 3 + 𝑥 4 Here 𝑥−𝑎 =𝑥+2 ∴ −𝑎 = 2 ∴ 𝑎 = −2 By using Taylor’s theorem, 𝐄𝐱𝐩𝐚𝐧𝐬𝐢𝐨𝐧 𝐟(𝐱) 𝐢𝐧 𝐩𝐨𝐰𝐞𝐫 𝐨𝐟 (𝐱 − 𝐚) 𝐨𝐫 𝐚𝐛𝐨𝐮𝐭 𝐱 = 𝐚 (𝑥 – 𝑎)2 (𝑥 – 𝑎)3 (𝑥 – 𝑎)𝑛 𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎) 𝑓 ′ (𝑎) + 𝑓 ′′ (𝑎) + 𝑓 ′′′ (𝑎) + … + 𝑓 𝑛 (𝑎) …. 2! 3! 𝑛! (𝑥 + 2)2 (𝑥 + 2)3 (𝑥 + 2)4 𝑓 (𝑥 ) = 𝑓(−2) + (𝑥 + 2)𝑓 ′ (−2) + 𝑓 ′′ (−2) + 𝑓 ′′′ (−2) + 𝑓 ′𝑣 (−2) …. (𝐴) 2 6 24 ∴ 𝑓(𝑥) = 49 + 69𝑥 + 42𝑥 2 + 11𝑥 3 + 𝑥 4 𝑓(𝑥) = 49 + 69𝑥 + 42𝑥 2 + 11𝑥 3 + 𝑥 4 ∴ 𝑓(−2) = 7 𝑓 ′ (𝑥) = 69 + 84𝑥 + 33𝑥 2 + 4𝑥 3 ∴ 𝑓 ′ (−2) = 1 𝑓 ′′ (𝑥) = 84 + 66𝑥 + 12𝑥 2 ∴ 𝑓 ′′ (−2) = 0 𝑓 ′′′ (𝑥) = 66 + 24𝑥 ∴ 𝑓 ′′′ (−2) = 18 𝑓 ′𝑣 (𝑥) = 24 ∴ 𝑓 ′𝑣 (−2) = 24 𝑓 𝑣 (𝑥) = 0 ∴ 𝑓 𝑣 (−2) = 0 Equation (A) becomes (𝑥 + 2)2 (𝑥+2)3 (𝑥+2)4 𝑓(𝑥 ) = 7 + (𝑥 + 2)1 + (0) + 18 + 24 2 6 24 𝑓(𝑥 ) = 7 + (𝑥 + 2) + 3(𝑥 + 2)3 + (𝑥 + 2)4 ********** "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 Example 4: Using Taylor’s theorem express 𝑥 3 + 7𝑥 2 + 𝑥 − 6 in powers of (𝑥 − 3) Solution: Let 𝑓(𝑥) = 𝑥 3 + 7𝑥 2 + 𝑥 − 6 Here 𝑥 − 𝑎 = 𝑥 − 3 ∴𝑎=3 By using Taylor’s theorem, 𝐄𝐱𝐩𝐚𝐧𝐬𝐢𝐨𝐧 𝐟(𝐱) 𝐢𝐧 𝐩𝐨𝐰𝐞𝐫 𝐨𝐟 (𝐱 − 𝐚) 𝐨𝐫 𝐚𝐛𝐨𝐮𝐭 𝐱 = 𝐚 (𝑥 – 𝑎)2 (𝑥 – 𝑎)3 (𝑥 – 𝑎)𝑛 𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎) 𝑓 ′ (𝑎) + 𝑓 ′′ (𝑎) + 𝑓 ′′′ (𝑎) + … + 𝑓 𝑛 (𝑎) …. 2! 3! 𝑛! (𝑥 – 3)2 (𝑥 – 3)3 (𝑥 – 3)4 𝑓(𝑥 ) = 𝑓(3) + (𝑥 − 3)𝑓 ′ (3) + 𝑓 ′′ (ℎ) + 𝑓 ′′′ (3) + 𝑓 ′𝑣 (3)+...(A) 2! 3! 4! ∴ 𝑓(𝑥) = 𝑥 3 + 7𝑥 2 + 𝑥 − 6 𝑓(𝑥) = 𝑥 3 + 7𝑥 2 + 𝑥 − 6 ∴ 𝑓(3) = 87 𝑓 ′ (𝑥) = 3𝑥 2 + 14𝑥 + 1 ∴ 𝑓 ′ (3) = 70 𝑓 ′′ (𝑥) = 6𝑥 + 14 ∴ 𝑓 ′′ (3) = 32 𝑓 ′′′ (𝑥) = 6 ∴ 𝑓 ′′′ (3) = 6 𝑓 ′𝑣 (𝑥) = 0 ∴ 𝑓 ′𝑣 (3) = 0 Equation (A) becomes (𝑥 − 3)2 (𝑥 − 3)3 𝑓(𝑥 ) = 87 + (𝑥 − 3)69 + 32 + 6 2 6 𝑓(𝑥 ) = 87 + 70(𝑥 − 3) + 16(𝑥 − 3)2 + (𝑥 − 3)3 ********** Example 5: Using Taylor’s theorem express (𝑥 − 1)4 − 3(𝑥 − 1)3 + 4(𝑥 − 1)2 + 5 in powers of x. Example 6: Using Taylor’s theorem express 2(𝑥 − 2)3 + 19(𝑥 − 2)2 + 53(𝑥 − 2) + 40 in powers of x. Example 7: Using Taylor’s theorem express 3𝑥 3 − 2𝑥 2 + 𝑥 − 6 in powers of 𝑥 − 2 Example 8: Using Taylor’s theorem express 1 + 2𝑥 + 3𝑥 2 + 4𝑥 3 in powers of 𝑥 + 1 "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝐌𝐚𝐜𝐥𝐚𝐮𝐫𝐢𝐧′ 𝐬 𝐓𝐡𝐞𝐨𝐫𝐞𝐦: 𝐒𝐭𝐚𝐭𝐞𝐦𝐞𝐧𝐭: Let f(x) be a function of x which can be expanded in ascending powers and let the expansion be differentiable term by term any number of times then ′ (0) 𝑥 2 ′′ 𝑥 3 ′′′ 𝑥𝑛 𝑛 𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓 + 𝑓 (0) + 𝑓 (0) + … ….. + 𝑓 (0) + … …. 2! 3! 𝑛! 𝐍𝐨𝐭𝐞: 1) If y = f(x) then f(0) = (y)0 , f ′ (0) = (y1 )0 , f ′′ (0) = (y2 )0 … … f n (0) = (yn )0 Maclaurin′ s Theorem stated as x2 x3 xn y = (y)0 + x(y1 )0 + (y2 )0 + (y3 )0 + … ….. + (yn )0 + … …. 2! 3! n! xn n 2) The (n + 1)𝑡ℎ term of expansion f (0) is called general term. n! ex + e−x ex − e−x 3) cosh x = sinh x = 2 2 d 4) (cosh x) = sinh x dx d 5) (sinh x) = cosh x dx 6) ∫ sinh x 𝑑𝑥 = cosh 𝑥 + c 7) ∫ cosh x 𝑑𝑥 = sinh 𝑥 + c "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 Example : Expansion of ex Solution : 𝐿𝑒𝑡 𝑓(𝑥) = 𝑒 𝑥 by Maclaurin′ s theorem ′ (0) 𝑥 2 ′′ 𝑥 3 ′′′ 𝑥𝑛 𝑛 𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓 + 𝑓 (0) + 𝑓 (0) + ……..+ 𝑓 (0) + … …. 2! 3! 𝑛! 𝑓(𝑥) = 𝑒 𝑥 ∴ 𝑓(0) = 𝑒 0 = 1 𝑓 ′ (𝑥) = 𝑒 𝑥 ∴ 𝑓 ′ (0) = 𝑒 0 = 1 𝑓 ′′ (𝑥) = 𝑒 𝑥 ∴ 𝑓 ′′ (0) = 𝑒 0 = 1 𝑓 ′′′ (𝑥) = 𝑒 𝑥 ∴ 𝑓 ′′′ (0) = 𝑒 0 = 1 𝑓 ′𝑣 (𝑥) = 𝑒 𝑥 ∴ 𝑓 ′𝑣 (0) = 𝑒 0 = 1 𝑓 𝑣 (𝑥) = 𝑒 𝑥 ∴ 𝑓 𝑣 (0) = 𝑒 0 = 1 ………….. 𝑓 𝑛 (𝑥) = 𝑒 𝑥 ∴ 𝑓 𝑛 (0) = 𝑒 0 = 1 by Maclaurin′ s Theorem: ′ (0) 𝑥 2 ′′ 𝑥 3 ′′′ 𝑥𝑛 𝑛 𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓 + 𝑓 (0) + 𝑓 (0) + … ….. + 𝑓 (0) + … …. 2! 3! 𝑛! 𝑥2 𝑥3 𝑥𝑛 𝑓(𝑥) = 1 + 𝑥 (1) + 1 + 1 + … ….. + 1 + … …. 2! 3! 𝑛! 𝑥 𝑥2 𝑥3 𝑥4 𝑥𝑛 𝑓(𝑥) = 𝑒 = 1 + 𝑥 + + + ……..+ + … …. 2! 3! 4! 𝑛! ********** "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 Example : Expansion of e−x Solution : 𝐿𝑒𝑡 𝑓(𝑥) = 𝑒 −𝑥 by Maclaurin′ s Theorem: ′ (0) 𝑥 2 ′′ 𝑥 3 ′′′ 𝑥𝑛 𝑛 𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓 + 𝑓 (0) + 𝑓 (0) + ……..+ 𝑓 (0) + … …. 2! 3! 𝑛! 𝑓(𝑥) = 𝑒 −𝑥 ∴ 𝑓(0) = 𝑒 0 =1 𝑓 ′ (𝑥) = −𝑒 −𝑥 ∴ 𝑓 ′ (0) = −𝑒 0 = −1 𝑓 ′′ (𝑥) = 𝑒 −𝑥 ∴ 𝑓 ′′ (0) = 𝑒 0 =1 𝑓 ′′′ (𝑥) = −𝑒 −𝑥 ∴ 𝑓 ′′′ (0) = −𝑒 0 = −1 𝑓 ′𝑣 (𝑥) = 𝑒 −𝑥 ∴ 𝑓 ′𝑣 (0) = 𝑒 0 =1 𝑓 𝑣 (𝑥) = −𝑒 −𝑥 ∴ 𝑓 𝑣 (0) = −𝑒 0 = −1 ………….. 𝑓 𝑛 (𝑥) = (−1)𝑛 𝑒 −𝑥 ∴ 𝑓 𝑛 (0) = (−1)𝑛 𝑒 0 = (−1)𝑛 by Maclaurin′ s Theorem: ′ (0) 𝑥 2 ′′ 𝑥 3 ′′′ 𝑥𝑛 𝑛 𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓 + 𝑓 (0) + 𝑓 (0) + … ….. + 𝑓 (0) + … …. 2! 3! 𝑛! 𝑥2 𝑥3 𝑥𝑛 𝑓(𝑥) = 1 + 𝑥 (−1) + 1+ (−1) + … ….. + (−1)𝑛 + … …. 2! 3! 𝑛! −𝑥 𝑥2 𝑥3 𝑥4 𝑛 𝑥𝑛 𝑓(𝑥) = 𝑒 = 1 − 𝑥 + − + − … ….. +(−1) + … …. 2! 3! 4! 𝑛! ********** "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 Example : Expansion of sin x Solution : 𝐿𝑒𝑡 𝑓(𝑥) = sin 𝑥 by Maclaurin′ s Theorem: ′ (0) 𝑥 2 ′′ 𝑥 3 ′′′ 𝑥𝑛 𝑛 𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓 + 𝑓 (0) + 𝑓 (0) + ……..+ 𝑓 (0) + … …. 2! 3! 𝑛! 𝑓(𝑥) = sin 𝑥 ∴ 𝑓(0) = sin 0 =0 𝑓 ′ (𝑥) = cos 𝑥 ∴ 𝑓 ′ (0) = cos 0 = 1 𝑓 ′′ (𝑥) = − sin 𝑥 ∴ 𝑓 ′′ (0) = − sin 0 =0 𝑓 ′′′ (𝑥) = − cos 𝑥 ∴ 𝑓 ′′′ (0) = − cos 0 = −1 𝑓 ′𝑣 (𝑥) = sin 𝑥 ∴ 𝑓 ′𝑣 (0) = sin 𝑥 =0 𝑓 𝑣 (𝑥) = cos 𝑥 ∴ 𝑓 𝑣 (0) = cos 0 = 1 by Maclaurin′ s Theorem: 𝑥 2 ′′ 𝑥3 𝑥𝑛 𝑛 𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓 ′ (0) + 𝑓 (0) + 𝑓 ′′′ (0) + … ….. + 𝑓 (0) + … …. 2! 3! 𝑛! 𝑥2 𝑥3 𝑥4 𝑥5 𝑓(𝑥) = 0 + 𝑥 (1) + (0) + (−1) + (0) + (1) … …. 2! 3! 4! 5! 𝑥 3 𝑥 5 𝑥 7 𝑥 9 𝑥 11 𝑓(𝑥) = sin 𝑥 = 𝑥 − + − + − − … ….. 3! 5! 7! 9! 11! *********** "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 Example : Expansion of sinh x Solution : 𝐿𝑒𝑡 𝑓(𝑥) = sinh x by Maclaurin′ s Theorem: ′ (0) 𝑥 2 ′′ 𝑥 3 ′′′ 𝑥𝑛 𝑛 𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓 + 𝑓 (0) + 𝑓 (0) + … ….. + 𝑓 (0) + … …. 2! 3! 𝑛! 𝑓(𝑥) = sinh x ∴ 𝑓(0) = sin 0 =0 𝑓 ′ (𝑥) = cosh 𝑥 ∴ 𝑓 ′ (0) = cos 0 = 1 𝑓 ′′ (𝑥) = sinh x ∴ 𝑓 ′′ (0) = sin 0 =0 𝑓 ′′′ (𝑥) = cosh 𝑥 ∴ 𝑓 ′′′ (0) = cos 0 = 1 𝑓 ′𝑣 (𝑥) = sinh x ∴ 𝑓 ′𝑣 (0) = sin 𝑥 =0 𝑓 𝑣 (𝑥) = cosh 𝑥 ∴ 𝑓 𝑣 (0) = cos 0 = 1 by Maclaurin′ s Theorem: ′ (0) 𝑥 2 ′′ 𝑥 3 ′′′ 𝑥𝑛 𝑛 𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓 + 𝑓 (0) + 𝑓 (0) + … ….. + 𝑓 (0) + … …. 2! 3! 𝑛! 𝑥2 𝑥3 𝑥4 𝑥5 𝑓(𝑥) = 0 + 𝑥 (1) + (0) + (−1) + (0) + (1) … …. 2! 3! 4! 5! 𝑥 3 𝑥 5 𝑥 7 𝑥 9 𝑥 11 𝑓(𝑥) = sin 𝑥 = 𝑥 + + + + + − … ….. 3! 5! 7! 9! 11! ********** 𝐒𝐭𝐚𝐧𝐝𝐚𝐫𝐝 𝐄𝐱𝐩𝐚𝐧𝐬𝐢𝐨𝐧𝐬: x2 x3 x4 x5 1) ex = 1 + x + + + + + ………… 2! 3! 4! 5! x2 x3 x4 x5 2) e−x = 1 − x + − + − + ………… 2! 3! 4! 5! x3 x5 x7 x9 3) sin x = x − + − + − ………… 3! 5! 7! 9! x3 x5 x7 x9 4) sinh x = x + + + + + ………… 3! 5! 7! 9! x2 x4 x6 x8 5) cos x = 1 − + − + − ………… 2! 4! 6! 8! x2 x4 x6 x8 6) cosh x = 1 + + + + + ………… 2! 4! 6! 8! "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 x3 2x5 17x7 7) tan x = x + + + + ………… 3 15 315 x3 2x5 17x7 8) tanh x = x − + − + ………… 3 15 315 x2 x3 x4 x5 9) log(1 + x) = x − + − + − ………… 2 3 4 5 x2 x3 x4 x5 10) log(1 − x) = −x − − − − − ………… 2 3 4 5 n(n−1)x2 n(n−1)(n−2)x3 11) (1 + x)n = 1 + nx + + + ……………… 2! 3! 1 12) = (1 + x)−1 = 1 − x + x 2 − x 3 + x 4 − x 5 + … … … … … (1+x) 1 13) = (1 − x)−1 = 1 + x + x 2 + x 3 + x 4 + x 5 + … … … … … (1−x) 1 x3 1 3 x5 1 3 5 x7 14) sin−1 x = x + + + + ………… 2 3 24 5 246 7 1 x3 1 3 x5 1 3 5 x7 15) sinh−1 x = x − + − + ………… 2 3 24 5 246 7 π 1 x3 1 3 x5 1 3 5 x7 16) cos −1 x = – [x + + + + …………] 2 2 3 24 5 246 7 x3 x5 x7 17) tan−1 x = x − + − + ………… 3 5 7 x3 x5 x7 18) tanh−1 x = x + + + + ………… 3 5 7 ********* "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 Examples: Expand of ex cos x in ascending powers of x upto a term in 𝑥 4 Solution: Let f(x) = ex cos x We know that x x2 x3 x4 e = 1 + x + + + + ………… 2! 3! 4! x2 x4 x6 x8 cos x = 1 − + − + − … … … … 2! 4! 6! 8! x x2 x3 x4 x2 x4 f(x) = e cos x = (1 + x + + + + ⋯ ) (1 − + … … … … ) 2! 3! 4! 2! 4! x2 x4 x2 x4 x2 x2 x4 ex cos x = 1 (1 − + … ) + x (1 − + …)+ (1 − 2! + 4! … ) + 2! 4! 2! 4! 2! x3 x2 x4 x4 x2 x4 3! (1 − 2! + 4! … ) + 4! (1 − 2! + 4! … ) x2 x4 x2 x4 x2 x2 x4 ex cos x = 1 (1 − + … ) + x (1 − + …)+ (1 − + …) + 2 24 2 24 2 2 24 x3 x2 x4 x4 x2 x4 6 (1 − 2 + 24 …)+ 24 (1 − 2 + 24 …) x x2 x4 x3 x2 x4 x3 x4 e cos x = 1 − + +x− + − + + 2 24 2 2 4 6 24 x3 x4 ex cos x = 1 + x − − 3 6 OR Examples: Expand of 𝑒 𝑥 cos x in ascending powers of x upto a term in 𝑥 4 Solution: 𝐿𝑒𝑡 𝑓(𝑥) = 𝑒 𝑥 cos x by Maclaurin′ s Theorem 𝑥 2 ′′ 𝑥3 𝑥 4 ′𝑣 𝑥𝑛 𝑛 𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓 ′ (0) + 𝑓 (0) + 𝑓 ′′′ (0) + 𝑓 (0) … ….. + 𝑓 (0) + … …. 2! 3! 4! 𝑛! 𝑓(𝑥) = 𝑒 𝑥 cos x ∴ 𝑓(0) = 𝑒 0 cos 0 =1 𝑓 ′ (𝑥) = 𝑒 𝑥 cos x − 𝑒 𝑥 sin x ∴ 𝑓 ′ (0) = 𝑒 0 cos 0 − 𝑒 0 sin 0 = 1 𝑓 ′′ (𝑥) = 𝑒 𝑥 cos x − 𝑒 𝑥 sin x − 𝑒 𝑥 cos x − 𝑒 𝑥 sin x = −2𝑒 𝑥 sin x ∴ 𝑓 ′′ (0) = 0 "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝑓 ′′′ (𝑥) = −2𝑒 𝑥 sin x − 2𝑒 𝑥 cos x ∴ 𝑓 ′′′ (0) = −2 𝑓 ′𝑣 (𝑥) = −2𝑒 𝑥 sin x − 2𝑒 𝑥 cos x + 2𝑒 𝑥 sin x − 2𝑒 𝑥 cos x ∴ 𝑓 ′𝑣 (0) = −4 by Maclaurin′ s Theorem: 𝑥2 𝑥3 𝑥4 𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓 ′ (0) + 𝑓 ′′ (0) + 𝑓 ′′′ (0) + 𝑓 ′𝑣 (0) + … …. 2! 3! 4! 𝑥2 𝑥3 𝑥4 𝑓(𝑥) = 1 + 𝑥 (1) + (0) + (−2) + (−4) 2 6 24 𝑥3 𝑥4 𝑓(𝑥) = 1 + 𝑥 − − 3 6 *********** Examples : Expand √1 + sin 𝑥 in ascending powers of x upto a term in 𝑥 6 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧 ∶ 𝐿𝑒𝑡 𝑓(𝑥) = √1 + sin 𝑥 𝑥 𝑥 𝑥 𝑥 𝑓(𝑥) = √sin2 ( ) + cos 2 ( ) + 2 sin ( ) cos ( ) 2 2 2 2 𝑥 𝑥 2 𝑓(𝑥) = √(sin ( ) + cos ( )) ∵ (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏 2 2 2 𝑥 𝑥 𝑓(𝑥) = √1 + sin 𝑥 = sin ( ) + cos ( ) 2 2 We know that x3 x5 x7 x9 sin x = x − + − + − ………… 3! 5! 7! 9! x2 x4 x6 x8 cos x = 1 − + − + − ………… 2! 4! 6! 8! x Put x = in above expansion 2 x x 1 x 3 1 x 5 sin ( ) = − ( ) + ( ) − … … … … 2 2 3! 2 5! 2 x 1 x 2 1 x 4 cos ( ) = 1 − ( ) + ( ) − … … … … 2 2! 2 4! 2 𝑥 𝑥 𝑓(𝑥) = √1 + sin 𝑥 = sin ( ) + cos ( ) 2 2 x 1 x 3 1 x 5 1 x 2 1 x 4 1 x 6 𝑓(𝑥) = − ( ) + ( ) − … … … + 1 − ( ) + ( ) − ( ) … … 2 3! 2 5! 2 2! 2 4! 2 6! 2 3 5 2 4 x 1 x 1 x 1 x 1 x 1 x6 𝑓(𝑥) = − ∗ + ∗ − ……… + 1 − ∗ + ∗ − ∗ …… 2 6 8 120 32 2 4 24 16 720 64 x x2 x3 x4 x5 x6 𝑓(𝑥) = 1 + − − + + − 2 8 48 384 3840 46080 "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 Type: Expansions of functions by using substitution:- 2𝑥 Ex.1 – Expand sin−1 ( ) in ascending powers of x 1 + 𝑥2 Solution: 2x Let f(x) = sin−1 ( ) 1 + x2 Put x = tanθ (∴ θ = tan−1 x) 2 tan θ ∴ f(x) = sin−1 ( ) 1 + tan2 θ = sin−1 (sin 2θ) =2θ =2(tan−1 x) (If x = tanθ then θ = tan−1 x) x3 x5 x7 We know that tan−1 x = x − + − + ………… 3 5 7 2x x3 x5 x7 ∴ sin−1 ( ) =2 [ x − + − + … … … …] 1+x2 3 5 7 ********* 1 1 x3 1 3 x5 Ex.2- Prove that sec −1 [ 2 ] = 2 [x + + …..] 1−2𝑥 2 3 24 5 Solution: 1 Let 𝑓(𝑥) = sec −1 [ ] 1 − 2𝑥 2 Put 𝑥 = sin 𝜃 (∴ 𝜃 = sin−1 𝑥) 1 ∴ 𝑓(𝑥) = sec −1 [ ] 1 − 2𝑠𝑖𝑛2 𝜃 1 =sec −1 [ ] cos 2𝜃 = sec −1 [sec 2𝜃] =2𝜃 (𝐼𝑓 𝑥 = 𝑠𝑖𝑛𝜃 𝑡ℎ𝑒𝑛 𝜃 = sin−1 𝑥) =2 sin−1 𝑥 1 1 x3 1 3 x5 sec −1 [ 2 ] = 2 [x + + ….. ] Hence Proved. 1−2𝑥 2 3 24 5 ********** "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 Ex.3 – Expand cos −1 (4𝑥 3 − 3𝑥) in ascending powers of x. Solution: Let 𝑓(𝑥) = cos −1 (4𝑥 3 − 3𝑥) Put 𝑥 = 𝑐𝑜𝑠𝜃 𝑓(𝑥) = cos −1 (4𝑐𝑜𝑠 3 𝜃 − 3𝑐𝑜𝑠𝜃) = cos −1 (𝑐𝑜𝑠3𝜃) =3𝜃 = 3 cos −1 𝑥 (𝐼𝑓 𝑥 = 𝑐𝑜𝑠𝜃 𝑡ℎ𝑒𝑛 𝜃 = cos −1 𝑥 ) π 1 x3 1 3 x5 1 3 5 x7 = 3 [ – (x + + + + … … … … )] 2 2 3 24 5 246 7 π 1 x3 1 3 x5 1 3 5 x7 =3 – 3 [x + + + + …………] 2 2 3 24 5 246 7 ********** 3𝑥 − 𝑥 3 𝜋 x3 x5 x7 Ex.4- Prove that cot −1 ( ) = 2 − 3 (x − + − + …………) 1 − 3𝑥 2 3 5 7 x3 3x5 Ex.5- Prove that sin−1 (3𝑥 − 4𝑥 3 ) = 3 (x + + + …………) 6 40 "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝐈𝐧𝐝𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐞 𝐅𝐨𝐫𝐦𝐬 𝐃𝐞𝐟𝐢𝐧𝐚𝐭𝐢𝐨𝐧: Let f(x) and g(x) be any two function of x such that f(a) = 0 and g(a) = 0 f(x) 0 then the ratio is said to be the indeterminate form at x = a g(x) 0 0 ∞ There are several Indeterminate Forms , , 0 × ∞, ∞ − ∞, 00 , ∞0 , 1∞ 0 ∞ 𝐓𝐫𝐮𝐞 𝐕𝐚𝐥𝐮𝐞 (𝐋𝐢𝐦𝐢𝐭): The limiting value of an indeterminate form is called its true value. 𝟎 𝐓𝐲𝐩𝐞 𝐈 ∶ 𝐈𝐧𝐝𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐞 𝐅𝐨𝐫𝐦 (𝐋′ 𝐇𝐨𝐬𝐩𝐢𝐭𝐚𝐥 𝐑𝐮𝐥𝐞) 𝟎 Let f(x) and g(x) be any two function of x such that f(a) = 0 and g(a) = 0 f(x) f ′ (x) If lim f(x) = 0 and lim g(x) = 0 then lim = lim ′ x→a x→a x → a g(x) x → a g (x) ∞ 𝐓𝐲𝐩𝐞 𝐈𝐈 ∶ 𝐈𝐧𝐝𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐞 𝐅𝐨𝐫𝐦 ∞ f(x) ∞ 0 If lim f(x) = ∞ and lim g(x) = ∞ then lim in form then reduces to by x→a x→a x→a g(x) ∞ 0 f(x) 1/f(x) = and L′ Hospital Rule is applicable. g(x) 1/g(x) ′ ∞ f(x) f ′ (x) L Hospital Rule is applied to the form Thus lim = lim ′ ∞ x → a g(x) x → a g (x) 𝐓𝐲𝐩𝐞 𝐈𝐈𝐈 ∶ 𝐈𝐧𝐝𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐞 𝐅𝐨𝐫𝐦 𝟎 × ∞ If lim f(x) = 0 and lim g(x) = ∞ then lim f(x) ∙ g(x) takes 0 × ∞ x→a x→a x→a f(x) g(x) 0 ∞ f(x) ∙ g(x) = 1 or 1 and the limit reduces to either form or form 0 ∞ g(x) f(x) and L′ Hospital Rule is applicable. 𝐓𝐲𝐩𝐞 𝐈𝐕 ∶ 𝐈𝐧𝐝𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐞 𝐅𝐨𝐫𝐦 ∞ − ∞ If lim f(x) = ∞ and lim g(x) = ∞ then lim [f(x) − g(x)] takes ∞ − ∞ x→a x→a x→a 0 ∞ simplify the expression f(x) − g(x) and the limit reduces to either form or form 0 ∞ and L′ Hospital Rule is applicable. "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝐍𝐨𝐭𝐞: 𝐟𝟏 (𝐱) 𝐠 𝟏 (𝐱) 𝐟𝟏 (𝐱)𝐠 𝟐 (𝐱) − 𝐠 𝟏 (𝐱)𝐟𝟐 (𝐱) 0 1) If 𝐥𝐢𝐦 − in ∞ − ∞ form then 𝐥𝐢𝐦 is in 𝐱 → 𝐚 𝐟𝟐 (𝐱) 𝐠 𝟐 (𝐱) 𝐱→𝐚 𝐟𝟐 (𝐱)𝐠 𝟐 (𝐱) 0 2) If f ′ (x), f ′′ (x) … … f n−1 (x) and g ′ (x), g ′′ (x) … … g n−1 (x) all are zero, f(x) fn (x) But f n (x)and g n (x)are not both zero then lim = lim x → a g(x) x → a gn (x) 3) Use of L′ Hospital Rule ∶ Differentiate numerator and denominator separately and then put x = a. If this reduces to indeterminate form then apply the rule again. 4) If logrithmic term is present in 0 ∗ ∞ form then keep logritmic term in numerator 𝐓𝐲𝐩𝐞 𝐕 ∶ 𝐈𝐧𝐝𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐞 𝐅𝐨𝐫𝐦 𝟎𝟎 , ∞𝟎 , 𝟏∞ 1) If lim f(x) = 0 and lim g(x) = 0 then lim {f(x)}g(x) takes 00 x→a x→a x→a 2) If lim f(x) = ∞ and lim g(x) = 0 then lim {f(x)}g(x) takes ∞0 x→a x→a x→a 3) If lim f(x) = 1 and lim g(x) = ∞ then lim {f(x)}g(x) takes 10 x→a x→a x→a If the true value of limit is denoted by L Then L = lim {f(x)}g(x) x→a Taking Log on both sides log L = log lim {f(x)}g(x) x→a log L = lim g(x) log f(x) x→a limit can be determined by 0 × ∞ form, true value is b log L = b L = eb 𝐍𝐨𝐭𝐞: e∞ = ∞ e−∞ = 0 "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝐒𝐭𝐚𝐧𝐝𝐚𝐫𝐝 𝐋𝐢𝐦𝐢𝐭𝐬: sin x tan x 1) lim =1 3) lim =1 6) lim (1 + x)1/x = e x→0 x x→0 x x→0 sin−1 x tan−1 x 1 x 2) lim =1 4) lim =1 7) lim (1 + ) = e x→0 x x→0 x x →∞ x sinh x ex − 1 x a −1 3) lim =1 5) lim =1 8) lim = log a x→0 x x→0 x x→0 x ********** 𝐱𝐞𝐱 − 𝐥𝐨𝐠(𝟏 + 𝐱) 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏) 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 𝐥𝐢𝐦 𝐱→𝟎 𝐱𝟐 xex − log(1 + x) 𝐒𝐨𝐥𝐮𝐭𝐨𝐢𝐧: Let L = lim … … … … (1) x→0 x2 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 (0)e0 − log(1 + 0) 0(1) − log 1 0−0 0 0 L = = = = ∴ form 02 0 0 0 0 1 xex + ex − (1 + x) From (1) L = lim … … … … (2) x→0 2 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 1 1 (0)e0 + e0 − 0(1) + 1 − L = 1+0 = 1−0 = 0 ∴ 0 form 2(0) 2(0) 0 0 −1 xex + ex + ex − (1 + x)2 From (2) L = lim x→0 2 1 xex + ex + ex + (1 + x)2 L = lim … … … … (3) x→0 2 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 1 (0)e0 + e0 + e0 + (1 + 0)2 L = 2 0+1+1+1 3 L= = 2 2 "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝐜𝐨𝐬 𝟐 (𝛑𝐱) 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟐) 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 𝐥𝐢𝐦 𝟐𝐱 𝐱 → 𝐞 − 𝟐𝐱𝐞 𝟏 𝟐 cos 2 πx 𝐒𝐨𝐥𝐮𝐭𝐨𝐢𝐧: Let L = lim 2x … … … … (1) x → e − 2xe 1 2 𝟏 𝟏 𝐱 → 𝐩𝐮𝐭 𝐱 = 𝟐 𝟐 cos 2 π(1/2) 0 0 L = 2(1/2) = = e − 2(1/2)e e−e 0 2 cos πx (− sin πx) π From (1) L = lim ∵ sin 2x = 2 sin x cos x x→ 1 2e2x − 2e 2 − π sin(2πx) L = lim … … … … (2) x→ 1 2e2x − 2e 2 𝟏 𝟏 𝐱 → 𝐩𝐮𝐭 𝐱 = 𝟐 𝟐 − π sin(2π/2) − π(0 ) 0 L = = = 2e2(1/2) − 2e 2e − 2e 0 – π cos(2πx) (2π) L = lim 2x − 0 … … … … (3) x→ 1 4e 2 𝟏 𝟏 𝐱 → 𝐩𝐮𝐭 𝐱 = 𝟐 𝟐 – 2π2 cos(2π/2) L = 4e2(1/2) – 2π2 (−1) L = 4e 2π2 π2 L = = 4e 2e ********** "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝐥𝐨𝐠 𝐬𝐢𝐧 𝟐𝐱 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟑) 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 𝐥𝐢𝐦 𝐱→𝟎 𝐥𝐨𝐠 𝐬𝐢𝐧 𝐱 log sin 2x 𝐒𝐨𝐥𝐮𝐭𝐨𝐢𝐧: Let L = lim … … … … (1) x→0 log sin x 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 log sin 2(0) log 0 ∞ L = = = from log sin (0) log 0 ∞ 1 cos 2x (2) d 1 From (1) L = lim sin 2x ∵ log x = x→0 1 dx x cos x sin x 2 cot 2x cos x 1 L = lim ∵ = cot x = tan 𝑥 x → 0 cot x sin x cot x 2 2 tan x L = lim tan 2x = lim … … … (2) x→0 1 x → 0 tan 2x tan x 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 2 tan 0 0 L = = from tan 20 0 2 sec 2 x 2 sec 2 0 1 L = lim = = =1 x → 0 sec 2 2x (2) 2 sec 2 2(0) 1 OR 𝐥𝐨𝐠 𝐬𝐢𝐧 𝟐𝐱 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟑) 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 𝐥𝐢𝐦 𝐱→𝟎 𝐥𝐨𝐠 𝐬𝐢𝐧 𝐱 log sin 2x 𝐒𝐨𝐥𝐮𝐭𝐨𝐢𝐧: Let L = lim … … … … (1) x→0 log sin x 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 log sin 2(0) log 0 ∞ L = = form log sin (0) log 0 ∞ 1 cos 2x (2) L = lim sin 2x x→0 1 cos x sin x "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 2 cos 2x sin x L = lim x → 0 sin 2x cos x 2 cos 2x sin x L = lim ∵ sin 2x = 2 sin x cos x x → 0 2 sin x cos x cos x cos 2x L = lim ∵ cos 2x = cos 2 x − sin2 x x → 0 cos 2 x cos 2 x − sin2 x L = lim x→0 cos 2 x cos 2 x sin2 x L = lim − x → 0 cos 2 x cos 2 x L = lim 1 − tan2 𝑥 x→0 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 L = 1 − tan2 0 L=1−0=1 ∗∗∗∗∗∗∗∗∗∗∗ 𝐞𝐱 − 𝟏 − 𝐱 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟒) 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 𝐥𝐢𝐦 𝐱 → 𝟎 𝐥𝐨𝐠 (𝟏 + 𝐱) − 𝐱 ex − 1 − x 𝐒𝐨𝐥𝐮𝐭𝐨𝐢𝐧: Let L = lim … … … … (1) x → 0 log (1 + x) − x 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 e0 − 1 − 0 1−1 0 L = = form log (1 + 0) − 0 log (1) 0 ex − 0 − 1 From (1) L = lim … … … … (2) x→0 1 −1 1+x e0 − 0 − 1 0 L= form 1 0 −1 1+0 ex From (2) L = lim … … … … (3) x→0 −1 (1 + x)2 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 e0 L= −1 = −1 (1+0)2 "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝐱 (𝟏 + 𝐚 𝐜𝐨𝐬 𝐱) − 𝐛 𝐬𝐢𝐧 𝐱 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟓) 𝐅𝐢𝐧𝐝 𝐚 𝐚𝐧𝐝 𝐛 𝐢𝐟 𝐥𝐢𝐦 =𝟏 𝐱→𝟎 𝐱𝟑 x(1 + acos x) − bsin x 𝐒𝐨𝐥𝐮𝐭𝐨𝐢𝐧: Let L = lim … … … … (1) x→0 x3 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 (0)(1 + a cos 0) − b sin 0 0 L = 3 = form 0 0 x (0 − a sin x) + (1 + a cos x) − bcos x From (1) L = lim x→0 3x 2 −a x sin x + 1 + a cos x − bcos x L = lim … … … … (2) x→0 3x 2 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 0 (0 − a sin 0) + (1 + a cos 0) − b cos 0 (1 + a ) − b L = = =∞ 3(0)2 0 (1 + a ) − b but limit is finite i. e. 1 1≠ =∞ 0 0 (1 + a ) − b 0 ∴ For Finite limit it should be from = from 0 0 0 ∴ (1 + a ) − b = 0 ∴ a − b = −1 … … … (A) – a x cos x − a sin x + 0 − a sin x + b sin x From (2) L = lim … … … … (3) x→0 6x 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 – a (0) cos (0) − a sin(0) − a sin (0) + b sin(0) 0 L = = 6(0) 0 a x sin x – a cos x − a cos x − a cos x + b cos x From (3) L = lim … … … … (4) x→0 6 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 a(0) sin(0) – a cos (0) − a cos(0) − a cos (0) + b cos(0) L = 6 0 –a− a− a + b L = 6 – 3a + b L = but limit value L = 1 is given 6 "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 – 3a + b but limit is finite 1 ∴1 = 6 ∴ – 3a + b = 6 … … … (B) ∴ a − b = −1 … … … (A) Solving (A) and (B) a − b = −1 – 3a + b = 6 5 Add (A) and (B) −2a=5 ∴ a=− 2 5 5 3 Put a = − in (A) ∴ − −b=1 ∴b=− 2 2 2 5 3 ∴a=− 𝑏=− 2 2 ********** 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟔) 𝐅𝐢𝐧𝐝 𝐚 𝐚𝐧𝐝 𝐛 𝐢𝐟 𝐥𝐢𝐦 [𝐱 −𝟑 𝐬𝐢𝐧 𝐱 + 𝐚𝐱 −𝟐 + 𝐛] = 𝟎 𝐱→𝟎 𝐒𝐨𝐥𝐮𝐭𝐨𝐢𝐧: Let L = lim [x −3 sin x + ax −2 + b] x→0 sin x a L = lim [ 3 + 2 + b] x→0 𝑥 𝑥 sin x + ax + bx 3 L = lim [ ] … … …. (1) x→0 𝑥3 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 sin (0) + a(0) + b(0)3 0 L= = form (0)3 0 cos x + a + 3x 2 b From (1) L = lim [ ] … … …. (2) x→0 3𝑥 2 cos (0) + a + 3x(0)2 b 1+a L= = =∞ 3(0)2 0 but limit is finite L = 0 0 1+a 0 ∴ For Finite limit it should be ∴ = 0 0 0 ∴ 1+a=0 ∴ a = −1 "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 −sin x + 6xb From (2) L = lim [ ] … … …. (3) x→0 6𝑥 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 −sin (0) + 6(0)b 0 L= form 6(0) 0 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 −cos x + 6b From (3) L = lim [ ] … … …. (4) x→0 6 −cos (0) + 6b 𝐿= 6 −1 + 6b 𝐿= 6 −1 + 6b but limit is finite 0 ∴ =0 6 1 ∴ −1 + 6b = 0 𝑏= 6 1 ∴ a = −1 𝑏= 6 ********** a cos x − a + bx 2 1 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟕) Find a and b if lim = x→0 x4 12 a cos x − a + bx 2 𝐒𝐨𝐥𝐮𝐭𝐨𝐢𝐧: Let L = lim … … …. (1) x→0 x4 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 a cos (0) − a + b(0)2 a −a 0 L= = form (0)4 0 0 −a sin x + 2xb From (1) L = lim … … …. (2) x→0 4x 3 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 −a sin (0) + 2(0)b 0 L= form 4(0)3 0 – a cos x + 2b From (2) L = lim [ ] … … …. (3) x→0 12𝑥 2 "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 – a cos(0) + 2b −a + 2b 1 L= = ≠ 12(0)2 0 12 1 but limit is finite 12 0 ∴ For Finite limit it should be 0 ∴ −a + 2b = 0 … … …. (A) a sin x From (3) L = lim [ ] … … …. (3) x→0 24𝑥 a sin x L= lim [ ] 24 x → 0 𝑥 1 a = (1) 12 24 𝑎=2 ∴ −a + 2b = 0 ∴ −2 + 2b = 0 𝑏=1 𝑎 = 2 and 𝑏 = 1 ******** a sin2 x + b log cos x 1 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟖) Find a and b if lim = − x→0 x4 2 sin 2x + p sin x 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟗) If lim is finite then find the value of p x→0 x3 and hence find the value of limit ************** "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏𝟎) 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 𝐥𝐢𝐦 𝐬𝐢𝐧 𝐱 𝐥𝐨𝐠 𝐱 𝐱→𝟎 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let L = lim sin x log x … … … … (1) x→0 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 L = sin 0 log 0 𝟎 × ∞ 𝐟𝐨𝐫𝐦 log x log x L = lim = lim … … … …. (2) x→0 1 x → 0 cosec x sin 𝑥 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 log 0 ∞ L= 𝐟𝐨𝐫𝐦 cosec 0 ∞ 1/x From (2) L = lim x → 0 −cosec x cotx sinx tan x L = lim x→0 −x sinx tan x 𝟎 L = lim 𝐟𝐨𝐫𝐦 … … … … …. (𝟑) x→0 −x 𝟎 sin x sec 2 x + tan x cos x From (3) L = lim … … … … … (4) x→0 −1 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 sin(0) sec 2 (0) + tan(0) cos(0) L= −1 L= 0 ********** "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏𝟏) 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 𝐥𝐢𝐦 (𝟏 − 𝐬𝐢𝐧 𝐱)𝐭𝐚𝐧 𝐱 𝐱 → 𝛑/𝟐 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let L = lim (1 − sin x) tan x … … … … (1) x → π/2 𝐱 → 𝛑/𝟐 𝐩𝐮𝐭 𝐱 = 𝛑/𝟐 L = (1 − sin π/2)tan π/2 0 × ∞ form (1 − sin x) (1 − sin x) From (1) L = lim = lim … … ….. (2) 𝐱 → 𝛑/𝟐 1 𝐱 → 𝛑/𝟐 cot x tan x 𝐱 → 𝛑/𝟐 𝐩𝐮𝐭 𝐱 = 𝛑/𝟐 (1 − sin π/2) 0 L= form cot π/2 0 – cos x From (2) L = lim 𝐱 → 𝛑/𝟐 −cosec 2 x 𝐱 → 𝛑/𝟐 𝐩𝐮𝐭 𝐱 = 𝛑/𝟐 – cos π/2 L= −cosec 2 π/2 0 L= 12 L= 0 ***************** 𝛑 𝛑 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏𝟐) 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 𝐥𝐢𝐦 [ − ] 𝐱 → 𝟎 𝟒𝐱 𝟐𝐱(𝐞𝛑𝐱 + 𝟏) π π 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧 ∶ Let L = lim [ − ] … … … … (1) x → 0 4x 2x(eπx + 1) 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 π π L= − ∞ − ∞ form 4(0) 2(0)(eπ0 + 1) 2xπ(eπx + 1) − 4xπ From (1) L = lim [ ] x→0 8x 2 (eπx + 1) π(eπx + 1) − 2π L = lim [ ] x→0 4x(eπx + 1) "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 πeπx + π − 2π L = lim [ ] x→0 4x(eπx + 1) πeπx − π L = lim [ ] … … ….. (2) x→0 4x(eπx + 1) 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 πe0x − π π −π 𝟎 L= = 𝐟𝐨𝐫𝐦 4(0)(eπ0 + 1) 0 𝟎 π2 eπx From (2) L = lim [ ] x→0 4x(πeπx + 0) + 4(πeπx + 1) π2 eπ0 L= 4(0)(πe0 + 0) + 4(e0 + 1) π2 L= 4(1 + 1) π2 L= 8 ******************* 𝟏 𝟏 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏𝟑) 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 𝐥𝐢𝐦 [ − 𝟐 𝐥𝐨𝐠 (𝟏 + 𝐱)] 𝐱→𝟎 𝐱 𝐱 Solution: 1 1 Let L = lim [ − 2 log (1 + x)] … … … … (1) x→0 x x 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 1 1 0 L= − log(1 + 0) ∞ − form 0 0 0 x 1 From (1) L = lim [ 2 − 2 log (1 + x) ] x→0 x x x ∗ x 2 − x 2 log(1 + x) L = lim [ ] x→0 x2x2 x 2 (x − log(1 + x)) L = lim [ ] x→0 x2x2 x − log(1 + x) 0 L = lim [ ] form … … … … (1) x→0 x2 0 "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 1 1− From (1) L = lim [ 1+x] … … … (2) x→0 2x 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 1 1− 𝟎 L= 1+0 𝐟𝐨𝐫𝐦 2(0) 𝟎 −1 0− (1 + x)2 From (2) L = lim [ ] x→0 2 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 1 (1 + 0)2 L = 2 1 L= 2 ******************** 𝟏 𝟐 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏𝟒) 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 𝐥𝐢𝐦 [ − 𝟐 ] 𝐱→𝟏 𝐱 − 𝟏 𝐱 −𝟏 1 2 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧 ∶ Let L = lim [ − 2 ] … … … … (1) x→1 x − 1 x −1 𝐱 → 𝟏 𝐩𝐮𝐭 𝐱 = 𝟏 1 2 1 2 L= − 2 = − ∞ − ∞ 𝐟𝐨𝐫𝐦 1−1 1 −1 0 0 (x 2 − 1) − 2(x − 1) From (1) L = lim [ ] x→0 (x − 1)(x 2 − 1) (x − 1)(x + 1) − 2(x − 1) L = lim [ ] x→0 (x − 1)(x 2 − 1) (x + 1) − 2 L = lim [ ] x→0 (x 2 − 1) x−1 L = lim [ 2 ] x→0 (x − 1) "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 x−1 L = lim [ ] x→0 (x − 1)(x + 1) 1 L = lim [ ] x→0 (x + 1) 𝐱 → 𝟏 𝐩𝐮𝐭 𝐱 = 𝟏 1 L= 1+1 1 L= 2 *********** 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏𝟓) 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 𝐥𝐢𝐦 {𝐬𝐢𝐧 𝐱}𝐭𝐚𝐧 𝐱 𝐱→𝟎 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let L= lim {sin x}tan x … … … … (1) x→0 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 L = {sin 0}tan 0 𝟎𝟎 𝐟𝐨𝐫𝐦 Taking log on both sides log L = log lim {sin x}tan x x→0 log L = lim log{sin x}tan x ∵ log an = n ∗ log a x→0 log L = lim tan x log sin x … … … … (2) x→0 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 log L = tan 0 log sin 0 = tan 0 log 0 𝟎 × ∞ 𝐟𝐨𝐫𝐦 log sin x From (2) log L = lim x→0 1/ tan x log sin x 1 log L = lim ∴ = cot 𝑥 … … … … (3) x→0 cot x tan x 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 log sin 0 ∞ log L = 𝐟𝐨𝐫𝐦 cot 0 ∞ 1 d cos x ( ) sin x From (3) log L = lim sin x dx2 = sin x 2 x→0 −cosec x −cosce x "𝑇ℎ𝑒 𝑂𝑛𝑙𝑦 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑝 𝑦𝑜𝑢 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑑𝑟𝑒𝑎𝑚𝑠 𝑖𝑠 𝑦𝑜𝑢" Other Subjects: https://www.studymedia.in/fe/notes 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐈 cot x ∞ log L = lim 𝐟𝐨𝐫𝐦 … … …. (𝟒) x→0 −cosec 2 x ∞ −cosec 2 x d From (4) log L = lim ∵ x n = nx n−1 (x) x → 0 −2cosec 1 x cosec x cot x dx 1 1 log L = lim = lim tan x x → 0 2 cot x x→0 2 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 1 log L = tan 0 2 log L = 0 elog L = e0 L = e0 = 1 ****************** 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏𝟔) 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 𝐥𝐢𝐦 {𝐜𝐨𝐭 𝐱}𝐬𝐢𝐧 𝐱 𝐱→𝟎 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let L= lim {cot x}sin x x→0 𝐱 → 𝟎 𝐩𝐮𝐭 𝐱 = 𝟎 L= lim {cot 0}sin 0 ∞𝟎 𝐟𝐨?