Math 3 Lit - Secondary School Textbook PDF

Summary

This textbook provides a comprehensive guide for students in the third year of general and technological secondary education in Algeria, focusing on the topics of algebra and sequence. The authors aim to align closely with the national curriculum and approach teaching using competency-based activities, including the incorporation of technology. It covers topics like functions, sequences, and statistics, with examples and problem sets provided.

Full Transcript

‫ﺍﻝﺠﻤﻬﻭﺭﻴﺔ ﺍﻝﺠﺯﺍﺌﺭﻴﺔ ﺍﻝﺩﻴﻤﻘﺭﺍﻁﻴﺔ ﺍﻝﺸﻌﺒﻴﺔ‬ ‫ﻭﺯﺍﺭﺓ ﺍﻝﺘﺭﺒﻴﺔ ﺍﻝﻭﻁﻨﻴﺔ‬ ‫ﺍﻝﺴﻨﺔ ﺍﻝﺜﺎﻝﺜﺔ ﻤﻥ ﺍﻝﺘﻌﻠﻴﻡ ﺍﻝﺜﺎﻨﻭﻱ ﺍﻝﻌﺎﻡ ﻭﺍﻝﺘﻜﻨﻭﻝﻭﺠﻲ‬ ‫ﺍﻝﺸﻌﺏ‪:‬‬ ‫ ﺁﺩﺍﺏ ﻭﻓﻠﺴﻔﺔ‬ ‫ ﻝﻐﺎﺕ ﺃﺠﻨﺒﻴﺔ‬...

‫ﺍﻝﺠﻤﻬﻭﺭﻴﺔ ﺍﻝﺠﺯﺍﺌﺭﻴﺔ ﺍﻝﺩﻴﻤﻘﺭﺍﻁﻴﺔ ﺍﻝﺸﻌﺒﻴﺔ‬ ‫ﻭﺯﺍﺭﺓ ﺍﻝﺘﺭﺒﻴﺔ ﺍﻝﻭﻁﻨﻴﺔ‬ ‫ﺍﻝﺴﻨﺔ ﺍﻝﺜﺎﻝﺜﺔ ﻤﻥ ﺍﻝﺘﻌﻠﻴﻡ ﺍﻝﺜﺎﻨﻭﻱ ﺍﻝﻌﺎﻡ ﻭﺍﻝﺘﻜﻨﻭﻝﻭﺠﻲ‬ ‫ﺍﻝﺸﻌﺏ‪:‬‬ ‫ ﺁﺩﺍﺏ ﻭﻓﻠﺴﻔﺔ‬ ‫ ﻝﻐﺎﺕ ﺃﺠﻨﺒﻴﺔ‬ ‫ﺇﺸﺭﺍﻑ ﻭ ﺘﺄﻝﻴﻑ‬ ‫ﻤﻔﺘﺵ ﺍﻝﺘﺭﺒﻴﺔ ﻭﺍﻝﺘﻜﻭﻴﻥ‬ ‫ﺠﻤﺎل ﺘﺎﻭﺭﻴﺭﺕ‬ ‫ﺍﻝﻤﺅﻝﻔﻭﻥ‪:‬‬ ‫ﻤﻔﺘﺵ ﺍﻝﺘﺭﺒﻴﺔ ﻭﺍﻝﺘﻜﻭﻴﻥ‬ ‫↵ ﻤﺤﻤﺩ ﻓﺎﺘﺢ ﻤﺭﺍﺩ‬ ‫ﻤﻔﺘﺵ ﺍﻝﺘﺭﺒﻴﺔ ﻭﺍﻝﺘﻜﻭﻴﻥ‬ ‫↵ ﻤﺤﻤﺩ ﻗﻭﺭﻴﻥ‬ ‫ﺃﺴﺘﺎﺫ ﺍﻝﺘﻌﻠﻴﻡ ﺍﻝﺜﺎﻨﻭﻱ‬ ‫↵ ﻋﺒﺩ ﺍﻝﺤﻔﻴﻅ ﻓﻼﺡ‬ ‫ﺃﺴﺘﺎﺫ ﺍﻝﺘﻌﻠﻴﻡ ﺍﻝﺜﺎﻨﻭﻱ‬ ‫↵ ﻋﺒﺩ ﺍﻝﻤﺅﻤﻥ ﻤﻭﺱ‬ ‫ﺃﺴﺘﺎﺫ ﺍﻝﺘﻌﻠﻴﻡ ﺍﻝﺜﺎﻨﻭﻱ‬ ‫↵ ﻏﺭﻴﺴﻲ ﺒﻠﺠﻴﻼﻝﻲ‬ ‫ﺍﻝﺩﻴﻭﺍﻥ ﺍﻝﻭﻁﻨﻲ ﻝﻠﻤﻁﺒﻭﻋﺎﺕ ﺍﻝﻤﺩﺭﺴﻴﺔ‬ ‫‪2007‬‬ ‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﺎﻥ ﺍﻟﺮﺣﻴﻢ‬ ‫ﻤﺩﺨل‬ ‫ﺃﻋﺩ ﻫﺫﺍ ﺍﻝﻜﺘﺎﺏ ﺍﺴﺘﺠﺎﺒﺔ ﻝﻤﺘﻁﻠﺒﺎﺕ ﺍﻝﻤﻨﻬﺎﺝ ﺍﻝﺠﺩﻴﺩ ﺍﻝﺨﺎﺹ ﺒﺎﻝﺴﻨﺔ ﺍﻝﺜﺎﻝﺜـﺔ ﻤـﻥ ﺍﻝﺘﻌﻠـﻴﻡ‬ ‫ﺍﻝﺜﺎﻨﻭﻱ ﺍﻝﻌﺎﻡ ﻭ ﺍﻝﺘﻜﻨﻭﻝﻭﺠﻲ ﺍﻝﺨﺎﺹ ﺒﺸﻌﺒﺘﻲ ﺍﻵﺩﺍﺏ ﻭ ﺍﻝﻔﻠﺴﻔﺔ ﻭ ﺍﻝﻠﻐﺎﺕ ﺍﻷﺠﻨﺒﻴﺔ ﺍﻝﺫﻱ ﺸـﺭﻉ‬ ‫ﻓﻲ ﺘﻁﺒﻴﻘﻪ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ﺍﻝﺩﺨﻭل ﺍﻝﻤﺩﺭﺴﻲ ‪. 2008 – 2007‬‬ ‫ﺒﺎﻹﻀﺎﻓﺔ ﺇﻝﻰ ﺍﻻﺤﺘﺭﺍﻡ ﺍﻝﺘﺎﻡ ﻝﻠﻤﻨﻬﺎﺝ ﻓﻘﺩ ﺤﺎﻭﻝﻨﺎ ﺍﻝﻌﻤل ﺒﻤﺨﺘﻠﻑ ﺍﻝﺘﻭﺠﻴﻬﺎﺕ ﺍﻝﻭﺍﺭﺩﺓ ﻓﻴـﻪ‬ ‫ﻜﻤﺎ ﺤﺭﺼﻨﺎ ﻋﻠﻰ ﺘﺠﺴﻴﺩ ﺍﻝﻤﻘﺎﺭﺒﺔ ﺒﺎﻝﻜﻔﺎﺀﺍﺕ ﺍﻝﺘﻲ ﺒﻨﻲ ﻋﻠﻴﻬﺎ ﻤﻥ ﺨﻼل ﺍﺨﺘﻴﺎﺭ ﺃﻨﺸﻁﺔ ﻤﻨﺎﺴـﺒﺔ‬ ‫ﺴﻭﺍﺀ ﻋﻨﺩ ﻤﻘﺎﺭﺒﺔ ﻤﺨﺘﻠﻑ ﺍﻝﻤﻔﺎﻫﻴﻡ ﺃﻭ ﻋﻨﺩ ﺇﺩﻤﺎﺠﻬﺎ ﻜﻤﺎ ﺤﻅﻲ ﺍﺴﺘﻌﻤﺎل ﺘﻜﻨﻭﻝﻭﺠﻴﺎﺕ ﺍﻹﻋﻼﻡ‬ ‫ﻭ ﺍﻻﺘﺼﺎل ﺒﺎﻻﻫﺘﻤﺎﻡ ﺍﻝﻼﺯﻡ‪.‬‬ ‫ﻴﺤﺘﻭﻱ ﺍﻝﻜﺘﺎﺏ ﻋﻠﻰ ﺴﺘﺔ )‪ (6‬ﺃﺒﻭﺍﺏ ﺘﻤﺕ ﻫﻴﻜﻠﺘﻬﺎ ﺒﻨﻔﺱ ﺍﻝﻜﻴﻔﻴﺔ ﻋﻠﻰ ﺍﻝﻨﺤﻭ ﺍﻝﺘﺎﻝﻲ‪:‬‬ ‫ ﻋﺭﺽ ﻝﻠﻜﻔﺎﺀﺍﺕ ﺍﻝﻤﺴﺘﻬﺩﻓﺔ ﺇﻀﺎﻓﺔ ﺇﻝﻰ ﻨﺒﺫﺓ ﺘﺎﺭﻴﺨﻴﺔ‪.‬‬ ‫ ﺃﻨﺸﻁﺔ ﺘﻤﻬﻴﺩﻴﺔ‪.‬‬ ‫ ﺍﻝﺩﺭﺱ‪.‬‬ ‫ ﻁﺭﺍﺌﻕ ﻭ ﺘﻤﺎﺭﻴﻥ ﻤﺤﻠﻭﻝﺔ‪.‬‬ ‫ ﺃﻋﻤﺎل ﻤﻭﺠﻬﺔ‪.‬‬ ‫ ﺍﺴﺘﻌﺩ ﻝﻠﺒﻜﺎﻝﻭﺭﻴﺎ‪.‬‬ ‫ ﺘﻤﺎﺭﻴﻥ ﻭ ﻤﺴﺎﺌل‪.‬‬ ‫ ﺍﺨﺘﺒﺭ ﻤﻌﻠﻭﻤﺎﺘﻙ‪.‬‬ ‫ﺃﺭﺩﻨﺎ ﺃﻥ ﻨﺠﻌل ﻤﻥ ﻫﺫﺍ ﺍﻝﻜﺘﺎﺏ ﻭﺴﻴﻠﺔ ﻋﻤل ﻤﻤﺘﻌﺔ ﻭ ﻨﺎﺠﻌﺔ ﻓﻲ ﺁﻥ ﻭﺍﺤﺩ‪ ،‬ﻨﺘﻤﻨﻰ ﺃﻥ‬ ‫ﻴﺴﻤﺢ ﻝﻜﻡ ﻤﻥ ﺍﻝﺘﺤﻀﻴﺭ ﺍﻝﺠﻴﺩ ﻻﻤﺘﺤﺎﻥ ﻨﻬﺎﻴﺔ ﺍﻝﺴﻨﺔ‪.‬‬ ‫ﻭ ﻜﻭﻥ ﻫﺫﺍ ﺍﻝﻌﻤل ﺇﻨﺠﺎﺯﺍ ﺒﺸﺭﻴﺎ ﻓﺈﻨﻪ ﻻ ﻴﺨﻠﻭ ﻤﻥ ﺍﻝﻨﻘﺎﺌﺹ‪ ،‬ﻭﻋﻠﻴﻪ ﻓﺈﻨﻨﺎ ﻨﺭﺤﺏ‪ ،‬ﺒﻜل ﺍﻫﺘﻤـﺎﻡ‪،‬‬ ‫ﺒﺎﻨﺘﻘﺎﺩﺍﺕ ﺍﻝﻘﺭﺍﺀ ﺍﻝﺘﻲ ﺘﻬﺩﻑ ﺇﻝﻰ ﺇﺜﺭﺍﺀ ﻭ ﺘﺤﺴﻴﻥ ﺍﻝﻜﺘﺎﺏ ﻭ ﻫﻡ ﻤﺸﻜﻭﺭﻭﻥ ﻤﺴﺒﻘﺎ ﻋﻠﻰ ﺫﻝﻙ‪.‬‬ ‫‪.1‬ﺍﻝﺩﻭﺍل‪:‬‬ ‫‪.I‬ﺘﻤﺜﻴل ﺩﺍﻝﺔ ‪:‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻝﺩﺍﻝﺔ ‪ f‬ﺍﻝﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ ℝ‬ﺒـ ‪f ( x ) = x3 − x 2 − 2 :‬‬ ‫‬ ‫‬ ‫‬ ‫‪. II‬ﻗﺭﺍﺀﺓ ﺍﻝﻔﺎﺼﻠﺔ ‪ α‬ﻝﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻝﻤﻨﺤﻨﻲ ﻤﻊ ﻤﺤﻭﺭ ﺍﻝﻔﻭﺍﺼل‪:‬‬ ‫ﺍﻀﻐﻁ ﻤﺭﺓ ﺃﺨﺭﻯ ﻋﻠﻰ‬ ‫‬ ‫ﻋﻴﻥ ﻓﺎﺼﻠﺔ ﺃﻜﺒﺭ‬ ‫‬ ‫ﺃﻭ‬ ‫ﺒﺎﺴﺘﻌﻤﺎل‬ ‫‬ ‫‬ ‫ﻭ ﻨﻘﺭﺃ ‪α ≈ 1, 6956208‬‬ ‫ﻤﻥ ‪ α‬ﺜﻡ ﺍﻨﻘﺭ‬ ‫ﻋﻴﻥ ﻓﺎﺼﻠﺔ ﺃﺼﻐﺭ ﻤﻥ ‪α‬‬ ‫ﺜﻡ ﺍﻨﻘﺭ‬ ‫‪.2‬ﺍﻝﻤﺘﺘﺎﻝﻴﺎﺕ‪:‬‬ ‫ﺍﻝﻤﺘﺘﺎﻝﻴﺔ ﻤﻥ ﺍﻝﺸﻜل )‪un = f (n‬‬ ‫ ﻨﻤﺜل ﺍﻝﻤﺘﺘﺎﻝﻴﺔ ) ‪ (un‬ﺍﻝﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ ℕ‬ﺒـ‪un = 2n 2 − n − 3 :‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‬ ‫ﻭ ﻝﻜﺘﺎﺒﺔ ‪n‬‬ ‫‬ ‫‬ ‫ﻨﺴﺘﻌﻤل‬ ‫ﻭﻨﺤﺩﺩ ﺍﻝﺨﺎﺼﻴﺔ ‪seq‬‬ ‫‬ ‫ﻭ ﻨﺘﻤﻤﻡ‬ ‫‬ ‫‬ ‫‪Y max = 100 ، Y min = −5‬‬ ‫ﻭ ‪Y scl = 5‬‬ ‫‪.3‬ﻤﺘﺘﺎﻝﻴﺔ ﻤﻌﺭﻓﺔ ﺒﻌﻼﻗﺔ ﺘﺭﺍﺠﻌﻴﺔ‪:‬‬ ‫‪1‬‬ ‫ ﻨﻤﺜل ﺍﻝﻤﺘﺘﺎﻝﻴﺔ ) ‪ (un‬ﺍﻝﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ ℕ‬ﺒـ‪ u0 = 5 :‬ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﺤﻴﺙ ‪un = un −1 + 1 ، n ≥ 1‬‬ ‫‪3‬‬ ‫‪،‬ﻨﺨﺘﺎﺭ ﺍﻝﻨﺎﻓﺫﺓ‬ ‫‬ ‫‬ ‫‬ ‫‬ ‫ﺜﻡ‬ ‫ﻭﻨﺨﺘﺎﺭ ‪web‬‬ ‫ﺜﻡ‬ ‫ﻭﻨﺤﺩﺩ ﺍﻝﺨﺎﺼﻴﺔ ‪،seq‬‬ ‫‪،‬ﻝﻜﺘﺎﺒﺔ ‪ u‬ﻨﻀﻐﻁ‬ ‫ﺜﻡ ‪7‬‬ ‫‪.4‬ﺍﻹﺤﺼﺎﺀ‪:‬‬ ‫ﻓﻴﻤﺎ ﻴﻠﻲ ﻨﻌﺘﺒﺭ ﺍﻝﺴﻠﺴﻠﺔ ﺍﻻﺤﺼﺎﺌﻴﺔ ﺍﻝﺘﺎﻝﻴﺔ‪:‬‬ ‫ﺍﻝﻜﺘﻠﺔ )‪(g‬‬ ‫‪300‬‬ ‫‪400‬‬ ‫‪500‬‬ ‫‪600‬‬ ‫‪700‬‬ ‫ﺍﻝﺘﻜﺭﺍﺭ‬ ‫‪40‬‬ ‫‪45‬‬ ‫‪51‬‬ ‫‪54‬‬ ‫‪57‬‬ ‫ﺍﻨﻘﺭ‬ ‫‬ ‫ﻹﻅﻬﺎﺭ ﺴﻠﺴﻠﺔ‬ ‫‬ ‫ﻹﺘﻤﺎﻡ ﺍﻝﺘﻜﺭﺍﺭ ﺍﻹﺠﻤﺎﻝﻲ‬ ‫‬ ‫‪EDIT‬‬ ‫‬ ‫ﻓﺘﺴﺠل ﺍﻝﻨﺘﺎﺌﺞ ﻓﻲ‬ ‫ﺍﻝﺘﻭﺍﺘﺭﺍﺕ ﻓﻲ ‪، L4‬‬ ‫ﻓﻲ ‪: L3‬‬ ‫ﻭ ﺍﺘﻤﻡ ﺍﻝﻘﻭﺍﺌﻡ‬ ‫ﺍﻝﻌﻤﻭﺩ ‪L4‬‬ ‫ﺤﺩﺩ ‪ L4‬ﺜﻡ‬ ‫‪MATH5‬‬ ‫‪(L2)2‬‬ ‫‪ (L3)3‬ﺜﻡ )‪(1‬‬ ‫‪(L2) 2‬‬ ‫)(‪Sum‬‬ ‫‪.5‬ﺤﺴﺎﺏ ﺍﻝﻤﻘﺎﻴﻴﺱ‪:‬‬ ‫‬ ‫‬ ‫)‪1 (CALC‬‬ ‫‬ ‫ﻭ ﻨﻘﺭﺃ ‪ Q1 ، σ X ، X‬ﻭ ‪Q3‬‬ ‫‪L2 ، L1‬‬ ‫ﺍﻝﺼﻔﺤﺔ‬ ‫ﺍﻷﺒﻭﺍﺏ‬ ‫ﺍﻝﺼﻔﺤﺔ‬ ‫ﺍﻷﺒﻭﺍﺏ‬ ‫ﺍﻝﺒﺎﺏ‪ :4‬ﺍﻝﺩﻭﺍل ﻜﺜﻴﺭﺍﺕ ﺍﻝﺤﺩﻭﺩ‬ ‫ﺍﻝﺒﺎﺏ‪ :1‬ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻓﻲ ‪ℤ‬‬ ‫ﺍﻷﻨﺸﻁﺔ ‪68.................................................‬‬ ‫ﺍﻷﻨﺸﻁﺔ ‪8..................................................‬‬ ‫ﺩﺭﻭﺱ ﻭ ﻁﺭﺍﺌﻕ ‪70....................................‬‬ ‫ﺩﺭﻭﺱ ﻭ ﻁﺭﺍﺌﻕ ‪10....................................‬‬ ‫ﺃﻋﻤﺎل ﻤﻭﺠﻬﺔ ‪76........................................‬‬ ‫ﺃﻋﻤﺎل ﻤﻭﺠﻬﺔ ‪18.........................................‬‬ ‫ﺍﺴﺘﻌﺩ ﻝﻠﺒﻜﺎﻝﻭﺭﻴﺎ ‪78.....................................‬‬ ‫ﺍﺴﺘﻌﺩ ﻝﻠﺒﻜﺎﻝﻭﺭﻴﺎ ‪20......................................‬‬ ‫ﺘﻤﺎﺭﻴﻥ ‪80..................................................‬‬ ‫ﺘﻤﺎﺭﻴﻥ ‪22...................................................‬‬ ‫ﺍﺨﺘﺒﺭ ﻤﻌﻠﻭﻤﺎﺘﻙ ‪86.....................................‬‬ ‫ﺍﺨﺘﺒﺭ ﻤﻌﻠﻭﻤﺎﺘﻙ ‪28......................................‬‬ ‫ﺍﻝﺒﺎﺏ‪ :5‬ﺍﻝﺩﻭﺍل ﺍﻝﺘﻨﺎﻅﺭﻴﺔ‬ ‫ﺍﻝﺒﺎﺏ‪ :2‬ﺍﻝﻤﺘﺘﺎﻝﻴﺎﺕ ﺍﻝﻌﺩﺩﻴﺔ‬ ‫ﺍﻷﻨﺸﻁﺔ ‪88.................................................‬‬ ‫ﺍﻷﻨﺸﻁﺔ ‪30.................................................‬‬ ‫ﺩﺭﻭﺱ ﻭ ﻁﺭﺍﺌﻕ ‪90....................................‬‬ ‫ﺩﺭﻭﺱ ﻭ ﻁﺭﺍﺌﻕ ‪32....................................‬‬ ‫ﺃﻋﻤﺎل ﻤﻭﺠﻬﺔ ‪94........................................‬‬ ‫ﺃﻋﻤﺎل ﻤﻭﺠﻬﺔ ‪40.........................................‬‬ ‫ﺍﺴﺘﻌﺩ ﻝﻠﺒﻜﺎﻝﻭﺭﻴﺎ ‪96.....................................‬‬ ‫ﺍﺴﺘﻌﺩ ﻝﻠﺒﻜﺎﻝﻭﺭﻴﺎ ‪42......................................‬‬ ‫ﺘﻤﺎﺭﻴﻥ ‪98..................................................‬‬ ‫ﺘﻤﺎﺭﻴﻥ ‪44...................................................‬‬ ‫ﺍﺨﺘﺒﺭ ﻤﻌﻠﻭﻤﺎﺘﻙ ‪104...................................‬‬ ‫ﺍﺨﺘﺒﺭ ﻤﻌﻠﻭﻤﺎﺘﻙ ‪48......................................‬‬ ‫ﺍﻝﺒﺎﺏ‪ :6‬ﺍﻹﺤﺼﺎﺀ ﻭ ﺍﻻﺤﺘﻤﺎﻻﺕ‬ ‫ﺍﻝﺒﺎﺏ‪ :3‬ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺩﺍﻝﺔ‬ ‫ﺍﻷﻨﺸﻁﺔ ‪106...............................................‬‬ ‫ﺍﻷﻨﺸﻁﺔ ‪50.................................................‬‬ ‫ﺩﺭﻭﺱ ﻭ ﻁﺭﺍﺌﻕ ‪108..................................‬‬ ‫ﺩﺭﻭﺱ ﻭ ﻁﺭﺍﺌﻕ ‪52....................................‬‬ ‫ﺃﻋﻤﺎل ﻤﻭﺠﻬﺔ ‪116.......................................‬‬ ‫ﺃﻋﻤﺎل ﻤﻭﺠﻬﺔ ‪56.........................................‬‬ ‫ﺍﺴﺘﻌﺩ ﻝﻠﺒﻜﺎﻝﻭﺭﻴﺎ ‪118....................................‬‬ ‫ﺍﺴﺘﻌﺩ ﻝﻠﺒﻜﺎﻝﻭﺭﻴﺎ ‪58......................................‬‬ ‫ﺘﻤﺎﺭﻴﻥ ‪120.................................................‬‬ ‫ﺘﻤﺎﺭﻴﻥ ‪60...................................................‬‬ ‫ﺍﺨﺘﺒﺭ ﻤﻌﻠﻭﻤﺎﺘﻙ ‪128....................................‬‬ ‫ﺍﺨﺘﺒﺭ ﻤﻌﻠﻭﻤﺎﺘﻙ ‪66......................................‬‬ ‫ﺍﻝﻜﻔﺎﺀﺍﺕ ﺍﻝﻤﺴﺘﻬﺩﻓﺔ‬ ‫ﻤﻌﺭﻓﺔ ﻭ ﺘﺤﺩﻴﺩ ﺤﺎﺼل ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻭ ﺒﺎﻗﻴﻬﺎ‪.‬‬ ‫ﺤﺼﺭ ﻋﺩﺩ ﺒﻴﻥ ﻤﻀﺎﻋﻔﻴﻥ ﻤﺘﻌﺎﻗﺒﻴﻥ ﻝﻌﺩﺩ ﺼﺤﻴﺢ‪.‬‬ ‫ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻡ ﻋﺩﺩ ﻁﺒﻴﻌﻲ‪.‬‬ ‫ﻤﻌﺭﻓﺔ ﺘﻭﺍﻓﻕ ﻋﺩﺩﻴﻥ ﺼﺤﻴﺤﻴﻥ‪.‬‬ ‫ﻤﻌﺭﻓﺔ ﺨﻭﺍﺹ ﺍﻝﻤﻭﺍﻓﻘﺔ ﻭ ﺍﺴﺘﻌﻤﺎﻝﻬﺎ ﻓﻲ ﺤل ﻤﺸﻜﻼﺕ‪.‬‬ ‫ﺍﺴﺘﻌﻤﺎل ﻤﺒﺩﺃ ﺍﻻﺴﺘﺩﻻل ﺒﺎﻝﺘﺭﺍﺠﻊ ﻹﺜﺒﺎﺕ ﺼﺤﺔ ﺨﺎﺼﻴﺔ ﻤﺘﻌﻠﻘﺔ ﺒﻌﺩﺩ ﻁﺒﻴﻌﻲ‪.‬‬ ‫ا‪ :‬ﺍﺴﺘﺨﺩﻡ ﺍﻹﻨﺴﺎﻥ ﺍﻝﺘﺸﻔﻴﺭ ) ‪ (CRY PTOGRAPHIE‬ﻤﻨﺫ ﻨﺤﻭ ﺃﻝﻔﻲ ﻋﺎﻡ ﻗﺒل ﺍﻝﻤﻴﻼﺩ ﻝﺤﻤﺎﻴﺔ‬ ‫ﺭﺴﺎﺌﻠﻪ ﺍﻝﺴﺭﻴﺔ‪ ،‬ﻭﺒﻠﻎ ﻫﺫﺍ ﺍﻻﺴﺘﺨﺩﺍﻡ ﺫﺭﻭﺘﻪ ﻓﻲ ﻓﺘﺭﺍﺕ ﺍﻝﺤﺭﻭﺏ ﺨﻭﻓ ﹰﺎ ﻤﻥ ﻭﻗﻭﻉ ﺍﻝﺭﺴﺎﺌل ﺍﻝﺤﺴﺎﺴﺔ ﻓﻲ‬ ‫ﺃﻴﺩﻱ ﺍﻝﻌﺩﻭ‪.‬ﻭﻗﺎﻡ ﻴﻭﻝﻴﻭﺱ ﻗﻴﺼﺭ ﺒﺘﻁﻭﻴﺭ ﺨﻭﺍﺭﺯﻤﻴﺘﻪ ﺍﻝﻤﻌﻴﺎﺭﻴﺔ ﺍﻝﻤﻌﺭﻭﻓﺔ ﺒﺎﺴﻡ ﺸﻔﺭﺓ ﻗﻴﺼﺭ ﺍﻝﺘﻲ ﻜﺎﻨﺕ‬ ‫ﻨﺼ‪‬ﺎ ﻤﺸﻔﱠﺭﹰﺍ ﻝﺘﺄﻤﻴﻥ ﺍﺘﺼﺎﻻﺘﻪ ﻭﻤﺭﺍﺴﻼﺘﻪ ﻤﻊ ﻗﺎﺩﺓ ﺠﻴﻭﺸﻪ‪.‬‬ ‫ﺍﻋﺘﻤﺩ ﺍﻝﻘﻴﺼﺭ ﻓﻲ ﺨﻭﺍﺭﺯﻤﻴﺘﻪ ﻋﻠﻰ ﺘﻌﻭﻴﺽ ﻜل ﺤﺭﻑ ﺒﺤﺭﻑ ﺁﺨﺭ ﻤﻥ ﺨﻼل ﻋﻤﻠﻴﺔ‬ ‫ﺴﺤﺏ ﺨﻁﻴﺔ ﻝﻜل ﺍﻝﺤﺭﻭﻑ‪.‬ﻓﻤﺜﻼ ﺒﺎﻝﻨﺴﺒﺔ ﻝﻠﺤﺭﻭﻑ ﺍﻷﺒﺠﺩﻴﺔ ﺇﺫﺍ ﻋﻭﻀﻨﺎ ﺍﻝﺤﺭﻑ ﺍ‬ ‫ﺒﺎﻝﺤﺭﻑ ﺩ‪ ،‬ﻨﻌﻭﺽ ﺍﻝﺤﺭﻑ ﺏ ﺒﺎﻝﺤﺭﻑ ﻫـ‪ ،‬ﺍﻝﺤﺭﻑ ﺝ ﺒﺎﻝﺤﺭﻑ ﻭ ﺇﻝﺦ‪...‬‬ ‫ﻥ‬ ‫ﻡ‬ ‫ل‬ ‫ﻙ‬ ‫ﻱ‬ ‫ﻁ‬ ‫ﺡ‬ ‫ﺯ‬ ‫ﻭ‬ ‫ﻩ‬ ‫ﺩ‬ ‫ﺝ‬ ‫ﺏ‬ ‫ﺃ‬ ‫ﻑ‬ ‫ﻉ‬ ‫ﺱ‬ ‫ﻥ‬ ‫ﻡ‬ ‫ل‬ ‫ﻙ‬ ‫ﻱ‬ ‫ﻁ‬ ‫ﺡ‬ ‫ﺯ‬ ‫ﻭ‬ ‫ﻩ‬ ‫ﺩ‬ ‫ﻍ‬ ‫ﻅ‬ ‫ﺽ‬ ‫ﺫ‬ ‫ﺥ‬ ‫ﺙ‬ ‫ﺕ‬ ‫ﺵ‬ ‫ﺭ‬ ‫ﻕ‬ ‫ﺹ‬ ‫ﻑ‬ ‫ﻉ‬ ‫ﺱ‬ ‫ﺝ‬ ‫ﺏ‬ ‫ﺃ‬ ‫ﻍ‬ ‫ﻅ‬ ‫ﺽ‬ ‫ﺫ‬ ‫ﺥ‬ ‫ﺙ‬ ‫ﺕ‬ ‫ﺵ‬ ‫ﺭ‬ ‫ﻕ‬ ‫ﺹ‬ ‫ ﻓﻙ‪ ،‬ﺒﺎﺴﺘﻌﻤﺎل ﺸﻔﺭﺓ ﻗﻴﺼﺭ‪ ،‬ﺍﻝﺭﺴﺎﻝﺔ ﺍﻝﺘﺎﻝﻴﺔ‪ :‬ﺩ ﺱ ﻕ ﻉ ﺱ ﻉ ﺭ ﺫ ﺩ ﻙ ﺩ ﺱ ﻑ ﻭ ﺩ ﻙ‪.‬‬ ‫ﺃﻜﺘﺏ‪ ،‬ﺒﺎﺴﺘﻌﻤﺎل ﺸﻔﺭﺓ ﻗﻴﺼﺭ‪ ،‬ﺭﺴﺎﻝﺔ ﺇﻝﻰ ﺼﺩﻴﻘﻙ‪.‬‬ ‫‬ ‫‪7‬‬ ‫اط اول‬ ‫ﺘﻌﺭﻴﻑ ‪ : 1‬ﻨﻘﻭل ﻋﻥ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺃﻨﻪ ﺘﺎﻡ ﺇﺫﺍ ﻜﺎﻥ ﻤﺴﺎﻭﻴﺎ ﻝﻤﺠﻤﻭﻉ ﻜل ﻗﻭﺍﺴﻤﻪ ﺍﻝﻤﻭﺠﺒﺔ ﻤﺎ ﻋﺩﺍ ﻨﻔﺴﻪ‪.‬‬ ‫ﻓﻤﺜﻼ ‪ 6‬ﻋﺩﺩ ﻜﺎﻤل ﻷﻥ ﻗﻭﺍﺴﻤﻪ ﺍﻝﻤﻭﺠﺒﺔ ﻫﻲ ﻋﻠﻰ ﺍﻝﺘﻭﺍﻝﻲ ‪ 3 ، 2 ، 1‬ﻭ ‪ 6‬ﻭ ﻝﺩﻴﻨﺎ ‪. 1 + 2 + 3 = 6‬‬ ‫‪.1‬ﺃﺜﺒﺕ ﺃﻥ ﺍﻝﻌﺩﺩﻴﻥ ‪ 28‬ﻭ ‪ 496‬ﻜﺎﻤﻼﻥ‪.‬‬ ‫‪.2‬ﻗﺎﺭﻥ ﻜﻼ ﻤﻥ ﺍﻝﻌﺩﺩﻴﻥ ‪ 27‬ﻭ ‪ 30‬ﺒﻤﺠﻤﻭﻉ ﻗﻭﺍﺴﻤﻪ ﺍﻝﻤﻭﺠﺒﺔ ﻤﺎ ﻋﺩﺍ ﻨﻔﺴﻪ‪.‬‬ ‫ﺘﻌﺭﻴﻑ ‪ : 2‬ﻨﻘﻭل ﻋﻥ ﻋﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ ﺃﻨﻬﻤﺎ ﻤﺘﺤﺎﺒﺎﻥ ﺇﺫﺍ ﻜﺎﻥ ﻤﺠﻤﻭﻉ ﺍﻝﻘﻭﺍﺴﻡ ﺍﻝﻤﻭﺠﺒﺔ ﻷﺤﺩﻫﻤﺎ ﻤﺎ ﻋﺩﺍ ﻨﻔﺴﻪ‬ ‫ﻤﺴﺎﻭﻴﺎ ﻝﻶﺨﺭ ﻭ ﺍﻝﻌﻜﺱ‪.‬‬ ‫‪.3‬ﺃﺜﺒﺕ ﺃﻥ ﺍﻝﻌﺩﺩﻴﻥ ‪ 220‬ﻭ ‪ 284‬ﻤﺘﺤﺎﺒﺎﻥ‪.‬‬ ‫ﻫل ﺘﻌﻠﻡ ﺃﻥ ﺍﻝﺭﻴﺎﻀﻴﺎﺘﻲ " ﻝﻴﻴﻭﻨﺎﺭﺩ ﺃﻭﻝﺭ" ﻗﺩ ﺒﺭﻫﻥ ﺒﺩﻭﻥ ﺍﺴﺘﻌﻤﺎل ﺍﻹﻋﻼﻡ‬ ‫ﺍﻵﻝﻲ ﺃﻥ ﺍﻝﻌﺩﺩ ‪ 2305843008139 952128‬ﻋﺩﺩ ﻤﺜﺎﻝﻲ‪.‬‬ ‫" ﻝﻴﻴﻭﻨﺎﺭﺩ ﺃﻭﻝﺭ" ﻤﻥ ﺃﻜﺒﺭ ﺍﻝﻌﻠﻤﺎﺀ ﺍﻝﺫﻴﻥ ﻋﺭﻓﻬﻡ ﺍﻝﺘﺎﺭﻴﺦ ‪ ،‬ﺍﺴﺘﻘ ‪‬ﺭ ﻓﻲ ﺍﻝﺒﺩﺍﻴﺔ ﺒﹻ‬ ‫ﺴﺎﻥ ﺒﻴﺘﺭﺴﺒﻭﺭﻕ ﺜﻡ ﻓﻲ ﺒﺭﻝﻴﻥ ﺴﻨﺔ ‪ 1741‬ﺤﻴﺙ ﺘﺭﺃﺱ ﺃﻜﺎﺩﻴﻤﻴﺔ ﺍﻝﻌﻠﻭﻡ ﺇﻝﻰ‬ ‫ﻏﺎﻴﺔ ‪. 1766‬‬ ‫   ا  ‪ ،‬ا  ء و ا ت و ه ‪ %#‬أ ‪'( !"#‬ع‬ ‫ا ' ‪*0‬ت ا ‪ ( .-‬ا ‪ *,-‬ا ‪ )*+‬و ا ‪3‬د‪1‬ت ا ‪. *0)-‬‬ ‫‪EULER Leonhard‬‬ ‫‪Suisse, 1707-1783‬‬ ‫اط ا ‬ ‫‪137‬‬ ‫‪12‬‬ ‫‪.1‬ﺒﺈﺘﺒﺎﻉ ﻨﻔﺱ ﺍﻝﻤﻨﻬﺠﻴﺔ ﺍﻝﻤﻘﺎﺒﻠﺔ ﻋﻴﻥ ﺒﺎﻗﻲ ﻭ ﺤﺎﺼل ﻗﺴﻤﺔ ‪ a‬ﻋﻠﻰ ‪b‬‬ ‫‪17‬‬ ‫‪11‬‬ ‫ﻓﻲ ﺍﻝﺤﺎﻝﺘﻴﻥ ﺍﻝﺘﺎﻝﻴﺘﻴﻥ‪:‬‬ ‫‪5‬‬ ‫∗ ‪ a = 676‬ﻭ ‪. b = 13‬‬ ‫∗ ‪ a = 312‬ﻭ ‪، b = 46‬‬ ‫ ها‪137 = 12 ×11 + 5 :‬‬ ‫‪.2‬ﺃﺤﺼﺭ ﺍﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ ‪ a‬ﺒﻴﻥ ﻤﻀﺎﻋﻔﻴﻥ ﻤﺘﻌﺎﻗﺒﻴﻥ ﻝﻠﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ ‪b‬‬ ‫  ‪ 12  137‬ه ‪.11‬‬ ‫ﻓﻲ ﺍﻝﺤﺎﻝﺘﻴﻥ ﺍﻝﺘﺎﻝﻴﺘﻴﻥ‪:‬‬ ‫  ‪ 12  137‬ه ‪.5‬‬ ‫∗ ‪ a = 2007‬ﻭ ‪. b = 16‬‬ ‫∗ ‪ a = 170‬ﻭ ‪، b = 29‬‬ ‫‪.3‬ﻋﻴﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﻜل ﻤﻥ ﺍﻝﻌﺩﺩﻴﻥ ‪ 660‬ﻭ ‪ 366‬ﻋﻠﻰ ‪. 7‬ﻤﺎﺫﺍ ﺘﻼﺤﻅ ؟‬ ‫ﻨﻘﻭل ﻋﻥ ﺍﻝﻌﺩﺩﻴﻥ ‪ 660‬ﻭ ‪ 366‬أ ان د ‪ 7‬و  ] ‪. 660 ≡ 366 [ 7‬‬ ‫ه ا دان ‪ 153‬و ‪"# 2008‬ا!ن د ‪ 5‬؟‬ ‫ ‬ ‫ه ا دان ‪ 274‬و ‪"# 69‬ا!ن د ‪ 3‬؟‬ ‫ ‬ ‫ﺒﻴﻥ ﺃﻥ ﺍﻝﻌﺩﺩﻴﻥ ‪ a = 234‬ﻭ ‪ b = 146‬ﻤﺘﻭﺍﻓﻘﺎﻥ ﺒﺘﺭﺩﻴﺩ ‪. n = 11‬ﻤﺎ ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ a − b‬ﻋﻠﻰ ‪ n‬؟‬ ‫ ‬ ‫ﺒﻴﻥ ﺃﻥ ﺍﻝﻌﺩﺩﻴﻥ ‪ a = 174‬ﻭ ‪ b = 109‬ﻤﺘﻭﺍﻓﻘﺎﻥ ﺒﺘﺭﺩﻴﺩ ‪. n = 13‬ﻤﺎ ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ a − b‬ﻋﻠﻰ ‪ n‬؟‬ ‫ ‬ ‫ﻀﻊ ﺘﺨﻤﻴﻨﺎ‪.‬‬ ‫‪8‬‬ ‫اط ا ‬ ‫ﻨﺫﻜﺭ ﺃﻥ ] ‪ a ≡ b [ n‬ﻴﻌﻨﻲ ﺃﻥ ﻝﻠﻌﺩﺩﻴﻥ ﺍﻝﺼﺤﻴﺤﻴﻥ ‪ a‬ﻭ ‪ b‬ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ ‪. n‬‬ ‫ﻹﻨﺠﺎﺯ ﻭﺭﻗﺔ ﺍﻝﺤﺴﺎﺏ ﺃﺩﻨﺎﻩ ﺍﺘﺒﻊ ﺍﻝﺨﻁﻭﺍﺕ ﺍﻝﺘﺎﻝﻴﺔ‪:‬‬ ‫∗ ﺒﻌﺩ ﺍﺨﺘﻴﺎﺭ ﺍﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ ‪ n‬ﻭ ﺤﺠﺯﻩ ﻓﻲ ﺍﻝﺨﻠﻴﺔ ‪ ، D 2‬ﺃﺤﺠﺯ ﻓﻲ ﺍﻝﺨﻠﻴﺘﻴﻥ ‪ A 2‬ﻭ ‪ B 2‬ﻋﺩﺩﻴﻥ ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ‬ ‫ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ ‪ n‬ﻭ ﻓﻲ ﺍﻝﺨﻠﻴﺘﻴﻥ ‪ G 2‬ﻭ ‪ H 2‬ﻋﺩﺩﻴﻥ ﺁﺨﺭﻴﻥ ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ ‪. n‬‬ ‫∗ ﻝﺘﻌﻴﻴﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ a‬ﻋﻠﻰ ‪ n‬ﻓﻲ ﺍﻝﺨﻠﻴﺔ ‪ A 3‬ﺃﺤﺠﺯ )‪ = MOD (A 2; D 2‬ﺜﻡ ﻭﺍﺼل ﺒﻨﻔﺱ ﺍﻝﻜﻴﻔﻴﺔ‪...‬‬ ‫∗ ﺒﻌﺩ ﺤﺠﺯ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ p‬ﻓﻲ ﺍﻝﺨﻠﻴﺔ ‪ ، E 2‬ﺃﺤﺠﺯ ﻓﻲ ﺍﻝﺨﻠﻴﺔ ‪ = PUISSANCE(A2;E2) : G 5‬ﺜﻡ ﻭﺍﺼل ‪...‬‬ ‫‪.1‬ﻻﺤﻅ ﻤﺨﺘﻠﻑ ﺍﻝﺒﻭﺍﻗﻲ ﺍﻝﻤﺤﺼل ﻋﻠﻴﻬﺎ ﻓﻲ ﺍﻝﺴﻁﺭ‪ 6‬ﺒﻌﺩ ﺘﻐﻴﻴﺭ ﺍﻷﻋﺩﺍﺩ ﺍﻝﺼﺤﻴﺤﺔ ‪ c ، b ، a‬ﻭ ‪ d‬ﻭ ﺍﻝﻌﺩﺩﻴﻥ‬ ‫ﺍﻝﻁﺒﻴﻌﻴﻴﻥ ‪ n‬ﻭ ‪ p‬ﻭﻓﻕ ﺍﻝﺸﺭﻭﻁ ﺍﻝﻤﺤﺩﺩﺓ ﺃﻋﻼﻩ‪.‬‬ ‫‪b‬؟‬ ‫‪p‬‬ ‫‪.2‬ﻤﺎﺫﺍ ﺘﻼﺤﻅ ﻋﻠﻰ ﺍﻝﻌﺩﺩﻴﻥ ‪ a + c‬ﻭ ‪ b + d‬؟ ‪ a × c‬ﻭ ‪ b × d‬؟ ‪ a‬ﻭ‬ ‫‪p‬‬ ‫‪.3‬ﺨﻤﻥ ﺒﻌﺽ ﺨﻭﺍﺹ ﺍﻝﻤﻭﺍﻓﻘﺔ ﺒﺘﺭﺩﻴﺩ ‪. n‬‬ ‫ﺍﻝﻨﺸﺎﻁ ﺍﻝﺭﺍﺒﻊ‬ ‫ﻓﻲ ﺍﻝﻘﺩﻴﻡ ﻜﺎﻥ ﺍﻝﻴﻭﻨﺎﻥ ﻴﺘﻌﺎﻤﻠﻭﻥ ﺠﻴﺩﺍ ﻤﻊ ﺍﻝﻤﺭﺒﻊ ﺍﻝﺘﺎﻡ ﻝﻌﺩﺩ ﻁﺒﻴﻌﻲ ﻭ ﻗﺩ ﺘﻭﺼﻠﻭﺍ ﺇﻝﻰ ﺍﻝﻨﺘﻴﺠﺔ ﺍﻝﺘﺎﻝﻴﺔ‪:‬‬ ‫ﻜﻠﻤﺎ ﺠﻤﻌﻨﺎ ﺃﻋﺩﺍﺩﺍ ﻓﺭﺩﻴﺔ ﻤﺘﺘﺎﺒﻌﺔ ﻭ ﺒﺎﻝﺘﺘﺎﺒﻊ ﻨﺤﺼل ﻋﻠﻰ ﻤﺭﺒﻊ ﺘﺎﻡ ﻝﻌﺩﺩ ﻁﺒﻴﻌﻲ‪.‬‬ ‫ﻭ ﻫﻜﺫﺍ‪ 1:‬ﻤﺭﺒﻊ ﺍﻝﻌﺩﺩ ‪ 1 + 3 = 4 ،1‬ﻭ ‪ 4‬ﻤﺭﺒﻊ ﺍﻝﻌﺩﺩ ‪ 1 + 3 + 5 = 9 ،2‬ﻭ ‪ 9‬ﻤﺭﺒﻊ ﺍﻝﻌﺩﺩ ‪... ،3‬‬ ‫‪ (1‬ﺃﻨﺠﺯ ﻭﺭﻗﺔ ﺍﻝﺤﺴﺎﺏ ﺍﻝﻤﻘﺎﺒﻠﺔ ﺒﺈﺘﺒﺎﻉ ﺍﻝﺨﻁﻭﺍﺕ ﺍﻝﺘﺎﻝﻴﺔ‪:‬‬ ‫ﻓﻲ ﺍﻝﻌﻤﻭﺩ ‪ B‬ﻭ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ﺍﻝﺨﻠﻴﺔ ‪ B 2‬ﺃﺤﺠﺯ ﺍﻷﻋﺩﺍﺩ ﺍﻝﻔﺭﺩﻴﺔ ﻤﻥ ‪ 1‬ﺇﻝﻰ ‪.49‬‬ ‫ﻓﻲ ﺍﻝﺨﻠﻴﺔ ‪ C 3‬ﺃﺤﺠﺯ ‪ = B 2 + B 3‬ﻭﻓﻲ ﺍﻝﺨﻠﻴﺔ ‪ C 4‬ﺃﺤﺠﺯ ‪= C 3 + B 4‬‬ ‫ﺜﻡ ﺍﺴﺤﺏ ﺇﻝﻰ ﺍﻷﺴﻔل ﺒﻊ ﺘﺤﺩﻴﺩ ﺍﻝﺨﻠﻴﺔ ‪. C 4‬‬ ‫‪ (2‬ﻋﻴﻥ ﺍﻝﻤﺠﺎﻤﻴﻊ ﺍﻝﺘﺎﻝﻴﺔ‪. S = 1 + 3 + 5 + 7 + 9 + 11 + 13 :‬‬ ‫‪. S ′ = 1 + 3 + 5 + 7 + 9 +... + 21 + 23‬‬ ‫‪. S ′′ = 1 + 3 + 5 + 7 + 9 +... + 47 + 49‬ﻤﺎﺫﺍ ﺘﻼﺤﻅ ؟‬ ‫‪ (3‬ﺨﻤﻥ ﺤﺴﺎﺏ ﺍﻝﻤﺠﻤﻭﻉ )‪ 1 + 3 + 5 +... + ( 2n −1‬ﺒﺩﻻﻝﺔ ‪. n‬‬ ‫‪ (4‬ﺒﻔﺭﺽ ﺍﻝﺘﺨﻤﻴﻥ ﺍﻝﺴﺎﺒﻕ ﺼﺤﻴﺢ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﺤﻴﺙ ‪ n ≥ 1‬ﺃﺜﺒﺕ ﺼﺤﺘﻪ ﻤﻥ ﺃﺠل ﺍﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ ‪. n + 1‬‬ ‫ﻨﻘﻭل ﺃﻥ ﻫﺫﻩ ﺍﻝﺨﺎﺼﻴﺔ ﻭﺭﺍﺜﻴﺔ‪.‬‬ ‫ﻨﻘﻭل ﻋﻥ ﺨﺎﺼﻴﺔ ) ‪ P ( n‬ﻤﺘﻌﻠﻘﺔ ﺒﺎﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ ‪ n‬ﺃﻨﻬﺎ ﻭﺭﺍﺜﻴﺔ ﺇﺫﺍ ﻜﺎﻨﺕ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﺍﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ ‪n + 1‬‬ ‫ﻜﻠﻤﺎ ﻜﺎﻨﺕ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪. n‬‬ ‫‪9‬‬ ‫↵ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻓﻲ ‪ℤ‬‬ ‫‪.1‬ﻗﺎﺒﻠﻴﺔ ﺍﻝﻘﺴﻤﺔ ﻓﻲ ‪ℤ‬‬ ‫ﺘﻌﺭﻴﻑ‪ a :‬ﻭ ‪ b‬ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ﻭ ‪ b‬ﻏﻴﺭ ﻤﻌﺩﻭﻡ‪.‬ﺍﻝﻘﻭل ﺃﻥ ﺍﻝﻌﺩﺩ ‪ b‬ﻴﻘﺴﻡ ﺍﻝﻌﺩﺩ ‪ a‬ﻴﻌﻨﻲ ﻭﺠﻭﺩ‬ ‫ﻋﺩﺩ ﺼﺤﻴﺢ ‪ k‬ﺤﻴﺙ‪. a = kb :‬ﻨﻘﻭل ﻜﺫﻝﻙ ﺃﻥ ‪ b‬ﻗﺎﺴﻡ ﻝﻠﻌﺩﺩ ‪ a‬ﺃﻭ ﺃﻥ ‪ a‬ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ ‪. b‬‬ ‫ﻨﻜﺘﺏ ‪ b a‬ﻭ ﻨﻘﺭﺃ ‪ b‬ﻴﻘﺴﻡ ‪. a‬‬ ‫ﺃﻤﺜﻠﺔ‪:‬‬ ‫‪ 48 = 8× 6‬ﻭ ﻤﻨﻪ ‪6 48‬‬ ‫ ‬ ‫ )‪ 48 = (−8)×(−6‬ﻭ ﻤﻨﻪ ‪(−6) 48‬‬ ‫ ‪ (−65) = (−13)×5‬ﻭ ﻤﻨﻪ )‪5 (−65‬‬ ‫ ‪ (−65) = (−13)×5‬ﻭ ﻤﻨﻪ )‪(−13) (−65‬‬ ‫ﻤﻼﺤﻅﺔ‪ :‬ﻝﻠﻌﺩﺩﻴﻥ ﺍﻝﺼﺤﻴﺤﻴﻥ ‪ a‬ﻭ ‪ −a‬ﻨﻔﺱ ﺍﻝﻘﻭﺍﺴﻡ ﻓﻲ ‪ a = kb ) ℤ‬ﻴﻌﻨﻲ ‪( −a = (−k )b‬‬ ‫‪.2‬ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻓﻲ ‪ℤ‬‬ ‫ﻤﺒﺭﻫﻨﺔ‪ :‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ ‪ a‬ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ‪ ، b‬ﺘﻭﺠﺩ ﺜﻨﺎﺌﻴﺔ‬ ‫ﻭﺤﻴﺩﺓ ) ‪ (q, r‬ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻝﺼﺤﻴﺤﺔ ﺤﻴﺙ‪ a = bq + r :‬ﻭ ‪. 0 ≤ r < b‬‬ ‫ﺘﺴﻤﻰ ﻋﻤﻠﻴﺔ ﺍﻝﺒﺤﺙ ﻋﻥ ﺍﻝﺜﻨﺎﺌﻴﺔ ) ‪ (q, r‬ﺒﺎﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻝﻠﻌﺩﺩ ‪ a‬ﻋﻠﻰ ﺍﻝﻌﺩﺩ ‪. b‬ﻴﺴﻤﻰ ‪ q‬ﻭ ‪ r‬ﺒﻬﺫﺍ ﺍﻝﺘﺭﺘﻴﺏ ﺤﺎﺼل ﻭ ﺒﺎﻗﻲ‬ ‫ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻝﻠﻌﺩﺩ ‪ a‬ﻋﻠﻰ ﺍﻝﻌﺩﺩ ‪. b‬‬ ‫ﺍﻝﺒﺭﻫﺎﻥ‪ :‬ﺍﻝﻌﺩﺩ ‪ a‬ﺇﻤﺎ ﻤﻀﺎﻋﻑ ﻝﹻ ‪ b‬ﻭ ﺇﻤﺎ ﻤﺤﺼﻭﺭ ﺒﻴﻥ ﻤﻀﺎﻋﻔﻴﻥ ﻤﺘﺘﺎﺒﻌﻴﻥ ﻝﹻ ‪ b‬ﺃﻱ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ ‪ q‬ﻭﺤﻴﺩ‬ ‫ﺤﻴﺙ ‪ qb ≤ a < (q + 1) b‬ﻭ ﻨﺴﺘﻨﺘﺞ ﻤﻥ ﻫﺫﺍ ﺃﻥ ‪. 0 ≤ a − qb < b‬‬ ‫ﺒﻭﻀﻊ ‪ r = a − qb‬ﻨﺤﺼل ﻋﻠﻰ ‪ a = bq + r‬ﻤﻊ ‪. 0 ≤ r < b‬‬ ‫ﻤﻼﺤﻅﺔ‪ :‬ﻴﻤﻜﻥ ﺘﻤﺩﻴﺩ ﻤﻔﻬﻭﻡ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻝﻌﺩﺩ ﺼﺤﻴﺢ ‪ a‬ﻋﻠﻰ ﻋﺩﺩ ﺼﺤﻴﺢ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ‪. b‬‬ ‫‪. 0≤r < b‬‬ ‫ﻭﻨﺤﺼل ﻋﻠﻰ ‪ a = bq + r‬ﻭ‬ ‫ﺃﻤﺜﻠﺔ‪:‬‬ ‫‪ 7‬ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ ‪ 37‬ﻋﻠﻰ ‪ 5‬ﻭ ‪ 2‬ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 37‬ﻋﻠﻰ ‪. 5‬‬ ‫ ‪. 37 = 5× 7 + 2‬‬ ‫ﻭ ﻨﻼﺤﻅ ﺃﻥ ‪ 35 ≤ 37 < 40‬ﺃﻱ )‪ 5× 7 ≤ 37 < 5×(7 + 1‬ﻭ ‪. 37 − 35 = 2‬‬ ‫‪ 13‬ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ ‪ 95‬ﻋﻠﻰ ‪ 7‬ﻭ ‪ 4‬ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 95‬ﻋﻠﻰ ‪. 7‬‬ ‫ ‪. 95 = 7 ×13 + 4‬‬ ‫ﻭ ﻨﻼﺤﻅ ﺃﻥ ‪ 91 ≤ 95 < 98‬ﻭ ‪. 95 − 91 = 4‬‬ ‫‪ 16‬ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ ‪ 192‬ﻋﻠﻰ ‪ 12‬ﻭ ‪ 0‬ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 192‬ﻋﻠﻰ ‪. 12‬‬ ‫ ‪. 192 = 12×16‬‬ ‫ﻭ ﻨﻼﺤﻅ ﺃﻥ ‪ 192 ≤ 192 < 204‬ﻭ ‪. 192 −192 = 0‬‬ ‫‪ −8‬ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ ‪ −39‬ﻋﻠﻰ ‪ 5‬ﻭ ‪ 1‬ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ −39‬ﻋﻠﻰ ‪. 5‬‬ ‫ ‪. −39 = 5×(−8) + 1‬‬ ‫ﻭ ﻨﻼﺤﻅ ﺃﻥ ‪ −40 ≤ −39 < −35‬ﻭ ‪. −39 − (−40) = 1‬‬ ‫‪10‬‬ ‫ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل‪:1‬ﻋﻴﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ ﺍﻝﺼﺤﻴﺢ ‪ a‬ﻋﻠﻰ ﺍﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ ‪ ، b‬ﺜﻡ ﺃﺤﺼﺭ ﺍﻝﻌﺩﺩ ‪ a‬ﺒﻴﻥ ﻤﻀﺎﻋﻔﻴﻥ‬ ‫ﻤﺘﻌﺎﻗﺒﻴﻥ ﻝﻠﻌﺩﺩ ‪ b‬ﻓﻲ ﻜل ﺤﺎﻝﺔ ﻤﻥ ﺍﻝﺤﺎﻻﺕ ﺍﻵﺘﻴﺔ‪.‬‬ ‫‪ a = −7361.3‬ﻭ ‪. b = 47‬‬ ‫‪ a = 725.2‬ﻭ ‪. b = 91‬‬ ‫‪ a = 8159.1‬ﻭ ‪. b = 52‬‬ ‫ﺤل‪ 156. 8159 = 52×156 + 47.1 :‬ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ ‪ 8159‬ﻋﻠﻰ ‪ 52‬ﻭ ‪ 47‬ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 8159‬ﻋﻠﻰ ‪. 52‬‬ ‫‪ 52×156 ≤ 8159 < 52×157‬ﺃﻱ ‪. 8112 ≤ 8159 < 8164‬‬ ‫‪ 7. 725 = 91× 7 + 88.2‬ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ ‪ 725‬ﻋﻠﻰ ‪ 91‬ﻭ ‪ 88‬ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 725‬ﻋﻠﻰ ‪. 91‬‬ ‫‪ 91× 7 ≤ 725 < 91×8‬ﺃﻱ ‪. 637 ≤ 725 < 728‬‬ ‫‪ − 157. −7361 = 47 ×(−157) + 18.3‬ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ ‪ −7361‬ﻋﻠﻰ ‪ 47‬ﻭ ‪ 18‬ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ‬ ‫‪ −7361‬ﻋﻠﻰ ‪ 47 ×(−157) ≤ −7361 < 47 ×(−156). 47‬ﺃﻱ ‪. −7379 ≤ −7361 < −7332‬‬ ‫ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل‪ a :2‬ﻋﺩﺩ ﺼﺤﻴﺢ ﺒﺎﻗﻲ ﻗﺴﻤﺘﻪ ﻋﻠﻰ ‪ 10‬ﻫﻭ ‪. 6‬‬ ‫‪.2‬ﻤﺎ ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ ‪ a‬ﻋﻠﻰ ‪ 2‬؟‬ ‫‪.1‬ﻤﺎ ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ ‪ a‬ﻋﻠﻰ ‪ 5‬؟‬ ‫‪ a = 10k + 6‬ﺤﻴﺙ ‪ k‬ﻋﺩﺩ ﺼﺤﻴﺢ ‪.‬‬ ‫ﺤل‪:‬‬ ‫‪ a = 10k + 5 + 1‬ﻭ ﻤﻨﻪ ‪ a = 5 (2k + 1) + 1‬ﻭﻤﻨﻪ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ a‬ﻋﻠﻰ ‪ 5‬ﻫﻭ ‪. 1‬‬ ‫‪.1‬‬ ‫)‪ a = 2(5k + 3‬ﻭﻤﻨﻪ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ a‬ﻋﻠﻰ ‪ 2‬ﻫﻭ ‪. 0‬‬ ‫‪.2‬‬ ‫ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل‪ :3‬ﺤﻠل ﺍﻝﻌﺩﺩ ‪ 1372‬ﺇﻝﻰ ﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻝﻴﺔ ﻭ ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻤﻪ ‪.‬‬ ‫‪α‬‬ ‫ﻁﺭﻴﻘﺔ‪ :‬ﻋﺩﺩ ﻗﻭﺍﺴﻡ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﺘﺤﻠﻴﻠﻪ ﺇﻝﻰ ﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻝﻴﺔ ‪ n = a1α1 × a2α 2 ×... × a p p‬ﻫﻭ ‪:‬‬ ‫)‪(α1 + 1) × (α 2 + 1) ×... × (α p + 1‬‬ ‫ﻨﺤﺴﺏ ﺠﺩﺍﺀ ﺍﻷﻋﺩﺍﺩ ﺍﻝﻤﺤﺼل ﻋﻠﻴﻬﺎ ‪.‬‬ ‫ﺤل‪. 1372 = 22 × 73 (1:‬ﻋﺩﺩ ﻗﻭﺍﺴﻡ ‪ 1372‬ﻫﻭ ‪. ( 2 + 1)( 3 + 1) = 12‬ﺍﻝﻌﺩﺩ ‪ 1372‬ﻴﻘﺒل ﺇﺫﻥ ‪ 12‬ﻗﺎﺴﻤﺎ ‪.‬‬ ‫‪ (2‬ﻝﺘﻜﻥ ‪ D1372‬ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻡ ‪. 1372‬ﻹﻴﺠﺎﺩ ﺍﻝﻤﺠﻤﻭﻋﺔ ‪ D1372‬ﻴﻤﻜﻥ ﺍﺴﺘﻌﻤﺎل ﺍﻝﺸﺠﺭﺓ ﺍﻵﺘﻴﺔ ‪.‬‬ ‫‪1‬‬ ‫‪7‬‬ ‫‪20‬‬ ‫‪1‬‬ ‫‪7×7=49‬‬ ‫‪2‬‬ ‫‪7×49=343‬‬ ‫‪2×7=14‬‬ ‫‪21 2‬‬ ‫‪2×7×7=98‬‬ ‫‪4‬‬ ‫‪2×7×49=686‬‬ ‫‪4×7=28‬‬ ‫‪22‬‬ ‫‪1; 2; 4;7;14; 28; 49;98;‬‬ ‫‪4‬‬ ‫‪4×49=196‬‬ ‫‪D1372 = ‬‬ ‫ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻡ ﺍﻝﻌﺩﺩ ‪ 1372‬ﻫﻲ ﺇﺫﻥ ‪‬‬ ‫‪196;343; 686;1372 ‬‬ ‫‪4×343=1372‬‬ ‫‪11‬‬ ‫↵ ﺍﻝﻤﻭﺍﻓﻘﺎﺕ ﻓﻲ ‪ℤ‬‬ ‫‪.1‬ﺘﻌﺭﻴﻑ‬ ‫ﺘﻌﺭﻴﻑ‪ n :‬ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ‪.‬ﺍﻝﻘﻭل ﺃﻥ ﻋﺩﺩﻴﻥ ﺼﺤﻴﺤﻴﻥ ‪ a‬ﻭ ‪ b‬ﻤﺘﻭﺍﻓﻘﺎﻥ ﺒﺘﺭﺩﻴﺩ ‪n‬‬ ‫ﻴﻌﻨﻲ ﺃﻥ ﻝﻠﻌﺩﺩﻴﻥ ‪ a‬ﻭ ‪ b‬ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ ‪. n‬‬ ‫ﻨﺭﻤﺯ ] ‪ a ≡ b [ n‬ﻭ ﻨﻘﺭﺃ ‪ a‬ﻴﻭﺍﻓﻕ ‪ b‬ﺒﺘﺭﺩﻴﺩ ‪. n‬‬ ‫ﺃﻤﺜﻠﺔ‪. −59 ≡ −3 ، −20 ≡ 1[7 ] ، 24 ≡ 3[7 ] ، 12 ≡ 34 ، 27 ≡ 92 :‬‬ ‫ﻤﻼﺤﻅﺔ‪ :‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ ‪. x ≡ 0 ، x‬‬ ‫‪.2‬ﻤﺒﺭﻫﻨﺔ‬ ‫ﻤﺒﺭﻫﻨﺔ‪ a :‬ﻭ ‪ b‬ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ﻭ ‪ n‬ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ‪.‬ﻴﻜﻭﻥ ﻝﹻ ‪ a‬ﻭ ‪ b‬ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ‬ ‫ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ ‪ n‬ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ‪ a − b‬ﻤﻀﺎﻋﻔﺎ ﻝﻠﻌﺩﺩ ‪. n‬‬ ‫ﺍﻝﺒﺭﻫﺎﻥ‪ :‬ﻨﻔﺭﺽ ﺃﻥ ﻝﹻ ‪ a‬ﻭ ‪ b‬ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ‪ r‬ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ ‪. n‬‬ ‫ﻭ ﻤﻨﻪ ﻨﻀﻊ ‪ a = nq + r‬ﻭ ‪ b = nq '+ r‬ﺤﻴﺙ ‪ q‬ﻭ ' ‪ q‬ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ﻭ ‪. 0 ≤ r < n‬‬ ‫ ‪a − b = nq ′′‬‬ ‫ﻭ ﻤﻨﻪ )' ‪. a − b = nq + r − nq '− r = n (q − q‬ﺒﻭﻀﻊ ' ‪ q ′′ = q − q‬ن‬ ‫‪  q ′′ 7#‬د ‪.8*,‬ﻨﺴﺘﻨﺘﺞ ﻫﻜﺫﺍ ﺃﻥ ‪ a − b‬ﻤﻀﺎﻋﻑ ﻝـ ‪. n‬‬ ‫ﻋﻜﺴﻴﺎ ‪ :‬ﻨﻔﺭﺽ ‪ a − b‬ﻤﻀﺎﻋﻑ ﻝـ ‪. n‬ﻴﻭﺠﺩ ﺇﺫﻥ ﻋﺩﺩ ﺼﺤﻴﺢ ‪ k‬ﺤﻴﺙ ﺃﻥ ‪. a − b = k n‬‬ ‫ﻝﻴﻜﻥ ‪ r‬ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ b‬ﻋﻠﻰ ‪. n‬‬ ‫ﻝﺩﻴﻨﺎ ‪ b = nq + r‬ﺤﻴﺙ ‪ q‬ﻋﺩﺩ ﺼﺤﻴﺢ ﻭ ‪. 0 ≤ r < n‬‬ ‫ﻭ ﻤﻨﻪ ‪. a = b + k n = nq + r + k n = ( q + k ) n + r‬‬ ‫ﺒﻤﺎ ﺃﻥ ‪ q + k‬ﻋﺩﺩ ﺼﺤﻴﺢ ﻭ ‪ 0 ≤ r < n‬ﻓﺈﻥ ‪ r‬ﻫﻭ ﺒﺎﻗﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻝﻠﻌﺩﺩ ‪ a‬ﻋﻠﻰ ‪. n‬‬ ‫ﻭﻤﻨﻪ ﻝﹻ ‪ a‬ﻭ ‪ b‬ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ ‪. n‬‬ ‫ﻨﺘﻴﺠﺔ‪ a :‬ﻭ ‪ b‬ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ﻭ ‪ n‬ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ‪.‬ﻴﻜﻭﻥ ‪ a‬ﻭ ‪ b‬ﻤﺘﻭﺍﻓﻘﻴﻥ ﺒﺘﺭﺩﻴﺩ ‪ n‬ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ‬ ‫‪ a − b‬ﻤﻀﺎﻋﻔﺎ ﻝـ ‪. n‬‬ ‫ﺨﺎﺼﻴﺔ‪ n :‬ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻴﺨﺘﻠﻑ ﻋﻥ ‪. (n ≥ 2) 1‬‬ ‫ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ ‪ a‬ﻴﻭﺍﻓﻕ‪ ،‬ﺒﺘﺭﺩﻴﺩ ‪ ، n‬ﺒﺎﻗﻲ ﻗﺴﻤﺘﻪ ﻋﻠﻰ ‪. n‬‬ ‫ا‪%‬هن‪ a :‬ﻋﺩﺩ ﺼﺤﻴﺢ ﻭ ‪ r‬ﺒﺎﻗﻲ ﻗﺴﻤﺘﻪ ﻋﻠﻰ ‪. n‬‬ ‫ﻨﻌﻠﻡ ﺃﻥ ‪ a = nq + r‬ﺤﻴﺙ ‪ q‬ﻋﺩﺩ ﺼﺤﻴﺢ ﻭ ‪. 0 ≤ r < n‬ﻭ ﻤﻨﻪ ‪. a − r = nq‬‬ ‫ﻭ ﺒﺎﻝﺘﺎﻝﻲ ‪ a − r‬ﻤﻀﺎﻋﻑ ﻝِـ ‪. n‬‬ ‫ﻤﻼﺤﻅﺔ‪ :‬ﻨﻘﻭل ﺃﻥ ‪ r‬ﻫﻭ ﺍﻝﺒﺎﻗﻲ ﺇﻻ ﺇﺫﺍ ﻜﺎﻥ ‪. 0 ≤ r < n‬ﻓﻤﺜﻼ ]‪ 16 ≡ 6 [5‬ﻭ ‪ 6‬ﻝﻴﺱ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 16‬ﻋﻠﻰ ‪5‬‬ ‫ﻷﻥ ‪. 6 ≥ 5‬ﺃﻤﺎ ﺍﻝﺒﺎﻗﻲ ﻓﻬﻭ ‪ 1‬ﻷﻥ ]‪ 16 ≡ 1[5‬ﻭ ‪. 0 ≤ 1 < 5‬‬ ‫‪12‬‬ ‫ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل‪ :1‬ﻤﻥ ﺒﻴﻥ ﺍﻝﻤﻭﺍﻓﻘﺎﺕ ﺍﻵﺘﻴﺔ ﺃﺫﻜﺭ ﺍﻝﺼﺤﻴﺤﺔ ﻭ ﺍﻝﺨﺎﻁﺌﺔ‪:‬‬ ‫‪58 ≡ −5[7 ] (4‬‬ ‫؛‬ ‫‪478 ≡ 32 (3‬‬ ‫؛‬ ‫‪−32 ≡ 18 (2‬‬ ‫؛‬ ‫‪26 ≡ 11 (1‬‬ ‫‪483 ≡ 36 [7 ] (8‬‬ ‫؛‬ ‫‪1312 ≡ 25 (7‬‬ ‫؛‬ ‫‪144 ≡ 11 (6‬‬ ‫؛‬ ‫‪632 ≡ 14 (5‬‬ ‫ﻁﺭﻴﻘﺔ‪ :‬ﻝﻠﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺃﻥ ] ‪ a ≡ b [ n‬ﻴﻤﻜﻥ ﺍﻝﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺃﻥ ‪ a − b‬ﻤﻀﺎﻋﻑ ﻝِـ ‪ n‬ﺃﻭ ﺍﻝﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺃﻥ ﻝﹻ ‪ a‬ﻭ ‪b‬‬ ‫ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ ‪. n‬‬ ‫ﺤل‪:‬‬ ‫‪ 26 −11 = 15 (1‬ﻭ ‪. 15 = 3×5‬ﺇﺫﻥ ]‪ 26 ≡ 11[5‬ﺼﺤﻴﺤﺔ‪.‬‬ ‫‪ −32 −18 = −50 (2‬ﻭ ‪. −50 = (−5)×10‬ﺇﺫﻥ ]‪ −32 ≡ 18[10‬ﺼﺤﻴﺤﺔ‪.‬‬ ‫‪ 478 − 32 = 446 (3‬ﻭ ‪. 446 = 89× 5 + 1‬ﺇﺫﻥ ]‪ 478 ≡ 32 [5‬ﺨﺎﻁﺌﺔ ‪.‬ﻭ ﻨﻜﺘﺏ ]‪. 478 ≡ 32 [5‬‬ ‫‪ 58 + 5 = 63 (4‬ﻭ ‪. 63 = 9× 7‬ﺇﺫﻥ ] ‪ 58 ≡ −5[7‬ﺼﺤﻴﺤﺔ‪.‬‬ ‫‪. 632 = 3969 (5‬ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 632‬ﻋﻠﻰ ‪ 5‬ﻫﻭ ﺇﺫﻥ ‪ 4‬ﻭﺒﻤﺎ ﺃﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ ‪ 14‬ﻋﻠﻰ ‪ 5‬ﻫﻭ ﻜﺫﻝﻙ ‪ 4‬ﻓﺈﻥ‬ ‫]‪ 63 2 ≡ 14 [5‬ﺼﺤﻴﺤﺔ‪.‬‬ ‫‪ 144 = 19× 7 + 11 (6‬ﻭ ﺒﻤﺎ ﺃﻥ ﺍﻝﻌﺩﺩ ‪ 144‬ﻴﻭﺍﻓﻕ ﺒﺘﺭﺩﻴﺩ ‪ 19‬ﺒﺎﻗﻲ ﻗﺴﻤﺘﻪ ﻋﻠﻰ ‪ 19‬ﻨﺴﺘﻨﺘﺞ ﺃﻥ‬ ‫]‪ 144 ≡ 11[19‬ﺼﺤﻴﺤﺔ‪.‬‬ ‫‪ 131 2 = 1430×12 + 1 (7‬ﻭ ‪ 25 = 2×12 + 1‬ﺘﺤﺼﻠﻨﺎ ﻋﻠﻰ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ ‪ 12‬ﺇﺫﻥ‬ ‫]‪ 131 2 ≡ 25[12‬ﺼﺤﻴﺤﺔ‪.‬‬ ‫‪ 48 3 = 15799× 7 + 6 (8‬ﻭ ‪ 36 = 5× 7 + 1‬ﻝﻡ ﻨﺤﺼل ﻋﻠﻰ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ ‪ 7‬ﺇﺫﻥ‬ ‫] ‪ 483 ≡ 36 [7‬ﺨﺎﻁﺌﺔ‪.‬ﻭ ﻨﻜﺘﺏ ] ‪. 483 ≡ 36 [7‬‬ ‫ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل‪ :2‬ﻋﻴﻥ ﻓﻲ ﻜل ﺤﺎﻝﺔ ﻤﻥ ﺍﻝﺤﺎﻻﺕ ﺍﻵﺘﻴﺔ )] ‪ ( a ≡ b [ n‬ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ a‬ﻋﻠﻰ ‪ n‬ﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪b‬‬ ‫ﻋﻠﻰ ‪ ، n‬ﺜﻡ ﺃﺫﻜﺭ ﺼﺤﺔ ﺃﻭ ﺨﻁﺄ ﺍﻝﻤﻭﺍﻓﻘﺔ‪.‬‬ ‫‪158 ≡ 39 [17 ] (4‬‬ ‫؛‬ ‫‪471 ≡ 30 (3‬‬ ‫؛‬ ‫‪−322 ≡ 78[ 4] (2‬‬ ‫؛‬ ‫‪262 ≡ 927 (1‬‬ ‫ﺤل‪:‬‬ ‫‪ 262 = 5×52 + 2 (1‬ﻭ ‪ 927 = 5×185 + 2‬ﺇﺫﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 262‬ﻋﻠﻰ ‪ 5‬ﻫﻭ ‪ 2‬ﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪927‬‬ ‫ﻋﻠﻰ ‪ 5‬ﻫﻭ ‪ 2‬ﻭ ﻤﻨﻪ ‪ 262‬ﻭ ‪ 927‬ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ ‪ 5‬ﺇﺫﻥ ]‪ 262 ≡ 927 [5‬ﺼﺤﻴﺤﺔ ‪.‬‬ ‫‪ −322 = 4×(−81) + 2 (2‬ﻭ ‪ 78 = 4×19 + 2‬ﺇﺫﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ −322‬ﻋﻠﻰ ‪ 4‬ﻫﻭ ‪ 2‬ﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ‬ ‫‪ 78‬ﻋﻠﻰ ‪ 4‬ﻫﻭ ‪ 2‬ﻭ ﻤﻨﻪ ‪ −322‬ﻭ ‪ 78‬ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ ‪ 4‬ﺇﺫﻥ ]‪ −322 ≡ 78[ 4‬ﺼﺤﻴﺤﺔ ‪.‬‬ ‫‪ 471 = 8×58 + 7 (3‬ﻭ ‪ 30 = 8×3 + 6‬ﺇﺫﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 471‬ﻋﻠﻰ ‪ 8‬ﻫﻭ ‪ 7‬ﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 30‬ﻋﻠﻰ ‪ 8‬ﻫﻭ ‪6‬‬ ‫ﻭ ﻤﻨﻪ ‪ 471‬ﻭ ‪ 30‬ﻝﻴﺱ ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ ‪ 8‬ﺇﺫﻥ ]‪ 471 ≡ 30[8‬ﺨﺎﻁﺌﺔ‪.‬ﻭ ﻨﻜﺘﺏ ]‪. 471≡ 30 [8‬‬ ‫‪ 158 = 17×9 + 5 (4‬ﻭ ‪ 39 = 17 × 2 + 5‬ﺇﺫﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 158‬ﻋﻠﻰ ‪ 17‬ﻫﻭ ‪ 5‬ﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 39‬ﻋﻠﻰ ‪17‬‬ ‫ﻫﻭ ‪ 5‬ﻭ ﻤﻨﻪ ‪ 158‬ﻭ ‪ 39‬ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ ‪ 17‬ﺇﺫﻥ ] ‪ 158 ≡ 39[17‬ﺼﺤﻴﺤﺔ‪.‬‬ ‫‪13‬‬ ‫↵ ﺨﻭﺍﺹ ﺍﻝﻤﻭﺍﻓﻘﺎﺕ ﻓﻲ ‪ℤ‬‬ ‫ﺍﻝﺨﺎﺼﻴﺔ‪ :1‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ ‪ a‬ﻝﺩﻴﻨﺎ‪. a ≡ a [ n ] :‬‬ ‫ا‪%‬هن‪ :‬ﻝﺩﻴﻨﺎ ‪ a − a = 0 × n‬ﻭ ﻤﻨﻪ ‪ a − a‬ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ ‪. n‬‬ ‫ﺍﻝﺨﺎﺼﻴﺔ‪ a :2‬ﻭ ‪ b‬ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ﻭ ‪ n‬ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ‪.‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ ] ‪ a ≡ b [ n‬ﻓﺈﻥ ] ‪. b ≡ a [ n‬‬ ‫ا‪%‬هن‪ :‬إذا آن ﻝﹻ ‪ a‬ﻭ ‪ b‬ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ ‪ n‬ﻓﺈﻥ ﻝﹻ ‪ b‬ﻭ ‪ a‬ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ‬ ‫ﻋﻠﻰ ‪. n‬‬ ‫ﺍﻝﺨﺎﺼﻴﺔ‪) 3‬ﺨﺎﺼﻴﺔ ﺍﻝﺘﻌﺩﻱ( ‪ n :‬ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ‪ b ، a.‬ﻭ ‪ c‬ﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ‪.‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ ) ] ‪ a ≡ b [ n‬ﻭ ] ‪ ( b ≡ c [ n‬ﻓﺈﻥ ] ‪. a ≡ c [ n‬‬ ‫ا‪%‬هن‪ b ، a :‬ﻭ ‪ c‬ﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ ﺤﻴﺙ ) ] ‪ a ≡ b [ n‬ﻭ ] ‪.( b ≡ c [ n‬‬ ‫) ] ‪ a ≡ b [ n‬ﻭ ] ‪ ( b ≡ c [ n‬ﻴﻌﻨﻲ ) ‪ a − b = k n‬ﻭ ‪ k )( b − c = k ' n‬ﻭ ' ‪ k‬ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ (‬ ‫ﻭ ﻤﻨﻪ ﻭ ﺒﺎﻝﺠﻤﻊ ﻨﺤﺼل ﻋﻠﻰ ‪. a − c = ( k + k ') n‬ﺒﻤﺎ ﺃﻥ ' ‪ k + k‬ﻋﺩﺩ ﺼﺤﻴﺢ ﻓﺈﻥ ] ‪. a ≡ c [ n‬‬ ‫ﺍﻝﺨﺎﺼﻴﺔ‪) 4‬ﺨﺎﺼﻴﺔ ﺍﻝﺘﻼﺅﻡ ﻤﻊ ﺍﻝﺠﻤﻊ( ‪ n :‬ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ‪ c ، b ، a.‬ﻭ ‪ d‬ﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ‪.‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ ) ] ‪ a ≡ b [ n‬ﻭ ] ‪ ( c ≡ d [ n‬ﻓﺈﻥ ] ‪. a + c ≡ b + d [ n‬‬ ‫ا‪%‬هن‪ c ، b ، a :‬ﻭ ‪ d‬ﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ ﺤﻴﺙ ) ] ‪ a ≡ b [ n‬ﻭ ] ‪.( c ≡ d [ n‬‬ ‫) ] ‪ a ≡ b [ n‬ﻭ ] ‪ ( c ≡ d [ n‬ﻴﻌﻨﻲ ) ‪ a − b = k n‬ﻭ ‪ k )( c − d = k ' n‬ﻭ ' ‪ k‬ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ (‬ ‫ﻭﻤﻨﻪ ﻭ ﺒﺎﻝﺠﻤﻊ ﻨﺤﺼل ﻋﻠﻰ ‪. (a + c ) − (b + d ) = (k + k ') n‬ﺒﻤﺎ ﺃﻥ ' ‪ k + k‬ﻋﺩﺩ ﺼﺤﻴﺢ ﻓﺈﻥ ] ‪. a + c ≡ b + d [ n‬‬ ‫ﺍﻝﺨﺎﺼﻴﺔ‪) 5‬ﺨﺎﺼﻴﺔ ﺍﻝﺘﻼﺅﻡ ﻤﻊ ﺍﻝﻀﺭﺏ( ‪ n :‬ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ‪ c ، b ، a.‬ﻭ ‪ d‬ﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ‪.‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ ) ] ‪ a ≡ b [ n‬ﻭ ] ‪ ( c ≡ d [ n‬ﻓﺈﻥ ] ‪. a ×c ≡ b ×d [ n‬‬ ‫ا‪%‬هن‪ c ، b ، a :‬ﻭ ‪ d‬ﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ ﺤﻴﺙ ﺃﻥ) ] ‪ a ≡ b [ n‬ﻭ ] ‪.( c ≡ d [ n‬‬ ‫) ] ‪ a ≡ b [ n‬ﻭ ] ‪ ( c ≡ d [ n‬ﻴﻌﻨﻲ ) ‪ a − b = k n‬ﻭ ‪ k )( c − d = k ' n‬ﻭ ' ‪ k‬ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ (‬ ‫ﻝﺩﻴﻨﺎ ‪a c − b d = a c − ad + ad − b d = a (c − d ) + d (a − b) = a k ' n + d k n = ( a k '+ d k ) n‬‬ ‫ﺒﻤﺎ ﺃﻥ ‪ a k '+ d k‬ﻋﺩﺩ ﺼﺤﻴﺢ ﻓﺈﻥ ] ‪. a c ≡ b d [ n‬‬ ‫‪ :()*+‬ﻴﺘﻡ ﺘﻌﻤﻴﻡ ﺍﻝﺨﺎﺼﻴﺔ ﺍﻝﺴﺎﺒﻘﺔ ﺇﻝﻰ ﺠﺩﺍﺀ ﻋﺩﺓ ﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ‪.‬‬ ‫ﺍﻝﺨﺎﺼﻴﺔ‪ n :6‬ﻭ ‪ p‬ﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ‪ a.‬ﻭ ‪ b‬ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ‪.‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ ] ‪ a ≡ b [ n‬ﻓﺈﻥ ] ‪. a p ≡ b p [ n‬‬ ‫ا‪%‬هن‪ :‬ﻴﻤﻜﻨﻙ ﺍﺴﺘﻌﻤﺎل ﺍﻻﺴﺘﺩﻻل ﺒﺎﻝﺘﺭﺍﺠﻊ ) ﺃﻨﻅﺭ ﺍﻝﺘﻤﺎﺭﻴﻥ (‪.‬‬ ‫‪14‬‬ ‫ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل‪ :1‬ﻝﺘﻜﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻝﺼﺤﻴﺤﺔ ﺍﻝﺘﺎﻝﻴﺔ ‪ b = 837 ، a = 255 :‬ﻭ ‪. c = 3691‬‬ ‫‪.1‬ﻋﻴﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻷﻋﺩﺍﺩ ‪ b ، a‬ﻭ ‪ c‬ﻋﻠﻰ ﺍﻝﻌﺩﺩ ‪. 11‬‬ ‫‪.2‬ﺒﺎﺴﺘﻌﻤﺎل ﺍﻝﻤﻭﺍﻓﻘﺎﺕ ﻋﻴﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﻜل ﻤﻥ ‪. a ×b × c ، a 2 ، a + b + c ، a × c ، a + b‬‬ ‫ﺤل‪:‬‬ ‫‪.1‬ﺒﺎﺴﺘﻌﻤﺎل ﺤﺎﺴﺒﺔ ﻨﺠﺩ ﺃﻥ ﺒﻭﺍﻗﻲ ﺍﻷﻋﺩﺍﺩ ‪ b ، a‬ﻭ ‪ c‬ﻋﻠﻰ ﺍﻝﻌﺩﺩ‪ 11‬ﻫﻲ ‪ 6 ، 1 ، 2‬ﻋﻠﻰ ﺍﻝﺘﺭﺘﻴﺏ‪.‬‬ ‫]‪a ≡ 2 [11‬‬ ‫‪ ‬ﻭ ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻝﺠﻤﻊ ﻨﺠﺩ ]‪ a + b ≡ 3[11‬ﻭ ﻤﻨﻪ ﺍﻝﺒﺎﻗﻲ ﻫﻭ‪.3‬‬ ‫‪.2‬ﻝﺩﻴﻨﺎ‪:‬‬ ‫]‪b ≡ 1[11‬‬ ‫‪‬‬ ‫ﻝﺩﻴﻨﺎ ]‪ a ≡ 2[11‬ﻭ ]‪. c ≡ 6 [11‬ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻝﻀﺭﺏ ﻨﺠﺩ ]‪ ac ≡ 12 [11‬ﻭ ﺒﻤﺎ ﺃﻥ ]‪12 ≡ 1 [11‬‬ ‫ﻓﺈﻨﻪ ﺒﺎﻝﺘﻌﺩﻱ ]‪ ac ≡ 1[11‬ﻭ ﻤﻨﻪ ﺍﻝﺒﺎﻗﻲ ﻫﻭ‪.1‬‬ ‫]‪a ≡ 2 [11‬‬ ‫‪‬‬ ‫ﻝﺩﻴﻨﺎ‪ b ≡ 1 :‬ﻭ ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻝﺠﻤﻊ ﻨﺠﺩ ]‪ a + b + c ≡ 9[11‬ﻭ ﺍﻝﺒﺎﻗﻲ ﻫﻭ ‪. 9‬‬ ‫‪‬‬ ‫]‪ c ≡ 6 [11‬‬ ‫‪‬‬ ‫ﻝﺩﻴﻨﺎ‪ a ≡ 2 :‬ﻭ ﺒﺘﻁﺒﻴﻕ ﺍﻝﺨﺎﺼﻴﺔ ‪ 6‬ﻨﺠﺩ ]‪ a ≡ 2 [11‬ﺃﻱ ]‪ a ≡ 4[11‬ﻭ ﺍﻝﺒﺎﻗﻲ ﻫﻭ ‪. 4‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫]‪a ≡ 2[11‬‬ ‫‪‬‬ ‫]‪ b ≡ 1[11‬ﻭ ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻝﻀﺭﺏ ﻨﺠﺩ ]‪ a ×b × c ≡ 1× 2× 6[11‬ﺃﻱ ]‪a ×b × c ≡ 12 [11‬‬ ‫‪‬‬ ‫]‪ c ≡ 6[11‬‬ ‫‪‬‬ ‫ﻭ ]‪ 12 ≡ 1[11‬ﻭ ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻝﺘﻌﺩﻱ ﻨﺠﺩ ]‪ a ×b × c ≡ 1[11‬ﻭ ﺍﻝﺒﺎﻗﻲ ﻫﻭ ‪.1‬‬ ‫ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل‪ a :2‬ﻭ ‪ b‬ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ﺤﻴﺙ ]‪ a ≡ 3 [5‬ﻭ ]‪. b ≡ 4 [5‬‬ ‫‪.1‬ﺒﻴﻥ ﺃﻥ ﺍﻝﻌﺩﺩ ‪ 2a + b‬ﻴﻘﺒل ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ ‪. 5‬‬ ‫‪.2‬ﻋﻴﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ ‪ 2a 2 + b 2‬ﻋﻠﻰ ‪. 5‬‬ ‫‪.3‬ﺘﺤﻘﻕ ﺃﻥ ]‪. b ≡ −1 [5‬ﺍﺴﺘﻨﺘﺞ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ b 2007‬ﻭ ‪ b 1428‬ﻋﻠﻰ ‪. 5‬‬ ‫ﺤل‪:‬‬ ‫]‪2a ≡ 1 [5‬‬ ‫]‪2a ≡ 6 [5‬‬ ‫]‪a ≡ 3 [5‬‬ ‫‪ ‬ﻷﻥ ]‪. 6 ≡ 1 [5‬ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻝﺠﻤﻊ ﻨﺤﺼل‬ ‫‪ ‬ﺃﻱ‬ ‫‪ ‬ﻭ ﻤﻨﻪ‬ ‫‪.1‬ﻝﺩﻴﻨﺎ‬ ‫]‪ b ≡ 4 [5‬‬ ‫]‪ b ≡ 4 [5‬‬ ‫]‪b ≡ 4 [5‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﻋﻠﻰ‪ 2a + b ≡ 5 :‬ﻭ ﺒﻤﺎ ﺃﻥ ]‪ 5 ≡ 0 [5‬ﻓﺈﻥ ]‪. 2a + b ≡ 0 [5‬ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 2a + b‬ﻋﻠﻰ ‪ 5‬ﻫﻭ ‪. 0‬ﻨﺴﺘﻨﺘﺞ ﻫﻜﺫﺍ‬ ‫ﺃﻥ ﺍﻝﻌﺩﺩ ‪ 2a + b‬ﻴﻘﺒل ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ ‪. 5‬‬ ‫]‪2a 2 ≡ 3 [5‬‬ ‫]‪ 2a 2 ≡ 2×9 [5‬‬ ‫]‪a ≡ 3 [5‬‬ ‫‪  2‬ﻷﻥ ]‪ 18 ≡ 3 [5‬ﻭ ]‪. 16 ≡ 1 [5‬‬ ‫‪  2‬ﺃﻱ‬ ‫‪ ‬ﻭ ﻤﻨﻪ‬ ‫‪.2‬ﻝﺩﻴﻨﺎ‬ ‫‪b ≡ 1‬‬ ‫[‬ ‫‪5‬‬ ‫]‬ ‫‪b ≡ 16‬‬ ‫[‬ ‫‪5‬‬ ‫]‬ ‫]‪b ≡ 4 [5‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻝﺠﻤﻊ ﻨﺤﺼل ﻋﻠﻰ‪. 2a + b ≡ 4 :‬ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ ‪ 2a + b‬ﻋﻠﻰ ‪ 5‬ﻫﻭ ﺇﺫﻥ ‪. 4‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪.3‬ﻤﻥ ﺍﻝﻭﺍﻀﺢ ﺃﻥ ]‪ 4 ≡ −1 [5‬ﻭ ﻤﻨﻪ ﺒﺎﺴﺘﻌﻤﺎل ﺨﺎﺼﻴﺔ ﺍﻝﺘﻌﺩﻱ ﻨﺤﺼل ﻋﻠﻰ ]‪. b ≡ −1 [5‬‬ ‫)‪ b 2007 ≡ ( −1‬ﻭ ]‪ b 1428 ≡ 11428 [5‬ﺃﻱ ]‪ b 2007 ≡ −1[5‬ﻭ ]‪. b 1428 ≡ 1[5‬‬ ‫ﺒﺘﻁﺒﻴﻕ ﺍﻝﺨﺎﺼﻴﺔ‪ 6‬ﻨﺤﺼل ﻋﻠﻰ ]‪[5‬‬ ‫‪2007‬‬ ‫ﻫﻭ ‪ 4‬ﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ b 1428‬ﻋﻠﻰ ‪ 5‬ﻫﻭ ‪. 1‬‬ ‫ﻭ ﺒﻤﺎ ﺃﻥ ]‪ −1 ≡ 4 [5‬ﻓﺈﻥ ]‪. b 2007 ≡ 4 [5‬ﻨﺴﺘﻨﺘﺞ ﺃﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ b 2007‬ﻋﻠﻰ ‪5‬‬ ‫‪15‬‬ ‫↵ ﺍﻻﺴﺘﺩﻻل ﺒﺎﻝﺘﺭﺍﺠﻊ‬ ‫‪.1‬ﻤﺒﺩﺃ ﺍﻻﺴﺘﺩﻻل ﺒﺎﻝﺘﺭﺍﺠﻊ‬ ‫ﻤﺴﻠﻤﺔ‪ P ( n) :‬ﺨﺎﺼﻴﺔ ﻤﺘﻌﻠﻘﺔ ﺒﻌﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﻭ ‪ n0‬ﻋﺩﺩ ﻁﺒﻴﻌﻲ‪.‬‬ ‫ﻝﻠﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺼﺤﺔ ﺍﻝﺨﺎﺼﻴﺔ )‪ P ( n‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﻴﺴﺎﻭﻱ ‪ n0‬ﻴﻜﻔﻲ ﺃﻥ‪:‬‬ ‫‪.1‬ﻨﺘﺄﻜﺩ ﻤﻥ ﺼﺤﺔ ﺍﻝﺨﺎﺼﻴﺔ ﻤﻥ ﺃﺠل ‪ n0‬ﺃﻱ ) ‪. P ( n0‬‬ ‫‪.2‬ﻨﻔﺭﺽ ﺃﻥ ﺍﻝﺨﺎﺼﻴﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻜﻴﻔﻲ ‪ n‬ﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﻴﺴﺎﻭﻱ ‪ n0‬ﺃﻱ ) ‪P (n‬‬ ‫) ﻓﺭﻀﻴﺔ ﺍﻝﺘﺭﺍﺠﻊ( ﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ﺍﻝﺨﺎﺼﻴﺔ ﻤﻥ ﺃﺠل ‪ n + 1‬ﺃﻱ )‪. P (n + 1‬‬ ‫ﻓﺈﻥ‬ ‫ﺍﻝﺨﻼﺼﺔ‪:‬‬ ‫)‪P (n + 1‬‬ ‫ﺇﺫﺍ ﻜﺎﻨﺕ )‪P ( n‬‬ ‫) ‪P ( n0‬‬ ‫ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ‬ ‫ﺼﺤﻴﺤﺔ‬ ‫ﺼﺤﻴﺤﺔ‬ ‫ﺼﺤﻴﺤﺔ‬ ‫‪ n‬ﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﻴﺴﺎﻭﻱ ‪n0‬‬ ‫)‪ P ( n‬ﺼﺤﻴﺤﺔ‪.‬‬ ‫ﺍﻝﻤﺭﺤﻠﺔ ‪2‬‬ ‫ﺍﻝﻤﺭﺤﻠﺔ ‪1‬‬ ‫ﻤﻼﺤﻅﺔ‪ :‬ﺒﺼﻔﺔ ﻋﺎﻤﺔ ﺍﻝﻤﺭﺤﻠﺔ ﺍﻷﻭﻝﻰ ﺘﺘﻤﺜل ﻓﻲ ﻋﻤﻠﻴﺔ ﺘﺤﻘﻕ ﺒﺴﻴﻁﺔ ﻻ ﺘﻁﺭﺡ ﺃﻱ ﻤﺸﻜل ﺇﻻ ﺃﻨﻬﺎ ﺘﺒﻘﻰ ﻀﺭﻭﺭﻴﺔ ﻷﻨﻪ‬ ‫ﻴﻤﻜﻥ ﻝﺨﺎﺼﻴﺔ ﺃﻥ ﺘﻜﻭﻥ ﻭﺭﺍﺜﻴﺔ ﻭ ﻝﻜﻥ ﺨﺎﻁﺌﺔ‪.‬‬ ‫ﻤﺜﺎل‪ :‬ﺍﻝﺨﺎﺼﻴﺔ‪ ":‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ 3n ، n‬ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ‪ " 5‬ﺨﺎﻁﺌﺔ ﺭﻏﻡ ﺃﻨﻬﺎ ﻭﺭﺍﺜﻴﺔ‪.‬ﺒﺎﻝﻔﻌل‪:‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ ‪ 3n‬ﻤﻀﺎﻋﻔﺎ ﻝﻠﻌﺩﺩ‪ 5‬ﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ ‪ k‬ﺒﺤﻴﺙ ‪. 3n = 5k‬‬ ‫ﻝﺩﻴﻨﺎ ﺇﺫﻥ ) ‪ 3n +1 = 3 × 3n = 3 ( 5k ) = 5 ( 3K‬ﻭ ﻤﻨﻪ ‪ 3n +1‬ﻫﻭ ﺍﻵﺨﺭ ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ‪.5‬‬ ‫‪.2‬ﻤﺜﺎل‬ ‫)‪n ( n + 1‬‬ ‫= ‪" 1 + 2 + 3 +... + n‬‬ ‫ﻝﻨﺜﺒﺕ ﺼﺤﺔ ﺍﻝﺨﺎﺼﻴﺔ ﺍﻝﺘﺎﻝﻴﺔ‪ " :‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﻏﻴﺭ ﻤﻌﺩﻭﻡ‪،‬‬ ‫‪2‬‬ ‫‪1× 2‬‬ ‫= ‪ 1‬ﻭ ﻤﻨﻪ ﺍﻝﺨﺎﺼﻴﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ‪. n = 1‬‬ ‫ﺍﻝﻤﺭﺤﻠﺔ ﺍﻷﻭﻝﻰ‪ :‬ﻤﻥ ﺃﺠل ‪ n = 1‬ﻝﺩﻴﻨﺎ‪:‬‬ ‫‪2‬‬ ‫ﺍﻝﻤﺭﺤﻠﺔ ﺍﻝﺜﺎﻨﻴﺔ ) ﺍﻝﻭﺭﺍﺜﺔ (‪:‬‬ ‫)‪n ( n + 1‬‬ ‫= ‪. 1 + 2 + 3 +... + n‬‬ ‫ ﻨﻔﺭﺽ ﺼﺤﺔ ﺍﻝﺨﺎﺼﻴﺔ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﺤﻴﺙ ‪ n ≥ 1‬ﺃﻱ‪:‬‬ ‫‪2‬‬ ‫= )‪. 1 + 2 + 3 +... + n + ( n + 1‬‬ ‫ ﻝﻨﺒﺭﻫﻥ ﺼﺤﺔ ﺍﻝﺨﺎﺼﻴﺔ ﻤﻥ ﺃﺠل ‪ n + 1‬ﺃﻱ‪( n + 1)( n + 2 ) :‬‬ ‫‪2‬‬ ‫)‪n ( n + 1‬‬ ‫= )‪1 + 2 + 3 +... + n + ( n + 1) = (1 + 2 + 3 +... + n ) + ( n + 1‬‬ ‫ﻝﺩﻴﻨﺎ‪+ ( n + 1) :‬‬ ‫‪2‬‬ ‫) ‪n ( n + 1) + 2 ( n + 1) ( n + 1)( n + 2‬‬ ‫= )‪. 1 + 2 + 3 +... + n + ( n + 1‬‬ ‫=‬ ‫ﻭ ﻤﻨﻪ‬ ‫‪2‬‬ ‫‪2‬‬ ‫)‪n ( n + 1‬‬ ‫= ‪" 1 + 2 + 3 +... + n‬‬ ‫ﺍﻝﺨﻼﺼﺔ‪ " :‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﻏﻴﺭ ﻤﻌﺩﻭﻡ‪،‬‬ ‫‪2‬‬ ‫‪16‬‬ ‫ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل‪:1‬ﺃﺜﺒﺕ‪ ،‬ﺒﺎﺴﺘﻌﻤﺎل ﺍﻻﺴﺘﺩﻻل ﺒﺎﻝﺘﺭﺍﺠﻊ‪ ،‬ﺃﻨﻪ‪:‬‬ ‫ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ ، n‬ﺍﻝﻌﺩﺩ ‪ n3 − n‬ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ ‪. 3‬‬ ‫ﺤل‪:‬‬ ‫ﺍﻝﺨﺎﺼﻴﺔ " ‪ n3 − n‬ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ ‪ " 3‬ﻤﺘﻌﻠﻘﺔ ﺒﺎﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ ‪. n‬ﻨﺴﺘﻌﻤل ﺍﻻﺴﺘﺩﻻل ﺒﺎﻝﺘﺭﺍﺠﻊ‪.‬‬ ‫ﺍﻝﻤﺭﺤﻠﺔ ‪ :1‬ﻤﻥ ﺃﺠل ‪ 03 − 0 = 0 = 3× 0 ، n = 0‬ﻭ ﻤﻨﻪ ‪ 03 − 0‬ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ ‪.3‬‬ ‫ﻨﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻝﺨﺎﺼﻴﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ‪. n = 0‬‬ ‫ﺍﻝﻤﺭﺤﻠﺔ ‪ :2‬ﻨﻔﺭﺽ ﺃﻥ ﺍﻝﺨﺎﺼﻴﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﺤﻴﺙ ‪n ≥ 0‬‬ ‫ﺃﻱ‪ n3 − n :‬ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ ‪.3‬‬ ‫ﻨﻀﻊ ‪ n3 − n = 3k‬ﺤﻴﺙ ‪ k‬ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪.‬ﻭ ﻤﻨﻪ ‪n3 = 3k + n‬‬ ‫ﻭ ﻨﺒﺭﻫﻥ ﺃﻥ ﺍﻝﺨﺎﺼﻴﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ‪ n + 1‬ﺃﻱ ‪ (n + 1) − ( n + 1)‬ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ ‪.3‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪(n + 1) −(n +1) = n3 + 3n 2 + 3n +1− n −1 = (3k + n) + 3n 2 + 2n‬‬ ‫‪3‬‬ ‫)‪(n + 1) −(n +1) = 3k + 3n2 + 3n = 3(k + n2 + n‬‬ ‫ﻭ ﻭ ﺒﻤﺎ ﺃﻥ )‪ 3( k + n 2 + n‬ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ ‪ 3‬ﻨﺴﺘﻨﺘﺞ ﺃﻥ )‪ (n + 1) − ( n + 1‬ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ ‪. 3‬‬ ‫‪3‬‬ ‫ﺍﻝﺨﻼﺼﺔ‪ :‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n3 − n ، n‬ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ ‪. 3‬‬ ‫ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل‪ :2‬ﻨﺭﻤﺯ ﺒﹻ )‪ P (n‬ﺇﻝﻰ ﺍﻝﺨﺎﺼﻴﺔ ﺍﻝﺘﺎﻝﻴﺔ‪ " :‬ﺍﻝﻌﺩﺩ ‪ 3‬ﻴﻘﺴﻡ ﺍﻝﻌﺩﺩ ‪ 4n + 1‬ﺤﻴﺙ ‪ n‬ﻋﺩﺩ ﻁﺒﻴﻌﻲ"‪.‬‬ ‫‪.1‬ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ ، n‬ﺇﺫﺍ ﻜﺎﻨﺕ )‪ P ( n‬ﺼﺤﻴﺤﺔ ﺘﻜﻭﻥ )‪ P ( n + 1‬ﺼﺤﻴﺤﺔ‪.‬‬ ‫‪.2‬ﻫل ﻴﻤﻜﻨﻨﺎ ﺍﺴﺘﻨﺘﺎﺝ ﺃﻥ ﺍﻝﺨﺎﺼﻴﺔ )‪ P ( n‬ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬؟ ﺍﺸﺭﺡ‪.‬‬ ‫ﺤل‪:‬‬ ‫‪.1‬ﻨﻔﺭﺽ ﺃﻥ )‪ P (n‬ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻜﻴﻔﻲ ‪ n‬ﺃﻱ ﺃﻥ ﺍﻝﻌﺩﺩ ‪ 3‬ﻴﻘﺴﻡ ﺍﻝﻌﺩﺩ ‪ 4n + 1‬ﻭ ﻴﻤﻜﻨﻨﺎ ﺃﻥ ﻨﻌﺒﺭ ﻋﻥ‬ ‫ﺫﻝﻙ ﺒﻭﻀﻊ ‪ 4n + 1 = 3k‬ﺤﻴﺙ ‪ k‬ﻋﺩﺩ ﺼﺤﻴﺢ‪.‬‬ ‫ﻝﻨﺒﺭﻫﻥ ﺃﻥ )‪ P ( n +1‬ﺼﺤﻴﺤﺔ ﺃﻱ ﺃﻥ ﺍﻝﻌﺩﺩ ‪ 3‬ﻴﻘﺴﻡ ﺍﻝﻌﺩﺩ ‪. 4n +1 + 1‬‬ ‫ﻝﺩﻴﻨﺎ ‪ 4n +1 + 1 = 4 × 4n + 1‬ﻭ ﺒﻤﺎ ﺃﻥ ‪ ) 4n = 3k − 1‬ﻤﻥ ﺍﻝﻔﺭﻀﻴﺔ ﺍﻝﺴﺎﺒﻘﺔ ( ﻨﺴﺘﻨﺘﺞ ﺃﻥ‪:‬‬ ‫‪4n +1 + 1 = 4 ( 3k − 1) + 1‬‬ ‫ﻝﺩﻴﻨﺎ ﺇﺫﻥ ‪ 4n +1 + 1 = 4 × 3k − 4 + 1 = 3 ( 4k ) − 3‬ﻭ ﻤﻨﻪ )‪. 4n +1 + 1 = 3 ( 4k − 1‬‬ ‫ﻝﺩﻴﻨﺎ ﺇﺫﻥ ‪ 4n +1 + 1 = 3k ′‬ﻤﻊ ‪ k ′ = 4k − 1‬ﻭ ﻫﻭ ﻋﺩﺩ ﺼﺤﻴﺢ‪.‬ﻨﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻝﻌﺩﺩ ‪ 3‬ﻴﻘﺴﻡ ﺍﻝﻌﺩﺩ ‪. 4n +1 + 1‬‬ ‫ﻭ ﻤﻨﻪ ﻓﺎﻝﺨﺎﺼﻴﺔ )‪ P (n + 1‬ﺼﺤﻴﺤﺔ‪.‬‬ ‫‪.2‬ﻻ ﻴﻤﻜﻨﻨﺎ ﺍﺴﺘﻨﺘﺎﺝ ﺃﻥ ﺍﻝﺨﺎﺼﻴﺔ )‪ P (n‬ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﻓﻼﺒﺩ ﻤﻥ ﺍﻝﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺘﻬﺎ ﻤﻥ‬ ‫ﺃﺠل ‪ n = 0‬ﻷﻥ ﻭﺭﺍﺜﻴﺔ ﺍﻝﺨﺎﺼﻴﺔ ﺘﺒﻘﻰ ﻏﻴﺭ ﻜﺎﻓﻴﺔ‪.‬‬ ‫ﻨﻼﺤﻅ ﺃﻥ ﺍﻝﺨﺎﺼﻴﺔ ﻏﻴﺭ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ‪ n = 0‬ﻷﻥ ﺍﻝﻌﺩﺩ ‪ 3‬ﻻ ﻴﻘﺴﻡ ﺍﻝﻌﺩﺩ ‪ 2‬ﻭ ﺒﺎﻝﺘﺎﻝﻲ ﻓﻬﻲ ﻏﻴﺭ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل‬ ‫ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪. n‬‬ ‫‪17‬‬ ‫ﺍﻝﺘﺸﻔﻴﺭ ﺍﻝﺘﺂﻝﻔﻲ‬ ‫ﻴﺴﺘﻌﻤل ﺍﻝﺘﺸﻔﻴﺭ ﻹﺨﻔﺎﺀ ﺍﻝﻤﻌﻠﻭﻤﺎﺕ ﻭ ﺍﻝﻤﺭﺍﺴﻼﺕ ﻭ ﻗﺩ ﺸﺎﻉ ﻓﻲ ﺃﻴﺎﻤﻨﺎ ﺍﺴﺘﻌﻤﺎل ﻫﺫﺍ ﺍﻝﻤﺼﻁﻠﺢ‪.‬‬ ‫ﺘﺘﻠﺨﺹ ﻁﺭﻴﻘﺔ ﺍﻝﺘﺸﻔﻴﺭ ﺍﻝﺘﺂﻝﻔﻲ ﻓﻲ ﺇﺭﻓﺎﻕ ﻜل ﺤﺭﻑ ﺃﺒﺠﺩﻱ ﻤﺭﻗﻡ ﺒﻌﺩﺩ ‪ ) x‬ﺤﻴﺙ ‪ 0 ≤ x ≤ 27‬ﻓﻲ ﺤﺎﻝﺔ ﺍﻷﺒﺠﺩﻴﺔ ﺍﻝﻌﺭﺒﻴﺔ (‬ ‫ﺒﺎﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ ‪ y‬ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ a x + b‬ﻋﻠﻰ ‪ 28‬ﺃﻱ ﺍﻝﻤﻌﺭﻑ ﺒﹻ ]‪ y ≡ ax + b [ 28‬ﺤﻴﺙ ‪ ( a ≠ 0 ) a‬ﻭ ‪ b‬ﻋﺩﺩﺍﻥ‬ ‫ﻁﺒﻴﻌﻴﺎﻥ ﻤﻌﻠﻭﻤﺎﻥ ﻓﻘﻁ ﻤﻥ ﻁﺭﻑ ﺍﻝﻤﺭﺴل ﻭ ﺍﻝﻤﺴﺘﻘﺒل‪.‬ﺘﺴﻤﻰ ﺍﻝﺜﻨﺎﺌﻴﺔ ) ‪ ( a ;b‬ﻤﻔﺘﺎﺡ ﺍﻝﺸﻔﺭﺓ‪.‬‬ ‫‪.1‬ﻤﺜﺎل‪ :‬ﻤﻥ ﺃﺠل ‪ a = 3‬ﻭ ‪ b = 7‬ﻨﺤﺼل ﻋﻠﻰ ﺍﻝﺠﺩﻭل ﺍﻝﺘﺎﻝﻲ‪:‬‬ ‫ﻥ‬ ‫ﻡ‬ ‫ل‬ ‫ﻙ‬ ‫ﻱ‬ ‫ﻁ‬ ‫ﺡ‬ ‫ﺯ‬ ‫ﻭ‬ ‫ﻫـ‬ ‫ﺩ‬ ‫ﺝ‬ ‫ﺏ‬ ‫ﺃ‬ ‫ﺍﻝﺤﺭﻑ‬ ‫‪13‬‬ ‫‪12‬‬ ‫‪11‬‬ ‫‪10‬‬ ‫‪9‬‬ ‫‪8‬‬ ‫‪7‬‬ ‫‪6‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪x‬‬ ‫‪18‬‬ ‫‪15‬‬ ‫‪12‬‬ ‫‪9‬‬ ‫‪6‬‬ ‫‪3‬‬ ‫‪0‬‬ ‫‪25‬‬ ‫‪22‬‬ ‫‪19‬‬ ‫‪16‬‬ ‫‪13‬‬ ‫‪10‬‬ ‫‪7‬‬ ‫‪y‬‬ ‫ﻕ‬ ‫ﻉ‬ ‫ﻡ‬ ‫ﻱ‬ ‫ﺯ‬ ‫ﺩ‬ ‫ﺃ‬ ‫ﺽ‬ ‫ﺙ‬ ‫ﺭ‬ ‫ﻑ‬ ‫ﻥ‬ ‫ﻙ‬ ‫ﺡ‬ ‫ﺍﻝﺘﺸﻔﻴﺭ‬ ‫ﻍ‬ ‫ﻅ‬ ‫ﺽ‬ ‫ﺫ‬ ‫ﺥ‬ ‫ﺙ‬ ‫ﺕ‬ ‫ﺵ‬ ‫ﺭ‬ ‫ﻕ‬ ‫ﺹ‬ ‫ﻑ‬ ‫ﻉ‬ ‫ﺱ‬ ‫ﺍﻝﺤﺭﻑ‬ ‫‪27‬‬ ‫‪26‬‬ ‫‪25‬‬ ‫‪24‬‬ ‫‪23‬‬ ‫‪22‬‬ ‫‪21‬‬ ‫‪20‬‬ ‫‪19‬‬ ‫‪18‬‬ ‫‪17‬‬ ‫‪16‬‬ ‫‪15‬‬ ‫‪14‬‬ ‫‪x‬‬ ‫‪4‬‬ ‫‪1‬‬ ‫‪26‬‬ ‫‪23‬‬ ‫‪20‬‬ ‫‪17‬‬ ‫‪14‬‬ ‫‪11‬‬ ‫‪8‬‬ ‫‪5‬‬ ‫‪2‬‬ ‫‪27‬‬ ‫‪24‬‬ ‫‪21‬‬ ‫‪y‬‬ ‫ﻫـ‬ ‫ﺏ‬ ‫ﻅ‬ ‫ﺥ‬ ‫ﺵ‬ ‫ﺹ‬ ‫ﺱ‬ ‫ل‬ ‫ﻁ‬ ‫ﻭ‬ ‫ﺝ‬ ‫ﻍ‬ ‫ﺫ‬ ‫ﺕ‬ ‫ﺍﻝﺘﺸﻔﻴﺭ‬ ‫ﻤﺎ ﻫﻲ ﺍﻝﻜﻠﻤﺔ ﺍﻝﺘﻲ ﺘﺸﻔﻴﺭﻫﺎ " ﻙ ﺡ ﻱ " ‪ " ،‬ﺡ ﻡ ﻥ ﺽ ﺡ ﺯ ﻁ "‬ ‫ ‬ ‫ﻋﻴﻥ ﺘﺸﻔﻴﺭﺍ ﻝﻠﻌﺒﺎﺭﺓ " ﺨﻤﺴﺔ ﺠﻭﻴﻠﻴﺔ ﻋﻴﺩ ﺍﻻﺴﺘﻘﻼل "‬ ‫ ‬ ‫‪.2‬ﺘﻁﺒﻴﻕ‪:‬‬ ‫ﺍﺴﺘﻌﻤل ﺍﻝﻤﻔﺘﺎﺡ ) ‪ ( 3;5‬ﻹﻨﺸﺎﺀ ﺠﺩﻭل ﻤﻤﺎﺜل ﻝﻠﺴﺎﺒﻕ‪.‬‬ ‫ ‬ ‫ﺍﺴﺘﻌﻤل ﺍﻝﻤﻔﺘﺎﺡ ) ‪ ( 3;5‬ﻝﻔﻙ ﺍﻝﺘﺸﻔﻴﺭ ﻭ ﻗﺭﺍﺀﺓ ﺍﻝﺭﺴﺎﻝﺔ ﺍﻝﺘﺎﻝﻴﺔ‪ ":‬ﻭﺵ ﻙ ﻑ ﺵ ﺽ ﻥ ﻁ ﺯ ﺙ ﻩ ﺱ ﻭ ﻙ ﻉ ﺵ ﺯ "‬ ‫ ‬ ‫ﻗﻡ ﺒﺘﺸﻔﻴﺭ ﺤﻜﻤﺔ ﻤﻥ ﺍﻝﺤﻜﻡ ﺍﻝﺸﻬﻴﺭﺓ ﻭ ﺍﻁﻠﺏ ﻤﻥ ﺯﻤﻴﻠﻙ ﻓﻜﻬﺎ ﻭ ﻗﺭﺍﺀﺘﻬﺎ‪.‬‬ ‫ ‬ ‫‪.3‬ﻤﻼﺤﻅ ﻫﺎﻤﺔ‬ ‫ﻨﺄﺨﺫ ﺍﻵﻥ ‪ a = 7‬ﻭ ‪b = 3‬‬ ‫‪. 7 × 9 + 3 ≡ 7 ×1 + 3‬‬ ‫]‪[ 28‬‬ ‫ﺘﺤﻘﻕ ﻤﺜﻼ ﺃﻥ‬ ‫ ‬ ‫ﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ﺒﺎﻝﻨﺴﺒﺔ ﻝﻠﺤﺭﻓﻴﻥ ﺏ ﻭ ﻱ ﻤﻥ ﺍﻝﺤﺭﻭﻑ ﺍﻷﺒﺠﺩﻴﺔ ؟‬ ‫ ‬ ‫ﻋﻴﻥ ﻤﻥ ﺒﻴﻥ ﺍﻝﺤﺭﻭﻑ ﺍﻷﺒﺠﺩﻴﺔ‪ ،‬ﺤﺭﻓﻴﻥ ﺃﻭ ﺃﻜﺜﺭ ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺘﺸﻔﻴﺭ‪.‬‬ ‫ ‬ ‫ﻋﻴﻥ ﻜل ﺍﻝﺤﺭﻭﻑ ﺍﻷﺒﺠﺩﻴﺔ ﺍﻝﺘﻲ ﺘﺸﻔﻴﺭﻫﺎ ‪. 3‬‬ ‫ ‬ ‫ﻨﻼﺤﻅ ﺃﻨﻪ ﻓﻲ ﻫﺫﻩ ﺍﻝﺤﺎﻝﺔ ﻤﺜﻼ ﺘﻭﺠﺩ ﺤﺭﻭﻑ ﻴﺘﻡ ﺘﺸﻔﻴﺭﻫﺎ ﺒﻨﻔﺱ ﺍﻝﺤﺭﻑ ﻤﻤﺎ ﻴﺴﺒﺏ ﺼﻌﻭﺒﺎﺕ ﺒﺎﻝﻨﺴﺒﺔ ﻝﻜل ﻤﻥ ﺍﻝﻤﺭﺴل‬ ‫ﻭ ﺍﻝﻤﺴﺘﻘﺒل‪.‬‬ ‫ﻋﻴﻥ ) ‪. PGCD ( a ; 28‬ﻫل ﺍﻝﻌﺩﺩﺍﻥ ‪ a‬ﻭ ‪ 28‬ﺃﻭﻝﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ ؟‬ ‫ ‬ ‫ﻓﻲ ﺍﻝﺤﺎﻝﺔ ﺍﻝﻌﺎﻤﺔ ﻭ ﺘﺠﻨﺒﺎ ﻝﻠﻭﻗﻭﻉ ﻓﻲ ﺤﺎﻝﺔ ﻤﻤﺎﺜﻠﺔ ﻝﻠﺴﺎﺒﻘﺔ ﻨﺨﺘﺎﺭ ﺍﻝﻌﺩﺩ ‪ a‬ﺃﻭﻝﻴﺎ ﻤﻊ ﺍﻝﻌﺩﺩ ‪ 28‬ﻓﻲ ﺤﺎﻝﺔ ﺍﻝﺤﺭﻭﻑ ﺍﻷﺒﺠﺩﻴﺔ‪.‬‬ ‫‪18‬‬ ‫ﻴﻭﻡ ﺍﻷﺴﺒﻭﻉ ﺍﻝﺫﻱ ﻴﺼﺎﺩﻑ ﺘﺎﺭﻴﺨﺎ ﻤﻌﻴﻨﺎ‬ ‫ﺼﺎﺩﻑ ﺃﻭل ﺠﺎﻨﻔﻲ ‪ 2007‬ﻴﻭﻡ ﺍﻻﺜﻨﻴﻥ ‪.‬ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﻫﺫﺍ ﻴﻤﻜﻥ ﺘﺤﺩﻴﺩ ﻴﻭﻡ ﺍﻷﺴﺒﻭﻉ ﺍﻝﺫﻱ ﻴﺼﺎﺩﻑ ﺃﻱ ﻴﻭﻡ ﻤﻥ‬ ‫ﺍﻝﺴﻨﻭﺍﺕ ﺍﻝﺴﺎﺒﻘﺔ ﺃﻭ ﺍﻝﻘﺎﺩﻤﺔ‪.‬‬ ‫‪ (1‬ﻨﺭﻴﺩ ﻤﻌﺭﻓﺔ ﺍﻝﻴﻭﻡ ﻨﺭﻴﺩ ﺍﻝﺫﻱ ﺼﺎﺩﻑ ﺨﻤﺴﺔ ﺠﻭﻴﻠﻴﺔ ‪.1962‬‬ ‫ـ ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺍﻷﻴﺎﻡ ‪ n‬ﺍﻝﺘﻲ ﺘﻔﺼل ﺒﻴﻥ ﺃﻭل ﺠﺎﻨﻔﻲ ‪ 2007‬ﻭ ﺨﻤﺴﺔ ﺠﻭﻴﻠﻴﺔ ‪ ) 1962‬ﻻ ﻴﺤﺴﺏ ﺇﻻ‬ ‫ﺃﺤﺩ ﺍﻝﺘﺎﺭﻴﺨﻴﻥ ﻓﻲ ﺍﻝﻤﺠﻤﻭﻉ ﻜﻤﺎ ﺘﺄﺨﺫ ﺍﻝﺴﻨﺔ ﺍﻝﻜﺎﺒﺴﺔ ﺍﻝﺘﻲ ﻋﺩﺩ ﺃﻴﺎﻤﻬﺎ ‪. ( 366‬‬ ‫ـ ﺒﻘﺴﻤﺔ ﺍﻝﻌﺩﺩ ﺍﻝﻤﻭﺠﻭﺩ ﺴﺎﺒﻘﺎ ﻋﻠﻰ ‪ ، 7‬ﺃﻭﺠﺩ ﻋﺩﺩ ﺍﻷﺴﺎﺒﻴﻊ ‪ q‬ﺍﻝﺘﻲ ﻤﺭﺕ ﺒﻴﻥ ﺍﻝﺘﺎﺭﻴﺨﻴﻥ‪.‬‬ ‫ـ ﻋﻴﻥ ﺍﻝﻌﺩﺩ ‪ r‬ﻝﻸﻴﺎﻡ ﺍﻝﻤﺘﺒﻘﻴﺔ ﺒﻌﺩ ﻤﺭﻭﺭ ﻫﺫﻩ ﺍﻷﺴﺎﺒﻴﻊ ﺒﻴﻥ ﺍﻝﺘﺎﺭﻴﺨﻴﻥ‪.‬ﺃﻜﺘﺏ ‪ n‬ﺒﺩﻻﻝﺔ ‪ q‬ﻭ ‪. r‬‬ ‫ـ ﺍﺴﺘﻨﺘﺞ ﻴﻭﻡ ﺍﻷﺴﺒﻭﻉ ﺍﻝﺫﻱ ﺼﺎﺩﻑ ﺨﻤﺴﺔ ﺠﻭﻴﻠﻴﺔ‪.1962‬‬ ‫‪ (2‬ﺒﻨﻔﺱ ﺍﻝﻁﺭﻴﻘﺔ ﻋﻴﻥ ﻴﻭﻡ ﺍﻷﺴﺒﻭﻉ ﺍﻝﺫﻱ ﻴﺼﺎﺩﻑ ﺃﻭل ﻨﻭﻓﻤﺒﺭ ﻤﻥ ﺍﻝﺴﻨﺔ ﺍﻝﻘﺎﺩﻤﺔ‪.‬‬ ‫‪ (3‬ﻤﺎ ﻫﻭ ﻴﻭﻡ ﺍﻷﺴﺒﻭﻉ ﺍﻝﺫﻱ ﻴﺼﺎﺩﻑ ﺍﻻﺤﺘﻔﺎل ﺒﻤﺭﻭﺭ ﻗﺭﻥ ﻋﻥ ﺘﺎﺭﻴﺦ ﺍﻻﺴﺘﻘﻼل ؟‬ ‫‪ (4‬ﻋﻴﻥ ﻴﻭﻡ ﺍﻷﺴﺒﻭﻉ ﺍﻝﺫﻱ ﺼﺎﺩﻑ ﺃﻭل ﻨﻭﻓﻤﺒﺭ‪ 1954‬؟‬ ‫‪ # (5‬ه" ا "م ا ‪/‬ي ‪-‬دف ر* ‪)#‬دك ؟‬ ‫ﺘﻌﻴﻴﻥ ﺒﻭﺍﻗﻲ ﻗﺴﻤﺔ ﻗﻭﻯ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻋﻠﻰ ﺁﺨﺭ‬ ‫ﻨﻬﺩﻑ ﺇﻝﻰ ﺘﻌﻴﻴﻥ‪ ،‬ﺤﺴﺏ ﻗﻴﻡ ﺍﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ ‪ ، n‬ﺒﻭﺍﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ ‪ 2n‬ﻋﻠﻰ ‪. 5‬‬ ‫‪.1‬ﻭﻀﻊ ﺘﺨﻤﻴﻥ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻝﻤﺠﺩﻭل‬ ‫ﺃﺤﺠﺯ ﻓﻲ ﺍﻝﻌﻤﻭﺩ ‪ A‬ﺍﻷﻋﺩﺍﺩ ﺍﻝﻁﺒﻴﻌﻴﺔ ﻤﻥ ‪ 0‬ﺇﻝﻰ ‪. 27‬ﻓﻲ ﺍﻝﺨﻠﻴﺔ ‪ B 2‬ﺃﺤﺠﺯ‬ ‫‪ = 2A 2‬ﺜﻡ ﺍﺴﺤﺏ ﺇﻝﻰ ﺍﻷﺴﻔل ﺒﻌﺩ ﺘﺤﺩﻴﺩﻫﺎ‪.‬ﻓﻲ ﺍﻝﺨﻠﻴﺔ ‪ C 2‬ﺃﺤﺠﺯ‬ ‫) ‪ = MOD ( B 2;5‬ﺜﻡ ﺍﺴﺤﺏ ﺇﻝﻰ ﺍﻷﺴﻔل ﺒﻌﺩ ﺘﺤﺩﻴﺩﻫﺎ‪.‬‬ ‫ﻤﺎﺫﺍ ﺘﻼﺤﻅ ؟ ﻀﻊ ﺘﺨﻤﻴﻨﺎ‪.‬‬ ‫‪.2‬ﺇﺜﺒﺎﺕ ﺼﺤﺔ ﺍﻝﺘﺨﻤﻴﻥ‬ ‫]‪. 24 ≡... [5‬‬ ‫و‬ ‫]‪23 ≡... [5‬‬ ‫‪،‬‬ ‫]‪22 ≡... [5‬‬ ‫‪،‬‬ ‫]‪21 ≡... [5‬‬ ‫ﺃﻨﻘل ﺜﻡ ﺃﺘﻤﻡ ﻤﺎ ﻴﻠﻲ‪:‬‬ ‫ ‬ ‫ﺍﺴﺘﻨﺘﺞ ﺒﻭﺍﻗﻲ ﻗﺴﻤﺔ ‪ 2n‬ﻋﻠﻰ ‪ 5‬ﻤﻥ ﺃﺠل ‪. 1 ≤ n ≤ 4‬‬ ‫ ‬ ‫ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ 24 k ≡ 1 ، k‬ﺜﻡ ﺒﺎﺴﺘﻌﻤﺎل ﺨﻭﺍﺹ ﺍﻝﻤﻭﺍﻓﻘﺔ ﺃ ﺃﺘﻤﻡ ) ﺒﻌﺩ ﻨﻘﻠﻬﺎ ( ﻤﺎ ﻴﻠﻲ‪:‬‬ ‫ ‬ ‫]‪. 24 k +3 ≡... [5‬‬ ‫‪،‬‬ ‫]‪24 k + 2 ≡... [5‬‬ ‫‪،‬‬ ‫]‪24 k +1 ≡... [5‬‬ ‫ﻤﺎ ﻫﻭ ﺇﺫﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 2n‬ﻋﻠﻰ ‪ 5‬ﺇﺫﺍ ﻜﺎﻥ ‪ n = 4k + 2 ، n = 4k + 1 ، n = 4k‬ﻭ ‪ n = 4k + 3‬؟‬ ‫ ‬ ‫‪.3‬ﺘﻁﺒﻴﻘﺎﺕ‬ ‫ﻋﻴﻥ ﺒﻭﺍﻗﻲ ﻗﺴﻤﺔ ﻜل ﻤﻥ ‪ 21428‬ﻭ ‪ 22007‬ﻋﻠﻰ ‪. 5‬‬ ‫ ‬ ‫ﻋﻠﻰ ‪. 5‬‬ ‫‪2 × 250 − 3 × 22000 + 283‬‬ ‫ﻋﻴﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ‬ ‫ ‬ ‫ﺘﺤﻘﻕ ﺃﻥ ]‪ 2007 ≡ 2 [5‬ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 2007 2008‬ﻋﻠﻰ ‪. 5‬‬ ‫ ‬ ‫ﺒﻴﻥ ﺃﻥ ﺍﻝﻌﺩﺩ ﻴﻘﺒل ‪ 3 ×122002 − 3 × 2007 2000 + 2 × 422003‬ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ ‪. 5‬‬ ‫ ‬ ‫‪19‬‬ ‫ﻤﻭﻀﻭﻉ ﻤﺤﻠﻭل‬ ‫‪.1‬ﻋﻴﻥ ﻜل ﺍﻷﻋﺩﺍﺩ ﺍﻝﺼﺤﻴﺤﺔ ﻗﻭﺍﺴﻡ ﺍﻝﻌﺩﺩ ‪. 6‬‬ ‫‪ %*.2‬ا? اد ا >‪ n ,*,‬ا ‪ -‬ن ‪ %#‬أ‪ 3 ! ( n − 4 ) @A‬د ‪. 6‬‬ ‫‪.3‬ﻋﻴﻥ ا? اد ا >‪ n ,*,‬ا ‪ -‬ن ‪ %#‬أ‪ 3 ! ( n + 2 ) @A‬د ‪. 6‬‬ ‫‪n +2‬‬ ‫= ‪.a‬‬ ‫‪.4‬ﻨﻌﺘﺒﺭ ﺍﻝﻌﺩﺩ ﺍﻝﻨﺎﻁﻕ ‪ a‬ﺤﻴﺙ‬ ‫‪n −4‬‬ ‫‪6‬‬ ‫‪.a = 1+‬‬ ‫ ﺘﺤﻘﻕ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﺼﺤﻴﺢ ‪ n‬ﻴﺨﺘﻠﻑ ﻋﻥ ‪، 4‬‬ ‫‪n −4‬‬ ‫ ﺍﺴﺘﻨﺘﺞ ﺍﻷﻋﺩﺍﺩ ﺍﻝﺼﺤﻴﺤﺔ ‪ n‬ﺍﻝﺘﻲ ﻴﻜﻭﻥ ﻤﻥ ﺃﺠﻠﻬﺎ ‪ a‬ﻋﺩﺩﺍ ﺼﺤﻴﺤﺎ‪.‬‬ ‫‪n −4‬‬ ‫= ‪.b‬‬ ‫‪.5‬ﻨﻌﺘﺒﺭ ﺍﻝﻌﺩﺩ ﺍﻝﻨﺎﻁﻕ ‪ b‬ﺤﻴﺙ‬ ‫‪n +2‬‬ ‫‪6‬‬ ‫‪.b = 1−‬‬ ‫ ﺘﺤﻘﻕ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﺼﺤﻴﺢ ‪ n‬ﻴﺨﺘﻠﻑ ﻋﻥ ‪، 2‬‬ ‫‪n +2‬‬ ‫ ﺍﺴﺘﻨﺘﺞ ﺍﻷﻋﺩﺍﺩ ﺍﻝﺼﺤﻴﺤﺔ ‪ n‬ﺍﻝﺘﻲ ﻴﻜﻭﻥ ﻤﻥ ﺃﺠﻠﻬﺎ ‪ b‬ﻋﺩﺩﺍ ﺼﺤﻴﺤﺎ‪.‬‬ ‫ﺘﻌﺎﻝﻴﻕ‬ ‫ﺤل ﻤﺨﺘﺼﺭ‬ ‫‪ FG 1 -‬أ‪ %**3G B- HI‬ا!‪ 6 B‬ﻓﻲ ‪. ℤ‬‬ ‫‪ (1‬ﺇﺫﺍ ﺭﻤﺯﻨﺎ ﺇﻝﻰ ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻡ ﺍﻝﻌﺩﺩ ‪ 6‬ﻓﻲ ‪ ℤ‬ﺒﹻ ‪D 6‬‬ ‫ﻓﺈﻥ } ‪D 6 = {−6; − 3; − 2; − 1;1; 2;3;6‬‬ ‫‪ -‬إ  ‪D 6‬‬ ‫‪ 3‬أن ) ‪( n − 4‬‬ ‫‪ 3 B! ( n − 4 ) (2‬د ‪6‬‬ ‫‪. n = n ′ + 4 3‬‬ ‫‪n − 4 = n′ -‬‬ ‫‪n −4‬‬ ‫‪−6‬‬ ‫‪−3‬‬ ‫‪−2‬‬ ‫‪−1‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪6‬‬ ‫‪n‬‬ ‫‪−2‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪5‬‬ ‫‪6‬‬ ‫‪7‬‬ ‫‪10‬‬ ‫‪ -‬إ  ‪D 6‬‬ ‫‪ 3‬أن ) ‪( n + 2‬‬ ‫‪6 3 B! ( n + 2 ) (3‬‬ ‫‪n +2‬‬ ‫‪−6‬‬ ‫‪−3‬‬ ‫‪−2‬‬ ‫‪−1‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪6‬‬ ‫‪. n = n ′ − 2 3‬‬ ‫‪n + 2 = n′ -‬‬ ‫‪n‬‬ ‫‪−8‬‬ ‫‪−5‬‬ ‫‪−4‬‬ ‫‪−3‬‬ ‫‪−1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪4‬‬ ‫‪6‬‬ ‫‪n −4+6 n +2‬‬ ‫‪1+‬‬ ‫=‬ ‫=‬ ‫‪ (4‬ﻝﺩﻴﻨﺎ‪:‬‬ ‫‪KLJ -‬ت أن ‪ % x = y‬أن ‪y %# MNG‬‬ ‫‪n −4‬‬ ‫‪n −4‬‬ ‫‪n −4‬‬ ‫ل إ  ‪. x‬‬ ‫‪6‬‬ ‫‪a = 1+‬‬ ‫ﻭ ﻤﻨﻪ‬ ‫‪n −4‬‬ ‫ﻴﻜﻭﻥ ﺇﺫﻥ ‪ a‬ﻋﺩﺩﺍ ﺼﺤﻴﺤﺎ ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ) ‪ِ ! ( n − 4‬ـ ‪6‬‬ ‫‪ QR-I 3-I -‬ا "ال ا ‪.P .‬‬ ‫ﻋﻨﺼﺭ ﻤﻥ } ‪{−2 ;1; 2;3;5; 6; 7;10‬‬ ‫ﺃﻱ ‪n‬‬ ‫‪6‬‬ ‫‪n +2−6 n −4‬‬ ‫‪ B3I -‬أن ‪ 3‬د ‪ %‬ا >‪ −6 %*,*,‬و ‪F)I 6‬‬ ‫‪1−‬‬ ‫=‬ ‫=‬ ‫‪ (5‬ﻝﺩﻴﻨﺎ‪:‬‬ ‫‪n +2‬‬ ‫‪n +2‬‬ ‫‪n +2‬‬ ‫ا ‪T‬ا!‪ S# ( B‬ا? اد ا >‪. ℤ ,*,‬‬ ‫‪6‬‬ ‫‪b = 1−‬‬ ‫ﻭ ﻤﻨﻪ‬ ‫‪n +2‬‬ ‫ﻴﻜﻭﻥ ﺇﺫﻥ ‪ b‬ﻋﺩﺩﺍ ﺼﺤﻴﺤﺎ ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ) ‪ِ ! ( n + 2‬ـ ‪6‬‬ ‫ﻋﻨﺼﺭ ﻤﻥ } ‪{−8 ; − 5; − 4; − 3; − 1;0;1; 4‬‬ ‫ﺃﻱ ‪n‬‬ ‫‪20‬‬ ‫ﻤﻭﻀﻭﻉ ﻤﻊ ﺇﺭﺸﺎﺩﺍﺕ‬ ‫ﻴﺘﻜﻭﻥ ﺭﻗﻡ ﺍﻝﺤﺴﺎﺏ ﺍﻝﺠﺎﺭﻱ ﻹﺤﺩﻯ ﺍﻝﺒﻨﻭﻙ ﻤﻥ ‪ 15‬ﺭﻗﻤﺎ ‪ ،‬ﻤﺭﺘﺒﺔ ﻤﻥ ﺍﻝﻴﺴﺎﺭ ﺇﻝﻰ ﺍﻝﻴﻤﻴﻥ ‪ ،‬ﻴﺘﻡ ﺘﺤﺩﻴﺩﻫﺎ ﺒﺎﻝﻨﺴﺒﺔ ﻝﻜل‬ ‫ﻤﺸﺘﺭﻙ ﻭﻓﻕ ﺍﻝﻨﻤﻁ ﺍﻝﺘﺎﻝﻲ‪:‬‬ ‫ﺍﻝﺭﻗﻡ ﺍﻷﻭل ﻫﻭ ﺇﻤﺎ ‪ 1‬ﻭ ﺇﻤﺎ ‪ 2‬ﺤﺴﺏ ﺠﻨﺱ ﺍﻝﻤﺸﺘﺭﻙ‪.‬‬ ‫ ‬ ‫ﺍﻝﺭﻗﻤﺎﻥ ﺍﻝﻤﻭﺍﻝﻴﺎﻥ ﻫﻤﺎ ﺍﻝﺭﻗﻤﺎﻥ ﺍﻷﺨﻴﺭﺍﻥ ﺍﻝﻤﻭﺠﻭﺩﺍﻥ ﻓﻲ ﺴﻨﺔ ﻤﻴﻼﺩﻩ‪.‬‬ ‫ ‬ ‫ﺍﻝﺭﻗﻤﺎﻥ ﺍﻝﻤﻭﺍﻝﻴﺎﻥ ﻴﻌﻴﻨﺎﻥ ﺸﻬﺭ ﻤﻴﻼﺩﻩ‪.‬‬ ‫ ‬ ‫ﺍﻝﺭﻗﻤﺎﻥ ﺍﻝﻤﻭﺍﻝﻴﺎﻥ ﻫﻤﺎ ﺭﻤﺯ ﻭﻻﻴﺔ ﺇﻗﺎﻤﺘﻪ‪.‬‬ ‫ ‬ ‫ﺍﻷﺭﻗﺎﻡ ﺍﻝﺴﺘﺔ ﺍﻝﻤﻭﺍﻝﻴﺔ ﻫﻲ ﺭﻗﻡ ﺒﻁﺎﻗﺔ ﺘﻌﺭﻴﻔﻪ ﺍﻝﻭﻁﻨﻴﺔ‪.‬‬ ‫ ‬ ‫ﺍﻝﺭﻗﻤﺎﻥ ﺍﻷﺨﻴﺭﺍﻥ ﻫﻤﺎ ﺍﻝﻤﻔﺘﺎﺡ ) ﻴﻤﻜﻥ ﺃﻥ ﻴﻜﻭﻥ ﺃﻭل ﺍﻝﺭﻗﻤﻴﻥ ﻤﻥ ﺍﻝﻤﻔﺘﺎﺡ ﻤﻌﺩﻭﻤﺎ (‪.‬‬ ‫ ‬ ‫ﻴﺘﻡ ﺘﻌﻴﻴﻥ ﺍﻝﻤﻔﺘﺎﺡ ) ﻤﻔﺘﺎﺡ ﺍﻝﻤﺭﺍﻗﺒﺔ ( ﻜﻤﺎ ﻴﻠﻲ‪:‬‬ ‫ﺍﻝﻤﻔﺘﺎﺡ ﻫﻭ ‪ 97 − r‬ﺤﻴﺙ ‪ r‬ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ ﺍﻝﻤﻜﻭﻥ ﻤﻥ ﺍﻷﺭﻗﺎﻡ ﺍﻝﺜﻼﺜﺔ ﻋﺸﺭ ﺍﻷﻭﻝﻰ ﻋﻠﻰ ‪. 97‬‬ ‫‪.1‬ﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ ﻤﻔﺘﺎﺡ ﺍﻝﻤﺭﺍﻗﺒﺔ ﺍﻝﺨﺎﺹ ﺒﺭﻗﻡ ﺍﻝﺤﺴﺎﺏ ‪. 2 85 05 33 565 001 89‬‬ ‫‪.2‬ﺃﺜﻨﺎﺀ ﺇﺠﺭﺍﺀ ﻋﻤﻠﻴﺔ ﺴﺤﺏ ﺘﻡ ﺤﺠﺯ ﺨﻁﺄ ﺍﻝﺭﻗﻡ ‪ ) 2 85 05 33 569 001 89‬ﺨﻁﺄ ﻓﻲ ﺍﻝﺭﻗﻡ ﺍﻝﻌﺎﺸﺭ (‪.‬‬ ‫ﺘﺤﻘﻕ ﺃﻥ ﻤﻔﺘﺎﺡ ﺍﻝﻤﺭﺍﻗﺒﺔ ﻓﻲ ﻫﺫﻩ ﺍﻝﺤﺎﻝﺔ ﻴﺴﻤﺢ ﻤﻥ ﺍﻜﺘﺸﺎﻑ ﻭﺠﻭﺩ ﺨﻁﺄ‪.‬‬ ‫‪.3‬ﻝﻴﻜﻥ ‪ B‬ﺭﻗﻡ ﺤﺴﺎﺏ ﻭ ﻝﻴﻜﻥ ‪ A‬ﺍﻝﻌﺩﺩ ﺍﻝﻤﻜﻭﻥ ﻤﻥ ﺍﻷﺭﻗﺎﻡ ﺍﻝﺜﻼﺜﺔ ﻋﺸﺭ ﺍﻷﻭﻝﻰ ﻝﻠﻌﺩﺩ ‪ ) B‬ﺩﻭﻥ ﺍﻝﻤﻔﺘﺎﺡ(‪.‬‬ ‫ ﺃﻜﺘﺏ ﺍﻝﻌﺩﺩ ‪ A‬ﻋﻠﻰ ﺍﻝﺸﻜل ‪ H ×106 + L‬ﺤﻴﺙ ‪. ( B = 2 85 05 33 565 001 89 ) 0 ≤ L < 106‬‬ ‫ ﺒﻴﻥ ﺃﻥ ] ‪ 106 ≡ 27 [97‬ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺃﻥ ﻝﻠﻌﺩﺩﻴﻥ ‪ A‬ﻭ ‪ 27H + L‬ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ ‪. 97‬‬ ‫ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻝﻨﺘﻴﺠﺔ ﺍﻝﺴﺎﺒﻘﺔ ﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ ﻤﻔﺘﺎﺡ ﺍﻝﻤﺭﺍﻗﺒﺔ ﺍﻝﺨﺎﺹ ﺒﺭﻗﻡ ﺍﻝﺤﺴﺎﺏ ‪. 2 85 05 33 565 001 89‬‬ ‫ ﺃﺫﻜﺭ ﻤﺜﺎﻻ ﻝﺨﻁﺄ ﻻ ﻴﺴﻤﺢ ﺍﻝﻤﻔﺘﺎﺡ ﻤﻥ ﺍﻜﺘﺸﺎﻑ ﻭﺠﻭﺩﻩ‪.‬‬ ‫ﺇﺭﺸﺎﺩﺍﺕ‬ ‫‪.1‬ﺒﺎﻗﻲ ﻗﺴﻤﺔ ‪ 2 85 05 33 565 001‬ﻋﻠﻰ ‪ 97‬ﻫﻭ ‪ 8‬ﻭ ﻤﻨﻪ ﺍﻝﻤﻔﺘﺎﺡ ﻫﻭ ‪. 97 − 8 = 89‬‬ ‫ﻴﻤﻜﻥ ﺍﺴﺘﻌﻤﺎل ﺤﺎﺴﺒﺔ ﺘﺴﻤﺢ ﻤﻥ ﺘﻌﻴﻴﻥ ﺒﺎﻗﻲ ﺍﻝﻘﺴﻤﺔ ﻤﺜل ‪. casio 89‬‬ ‫‪.2‬ﺍﻝﻤﻔﺘﺎﺡ ﻫﻭ ‪. 66‬‬ ‫‪.3‬ﻻﺤﻅ ﺃﻥ ) ‪ 106 = (102‬ﺜﻡ ﻨﺴﺘﻌﻤل ﺨﻭﺍﺹ ﺍﻝﻤﻭﺍﻓﻘﺔ‪.‬‬ ‫‪3‬‬ ‫ﻨﺄﺨﺫ ﺭﻗﻤﻲ ﺤﺴﺎﺏ ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺠﺯﺀ ‪ H‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ﻝﺠﺯﺃﻴﻬﻤﺎ ‪ L‬ﻭ ‪L ′‬‬ ‫ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ ‪. 97‬‬ ‫ﻨﺫﻜﺭ ﻋل ﺴﺒﻴل ﺍﻝﻤﺜﺎل ﺍﻝﻌﺩﺩﻴﻥ ‪ 2 85 05 33 565 001 89‬ﻭ ‪. 2 85 05 33 565 098 89‬‬ ‫‪21‬‬ ‫‪ 10‬ﻋﻴ‪‬ﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻝﺼﺤﻴﺤﺔ ‪ x‬ﺍﻝﺘﻲ ﻤﻥ ﺃﺠﻠﻬﺎ ﻴﻜﻭﻥ ﺍﻝﻌﺩﺩ‬ ‫‪,‬ر ‪.(%-,.‬‬ ‫‪ x − 5‬ﻤﻀﺎ?

Use Quizgecko on...
Browser
Browser