Algebra 2 Midterm Review 2024 PDF

Summary

This document is an algebra midterm review for the year 2024. The practice questions cover topics including algebraic expressions, exponential expressions, radical expressions, equations, and polynomials.

Full Transcript

Midterm Review 2024 Name Algebra 2 Period Date Simplify the algebraic expression. 1) -5(2x - 9) - 4x + 7 A) 14x + 52 B) -14x - 38...

Midterm Review 2024 Name Algebra 2 Period Date Simplify the algebraic expression. 1) -5(2x - 9) - 4x + 7 A) 14x + 52 B) -14x - 38 C) -14x + 52 D) 6x + 52 2) -5(3r + 4) + 10(9r + 9) A) -2r - 1 B) 75r + 4 C) -35r D) 75r + 70 Evaluate the algebraic expression for the given value or values of the variable(s). 3) 4x2 + 3y; x = 9 and y = 5 A) 127 B) 339 C) 1680 D) 1311 4) (x + 4y) 2 ; x = 3 and y = 4 A) 361 B) 49 C) 38 D) 19 Simplify the exponential expression. 2 5) (11x5 ) A) 11x10 B) 11x7 C) 121x10 D) 121x5 2 6) (-6x5 y6 ) A) -6x10y12 B) 36x10y12 C) 36x7 y8 D) -36x10y12 Simplify the exponential expression. Assume that variables represent nonzero real numbers. 7) (-4x4 y-5 )(2x-1 y) -8x3 -2x3 -8x5 A) -8x3 y6 B) C) D) y4 y4 y6 2 -8 x-4 y2 8) 2 -5 x-7 y4 8 1 x3 3x3 A) B) C) D) x y2 3 8x7 y2 8y2 y2 Simplify the radical expression. 9) 72 A) 12 B) 8 C) 2 6 D) 6 2 10) 325 A) 325 B) 25 13 C) 5 13 D) 65 Simplify each term. Then add or subtract terms whenever possible. 11) 8 3 - 6 12 A) -20 3 B) -4 3 C) 2 3 D) 4 3 1 12) -4 2 - 5 18 A) -11 2 B) -9 2 C) 19 2 D) -19 2 Simplify the radical expression. 3 13) -125 A) -5 B) -125 C) 5 D) not a real number 3 14) x7 3 3 3 3 A) x2 x B) x x2 C) x x D) x2 x2 Evaluate the expression using radicals. 15) 100 1/2 A) 20 B) 10 C) 5 D) 40 16) 644/3 A) 1024 B) 16,384 C) 4096 D) 256 Perform the indicated operations. Write the resulting polynomial in standard form. 17) (-3x5 - 5x2 + 5) + (7x5 + 9x2 + 5) A) 4x5 + 12x2 + 0 B) 4x5 + 4x2 + 0 C) 4x5 + 4x2 + 10 D) 18x7 18) (5x5 + 8x4 - 9x3 + 4) - (3x5 + 4x4 - 2x3 - 9) A) 2x5 + 12x4 - 11x3 - 5 B) 8x5 + 12x4 - 11x3 + 13 C) 2x5 + 4x4 - 7x3 + 13 D) 8x5 + 12x4 - 11x3 - 5 19) (x + 3)(8x2 + 4x + 7) A) 8x3 + 24x2 + 12x + 21 B) 96x4 + 8x3 + 84x2 + 21 C) 32x3 + 16x2 + 28x D) 8x3 + 28x2 + 19x + 21 20) (7x - 1)(x2 - 5x + 1) A) 7x3 + 36x2 - 12x + 1 B) 7x3 - 36x2 + 12x - 1 C) 7x3 - 34x2 + 2x - 1 D) 7x3 - 35x2 + 7x + 1 Factor out the greatest common factor. 21) 3x - 27 A) 3x(x - 9) B) 3(x - 27) C) 3x(-9) D) 3(x - 9) 22) 5x2 - 15x A) 5x(x - 3) B) 5(x2 - 3x) C) 5x(x - 3x) D) x(5x - 15) Factor by grouping. 23) x3 + 8x - 5x2 - 40 A) (x + 5)(x2 + 8) B) (x - 5)(x + 8) C) (x - 5)(x2 + 8) D) (x - 5)(x2 - 8) 2 24) 5x3 - 10x2 + 8x - 16 A) (x - 2)(5x2 - 8) B) (x - 2)(5x2 + 8) C) (x - 2)(5x + 8) D) (x + 2)(5x2 + 8) Factor the quadratic trinomial. 25) x2 + 5x - 24 A) (x - 8)(x + 1) B) (x + 8)(x - 3) C) (x - 8)(x + 3) D) prime 26) x2 - x - 72 A) (x + 9)(x - 8) B) (x + 8)(x - 9) C) (x + 1)(x - 17) D) prime 27) 3x2 - 14x + 16 A) (3x - 8)(3x + 2) B) (3x - 8)(x - 2) C) (3x + 2)(x - 8) D) 3(x - 8)(x - 2) 28) 7x2 + 32x + 15 A) (7x + 3)(x - 5) B) (7x + 5)(x - 3) C) (7x - 3)(x + 5) D) prime Factor the difference of two squares. 29) x2 - 100 A) (x + 10)2 B) (x - 10)2 C) (x + 10)(x - 10) D) prime 30) 4x2 - 81 A) (2x + 9)(2x - 9) B) (2x + 9)2 C) (2x - 9)2 D) prime Factor completely, or state that the polynomial is prime. 31) 2x2 - 16x - 18 A) 2(x + 1)(x - 9) B) 2(x2 - 8x - 9) C) (2x + 2)(x - 9) D) (x + 1)(2x - 18) 32) x2 + 4 A) (x + 2)2 B) (x - 2)2 C) (x + 2)(x - 2) D) prime Solve and check the linear equation. 33) 6x - (2x - 1) = 2 1 1 1 1 A) - B) C) - D) 4 4 8 8 34) 2x - 4 = -3 + 10x 1 12 A) - 8 B) - C) - D) 8 8 7 Solve the equation. x x 35) = + 8 2 5 80 A) {16} B) {10} C) {40} D) 3 3 x x 36) 20 - = 2 3 50 A) 50 B) C) {4} D) {24} 3 Solve the absolute value equation or indicate that the equation has no solution. 37) 3 x - 3 = 18 A) {3} B) {3, -9} C) {9, -3} D) ∅ 38) 8x - 5 - 1 = -7 1 11 11 1 1 A) - , - B) , C) - D) ∅ 8 8 8 8 8 Solve the system of equations (two linear functions). 39) y = 4x + 7 y = 9x + 6 39 1 1 39 A) {(1, 11)} B) , C) , D) ∅ 5 5 5 5 40) 2x + 7y = -10 2x + 2y = 20 A) {(16, -6)} B) {(-16, 2)} C) {(-6, 16)} D) {(-16, 7)} Find the slope of the line that goes through the given points. 41) (2, -3), (-7, 8) 9 11 11 A) - B) - C) - 1 D) 11 9 9 42) (-8, -9), (-8, -3) 3 3 A) B) C) Undefined D) 0 4 8 43) (6, -1), (2, -1) 1 1 A) B) - C) 0 D) Undefined 2 4 Use the given conditions to write an equation for the line in point -slope form. 44) Slope = 3, passing through (-7, 8) A) y + 8 = 3(x - 7) B) y - 8 = 3(x + 7) C) x - 8 = 3(y + 7) D) y = 3x + 29 45) Passing through (7, 3) and (5, 2) 1 1 1 1 A) y - 3 = (x - 5) or y - 2 = (x - 7) B) y - 3 = (x - 7) or y - 2 = (x - 5) 2 2 2 2 1 1 C) y + 3 = (x + 7) or y + 2 = (x + 5) D) y - 3 = 7(x + 7) or y - 2 = 5(x - 3) 2 2 4 46) Slope = 4, passing through (-8, 7) A) y + 7 = 4(x - 8) B) y - 7 = 4(x + 8) C) x - 7 = 4(y + 8) D) y = 4x + 39 47) Passing through (4, 5) and (6, 6) 1 1 A) y - 5 = 4(x + 4) or y - 6 = 6(x - 5) B) y - 5 = (x - 6) or y - 6 = (x - 4) 2 2 1 1 1 1 C) y - 5 = (x - 4) or y - 6 = (x - 6) D) y + 5 = (x + 4) or y + 6 = (x + 6) 2 2 2 2 Use the given conditions to write an equation for the line in slope -intercept form. 48) Slope = 3, passing through (3, 8) A) y - 8 = 3x - 3 B) y - 8 = x - 3 C) y = 3x - 1 D) y = 3x + 1 49) Slope = 2, passing through (-6, 3) A) y = 2x - 15 B) y - 3 = x + 6 C) y = 2x + 15 D) y - 3 = 2x + 6 50) Passing through (5, 3) and (4, 6) A) y - 3 = - 3(x - 5) B) y = - 3x + 18 C) y = mx + 18 D) y = 3x + 18 51) Passing through (1, -8) and (-7, 8) A) y = - 2x - 6 B) y = mx - 6 C) y = 2x - 6 D) y + 8 = - 2(x - 1) Determine the slope and the y -intercept of the graph of the equation. 52) 6x - 7y - 42 = 0 6 7 6 A) m = - ; (0, 6) B) m = 6; (0, 42) C) m = ; (0, 7) D) m = ; (0, -6) 7 6 7 53) -x + 3y - 27 = 0 1 1 A) m = - ; (0, 9) B) m = 3; (0, -27) C) m = ; (0, 9) D) m = -1; (0, 27) 3 3 5 Graph the line whose equation is given. 3 54) y = - x + 1 4 y 6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1 1 2 3 4 5 6 x -2 -3 -4 -5 -6 A) B) y y 6 6 5 5 4 4 3 3 2 2 1 1 -6 -5 -4 -3 -2 -1 -1 1 2 3 4 5 6 x -6 -5 -4 -3 -2 -1 -1 1 2 3 4 5 6 x -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 C) D) y y 6 6 5 5 4 4 3 3 2 2 1 1 -6 -5 -4 -3 -2 -1 -1 1 2 3 4 5 6 x -6 -5 -4 -3 -2 -1 -1 1 2 3 4 5 6 x -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 6 Find an equation for the line with the given properties. 55) The solid line L contains the point (-2, 4) and is perpendicular to the dotted line whose equation is y = 2x. Give the equation of line L in slope-intercept form. y 5 -5 5 x -5 1 1 1 A) y = - x+3 B) y - 4 = 2(x + 2) C) y = x+3 D) y - 4 = - (x + 2) 2 2 2 56) The solid line L contains the point (3, 2) and is parallel to the dotted line whose equation is y = 2x. Give the equation for the line L in slope-intercept form. y 5 -5 5 x -5 A) y = 2x - 4 B) y - 2 = 2(x - 3) C) y = 2x + b D) y = 2x - 1 Express the interval in set-builder notation and graph the interval on a number line. 57) (-1, 4] -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 A) {x -1 < x < 4} B) {x -1 ≤ x ≤ 4} -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 C) {x -1 < x ≤ 4} D) {x x ≤ 4} -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 7 7 58) - ∞, 2 -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 7 A) {x 2 ≤ x ≤ 7} B) x x > 2 -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 7 7 C) x x ≤ D) x x < 2 2 -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 59) [3, ∞) -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 A) {x x ≥ 3} B) {x x ≥ 3} -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 C) {x x > 3} D) {x x > 3} -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Use the graph to determine the functionʹs domain and range. 60) y 6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 x -1 -2 -3 -4 -5 -6 A) domain: (- ∞, -5) or (-5, ∞) B) domain: (- ∞, ∞) range: (- ∞, -2) or (-2, ∞) range: (- ∞, ∞) C) domain: (- ∞, ∞) D) domain: [-5, ∞) range: [-2, ∞) range: [-2, ∞) 8 61) y 6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 x -1 -2 -3 -4 -5 -6 A) domain: (- ∞, -3] B) domain: (- ∞, -3) or (-3, ∞) range: (- ∞, 2] range: (- ∞, 2) or (2, ∞) C) domain: (- ∞, ∞) D) domain: (- ∞, ∞) range: (- ∞, ∞) range: (- ∞, 2] Identify the intervals where the function is changing as requested. 62) Increasing 5 y 4 3 2 1 -10 -8 -6 -4 -2 2 4 6 8 10 x -1 -2 -3 -4 -5 A) (3, 6) B) (-2, 0) C) (-2, ∞) D) (3, ∞) 9 63) Decreasing y 5 4 3 2 1 -10 -8 -6 -4 -2 2 4 6 8 10 x -1 -2 -3 -4 -5 A) (0, 3) B) (0, -2) C) (- ∞, -2) D) (- ∞, 3) Use the shape of the graph to name the function. 64) y x A) Standard cubic function B) Standard quadratic function C) Square root function D) Constant function 65) y x A) Absolute value function B) Standard cubic function C) Constant function D) Identity function 10 Begin by graphing the standard quadratic function f(x) = x 2. Then use transformations of this graph to graph the given function. 66) h(x) = (x - 5)2 + 7 10 y 8 6 4 2 -10 -8 -6 -4 -2 2 4 6 8 10 x -2 -4 -6 -8 -10 A) B) y y 10 10 8 8 6 6 4 4 2 2 -10 -8 -6 -4 -2-2 2 4 6 8 10 x -10 -8 -6 -4 -2-2 2 4 6 8 10 x -4 -4 -6 -6 -8 -8 -10 -10 C) D) y y 10 10 8 8 6 6 4 4 2 2 -10 -8 -6 -4 -2-2 2 4 6 8 10 x -10 -8 -6 -4 -2-2 2 4 6 8 10 x -4 -4 -6 -6 -8 -8 -10 -10 11 67) h(x) = -(x + 7)2 - 2 y 10 8 6 4 2 -10 -8 -6 -4 -2 2 4 6 8 10 x -2 -4 -6 -8 -10 A) B) y y 10 10 8 8 6 6 4 4 2 2 -10 -8 -6 -4 -2-2 2 4 6 8 10 x -10 -8 -6 -4 -2-2 2 4 6 8 10 x -4 -4 -6 -6 -8 -8 -10 -10 C) D) 10 y 10 y 8 8 6 6 4 4 2 2 -10 -8 -6 -4 -2 2 4 6 8 10 x -10 -8 -6 -4 -2 2 4 6 8 10 x -2 -2 -4 -4 -6 -6 -8 -8 -10 -10 12 1 68) g(x) = - (x - 5)2 + 3 3 y 10 8 6 4 2 -10 -8 -6 -4 -2 2 4 6 8 10 x -2 -4 -6 -8 -10 A) B) y y 10 10 8 8 6 6 4 4 2 2 -10 -8 -6 -4 -2-2 2 4 6 8 10 x -10 -8 -6 -4 -2-2 2 4 6 8 10 x -4 -4 -6 -6 -8 -8 -10 -10 C) D) y y 10 10 8 8 6 6 4 4 2 2 -10 -8 -6 -4 -2-2 2 4 6 8 10 x -10 -8 -6 -4 -2-2 2 4 6 8 10 x -4 -4 -6 -6 -8 -8 -10 -10 Find the product and write the result in standard form. 69) -3i(5i - 4) A) 12i - 15i2 B) 15 + 12i C) 12i + 15i2 D) -15 + 12i 70) (8 + 2i)(3 - 7i) A) 38 + 50i B) -14i2 - 50i + 24 C) 10 + 62i D) 38 - 50i Rationalize the denominator and simply the complex number. 2 71) 3+i 3 1 3 1 3 1 3 1 A) + i B) - i C) - i D) + i 5 5 4 4 5 5 4 4 13 7 + 3i 72) 3 - 7i A) -1 B) 1 C) -i D) i Solve the equation by factoring. 73) x2 = x + 20 A) {-4, -5} B) {4, 5} C) {-4, 5} D) {1, 20} 74) 6x2 + 23x + 20 = 0 5 4 5 4 5 1 5 4 A) ,- B) , C) - ,- D) - ,- 2 3 2 3 6 5 2 3 75) 12x2 - 7x = 0 7 7 7 7 A) {0} B) 0, C) ,- D) - ,0 12 12 12 12 Solve the equation by the square root property. 76) 4x2 = 44 A) {-11, 11} B) {- 11, 11} C) {22} D) {12} 77) 6x2 + 4 = 58 A) {29} B) {-4, 4} C) {-3, 3} D) {3} Determine the constant that should be added to the binomial so that it becomes a perfect square trinomial. Then write and factor the trinomial. 78) x2 + 4x A) 16; x2 + 4x + 16 = (x + 4)2 B) 4; x2 + 4x + 4 = (x + 2)2 C) 4; x2 + 4x + 4 = (x + 16)2 D) 2; x2 + 4x + 2 = (x + 4)2 79) x2 - 12x A) 144; x2 - 12x + 144 = (x - 12) 2 B) -36; x2 - 12x - 36 = (x - 6) 2 C) 36; x2 - 12x + 36 = (x - 6) 2 D) -144; x2 - 12x - 144 = (x - 12) 2 Solve the equation by completing the square. 80) x2 - 14x + 13 = 0 A) {1, 13} B) {- 13, 13} C) {1, 12} D) {-13, -1} 81) x2 + 8x - 3 = 0 A) {-4 - 19 , -4 + 19} B) {-1 - 19 , -1 + 19} C) {-4 - 1 19 , -4 + 1 19} D) {4 + 19} 82) x2 + 8x + 25 = 0 A) {-4 ± 3i} B) {-4 + 3i} C) {-4 ± 9i} D) {-7, -1} 14 Solve the equation using the quadratic formula. 83) x2 + 3x + 1 = 0 3- 5 3+ 5 A) , 2 2 -3 - 13 -3 + 13 B) , 2 2 -3 - 5 -3 + 5 C) , 6 6 -10 - 15 -10 + 15 D) , 2 2 -3 - 5 -3 + 5 E) , 2 2 Compute the discriminant. Then determine the number and type of solutions for the given equation. 84) x2 + 6x - 7 = 0 A) -8; two complex imaginary solutions B) 0; one real solution C) 64; two unequal real solutions 85) x2 + 8x + 16 = 0 A) 0; one real solution B) -64; two complex imaginary solutions C) 64; two unequal real solutions 86) 4x2 = -5x - 3 A) 0; one real solution B) -23; two complex imaginary solutions C) 73; two unequal real solutions Solve the equation using the quadratic formula. 87) 2x2 + 10x + 5 = 0 -5 - 15 -5 + 15 -5 - 15 -5 + 15 -5 - 35 -5 + 35 A) , B) , C) , 2 2 4 4 2 2 88) x2 - 10x + 50 = 0 A) {5 - 5i, 5 + 5i} B) {5 - 25i, 5 + 25i} C) {0, 10} D) {5 + 5i} 89) 8x2 + 1 = 3x -3 ± i 23 3 ± i 23 -3 ± 23 3 ± 23 A) B) C) D) 16 16 16 16 Solve the system of equations (quadratic and linear function). 90) -2x - y = -52 y = x2 + 4 A) {(6, 32), (-8, 60)} B) {(-6, 40), (-8, 68)} C) {(-6, 40), (8, 68)} D) {(6, 40), (-8, 68)} 15 91) x + y = 4 y = x2 - 8x + 16 A) {(-3, 7), (-4, 8)} B) {(3, 7), (4, 0)} C) {(3, 1), (4, 0)} D) {(4, 0)} 92) y = (x + 5)2 + 1 2x - y + 10 = 0 A) {(-4, 2)} B) {(-5, 0)} C) {(-4, 2), (4, 18)} D) {(0, 10), (0, 26)} 16

Use Quizgecko on...
Browser
Browser