Math 3 Lit - Secondary School Textbook PDF
Document Details
Uploaded by InnovativePun
2007
جمال تاوريرت
Tags
Summary
This textbook provides a comprehensive guide for students in the third year of general and technological secondary education in Algeria, focusing on the topics of algebra and sequence. The authors aim to align closely with the national curriculum and approach teaching using competency-based activities, including the incorporation of technology. It covers topics like functions, sequences, and statistics, with examples and problem sets provided.
Full Transcript
ﺍﻝﺠﻤﻬﻭﺭﻴﺔ ﺍﻝﺠﺯﺍﺌﺭﻴﺔ ﺍﻝﺩﻴﻤﻘﺭﺍﻁﻴﺔ ﺍﻝﺸﻌﺒﻴﺔ ﻭﺯﺍﺭﺓ ﺍﻝﺘﺭﺒﻴﺔ ﺍﻝﻭﻁﻨﻴﺔ ﺍﻝﺴﻨﺔ ﺍﻝﺜﺎﻝﺜﺔ ﻤﻥ ﺍﻝﺘﻌﻠﻴﻡ ﺍﻝﺜﺎﻨﻭﻱ ﺍﻝﻌﺎﻡ ﻭﺍﻝﺘﻜﻨﻭﻝﻭﺠﻲ ﺍﻝﺸﻌﺏ: ﺁﺩﺍﺏ ﻭﻓﻠﺴﻔﺔ ﻝﻐﺎﺕ ﺃﺠﻨﺒﻴﺔ...
ﺍﻝﺠﻤﻬﻭﺭﻴﺔ ﺍﻝﺠﺯﺍﺌﺭﻴﺔ ﺍﻝﺩﻴﻤﻘﺭﺍﻁﻴﺔ ﺍﻝﺸﻌﺒﻴﺔ ﻭﺯﺍﺭﺓ ﺍﻝﺘﺭﺒﻴﺔ ﺍﻝﻭﻁﻨﻴﺔ ﺍﻝﺴﻨﺔ ﺍﻝﺜﺎﻝﺜﺔ ﻤﻥ ﺍﻝﺘﻌﻠﻴﻡ ﺍﻝﺜﺎﻨﻭﻱ ﺍﻝﻌﺎﻡ ﻭﺍﻝﺘﻜﻨﻭﻝﻭﺠﻲ ﺍﻝﺸﻌﺏ: ﺁﺩﺍﺏ ﻭﻓﻠﺴﻔﺔ ﻝﻐﺎﺕ ﺃﺠﻨﺒﻴﺔ ﺇﺸﺭﺍﻑ ﻭ ﺘﺄﻝﻴﻑ ﻤﻔﺘﺵ ﺍﻝﺘﺭﺒﻴﺔ ﻭﺍﻝﺘﻜﻭﻴﻥ ﺠﻤﺎل ﺘﺎﻭﺭﻴﺭﺕ ﺍﻝﻤﺅﻝﻔﻭﻥ: ﻤﻔﺘﺵ ﺍﻝﺘﺭﺒﻴﺔ ﻭﺍﻝﺘﻜﻭﻴﻥ ↵ ﻤﺤﻤﺩ ﻓﺎﺘﺢ ﻤﺭﺍﺩ ﻤﻔﺘﺵ ﺍﻝﺘﺭﺒﻴﺔ ﻭﺍﻝﺘﻜﻭﻴﻥ ↵ ﻤﺤﻤﺩ ﻗﻭﺭﻴﻥ ﺃﺴﺘﺎﺫ ﺍﻝﺘﻌﻠﻴﻡ ﺍﻝﺜﺎﻨﻭﻱ ↵ ﻋﺒﺩ ﺍﻝﺤﻔﻴﻅ ﻓﻼﺡ ﺃﺴﺘﺎﺫ ﺍﻝﺘﻌﻠﻴﻡ ﺍﻝﺜﺎﻨﻭﻱ ↵ ﻋﺒﺩ ﺍﻝﻤﺅﻤﻥ ﻤﻭﺱ ﺃﺴﺘﺎﺫ ﺍﻝﺘﻌﻠﻴﻡ ﺍﻝﺜﺎﻨﻭﻱ ↵ ﻏﺭﻴﺴﻲ ﺒﻠﺠﻴﻼﻝﻲ ﺍﻝﺩﻴﻭﺍﻥ ﺍﻝﻭﻁﻨﻲ ﻝﻠﻤﻁﺒﻭﻋﺎﺕ ﺍﻝﻤﺩﺭﺴﻴﺔ 2007 ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﺎﻥ ﺍﻟﺮﺣﻴﻢ ﻤﺩﺨل ﺃﻋﺩ ﻫﺫﺍ ﺍﻝﻜﺘﺎﺏ ﺍﺴﺘﺠﺎﺒﺔ ﻝﻤﺘﻁﻠﺒﺎﺕ ﺍﻝﻤﻨﻬﺎﺝ ﺍﻝﺠﺩﻴﺩ ﺍﻝﺨﺎﺹ ﺒﺎﻝﺴﻨﺔ ﺍﻝﺜﺎﻝﺜـﺔ ﻤـﻥ ﺍﻝﺘﻌﻠـﻴﻡ ﺍﻝﺜﺎﻨﻭﻱ ﺍﻝﻌﺎﻡ ﻭ ﺍﻝﺘﻜﻨﻭﻝﻭﺠﻲ ﺍﻝﺨﺎﺹ ﺒﺸﻌﺒﺘﻲ ﺍﻵﺩﺍﺏ ﻭ ﺍﻝﻔﻠﺴﻔﺔ ﻭ ﺍﻝﻠﻐﺎﺕ ﺍﻷﺠﻨﺒﻴﺔ ﺍﻝﺫﻱ ﺸـﺭﻉ ﻓﻲ ﺘﻁﺒﻴﻘﻪ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ﺍﻝﺩﺨﻭل ﺍﻝﻤﺩﺭﺴﻲ . 2008 – 2007 ﺒﺎﻹﻀﺎﻓﺔ ﺇﻝﻰ ﺍﻻﺤﺘﺭﺍﻡ ﺍﻝﺘﺎﻡ ﻝﻠﻤﻨﻬﺎﺝ ﻓﻘﺩ ﺤﺎﻭﻝﻨﺎ ﺍﻝﻌﻤل ﺒﻤﺨﺘﻠﻑ ﺍﻝﺘﻭﺠﻴﻬﺎﺕ ﺍﻝﻭﺍﺭﺩﺓ ﻓﻴـﻪ ﻜﻤﺎ ﺤﺭﺼﻨﺎ ﻋﻠﻰ ﺘﺠﺴﻴﺩ ﺍﻝﻤﻘﺎﺭﺒﺔ ﺒﺎﻝﻜﻔﺎﺀﺍﺕ ﺍﻝﺘﻲ ﺒﻨﻲ ﻋﻠﻴﻬﺎ ﻤﻥ ﺨﻼل ﺍﺨﺘﻴﺎﺭ ﺃﻨﺸﻁﺔ ﻤﻨﺎﺴـﺒﺔ ﺴﻭﺍﺀ ﻋﻨﺩ ﻤﻘﺎﺭﺒﺔ ﻤﺨﺘﻠﻑ ﺍﻝﻤﻔﺎﻫﻴﻡ ﺃﻭ ﻋﻨﺩ ﺇﺩﻤﺎﺠﻬﺎ ﻜﻤﺎ ﺤﻅﻲ ﺍﺴﺘﻌﻤﺎل ﺘﻜﻨﻭﻝﻭﺠﻴﺎﺕ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل ﺒﺎﻻﻫﺘﻤﺎﻡ ﺍﻝﻼﺯﻡ. ﻴﺤﺘﻭﻱ ﺍﻝﻜﺘﺎﺏ ﻋﻠﻰ ﺴﺘﺔ ) (6ﺃﺒﻭﺍﺏ ﺘﻤﺕ ﻫﻴﻜﻠﺘﻬﺎ ﺒﻨﻔﺱ ﺍﻝﻜﻴﻔﻴﺔ ﻋﻠﻰ ﺍﻝﻨﺤﻭ ﺍﻝﺘﺎﻝﻲ: ﻋﺭﺽ ﻝﻠﻜﻔﺎﺀﺍﺕ ﺍﻝﻤﺴﺘﻬﺩﻓﺔ ﺇﻀﺎﻓﺔ ﺇﻝﻰ ﻨﺒﺫﺓ ﺘﺎﺭﻴﺨﻴﺔ. ﺃﻨﺸﻁﺔ ﺘﻤﻬﻴﺩﻴﺔ. ﺍﻝﺩﺭﺱ. ﻁﺭﺍﺌﻕ ﻭ ﺘﻤﺎﺭﻴﻥ ﻤﺤﻠﻭﻝﺔ. ﺃﻋﻤﺎل ﻤﻭﺠﻬﺔ. ﺍﺴﺘﻌﺩ ﻝﻠﺒﻜﺎﻝﻭﺭﻴﺎ. ﺘﻤﺎﺭﻴﻥ ﻭ ﻤﺴﺎﺌل. ﺍﺨﺘﺒﺭ ﻤﻌﻠﻭﻤﺎﺘﻙ. ﺃﺭﺩﻨﺎ ﺃﻥ ﻨﺠﻌل ﻤﻥ ﻫﺫﺍ ﺍﻝﻜﺘﺎﺏ ﻭﺴﻴﻠﺔ ﻋﻤل ﻤﻤﺘﻌﺔ ﻭ ﻨﺎﺠﻌﺔ ﻓﻲ ﺁﻥ ﻭﺍﺤﺩ ،ﻨﺘﻤﻨﻰ ﺃﻥ ﻴﺴﻤﺢ ﻝﻜﻡ ﻤﻥ ﺍﻝﺘﺤﻀﻴﺭ ﺍﻝﺠﻴﺩ ﻻﻤﺘﺤﺎﻥ ﻨﻬﺎﻴﺔ ﺍﻝﺴﻨﺔ. ﻭ ﻜﻭﻥ ﻫﺫﺍ ﺍﻝﻌﻤل ﺇﻨﺠﺎﺯﺍ ﺒﺸﺭﻴﺎ ﻓﺈﻨﻪ ﻻ ﻴﺨﻠﻭ ﻤﻥ ﺍﻝﻨﻘﺎﺌﺹ ،ﻭﻋﻠﻴﻪ ﻓﺈﻨﻨﺎ ﻨﺭﺤﺏ ،ﺒﻜل ﺍﻫﺘﻤـﺎﻡ، ﺒﺎﻨﺘﻘﺎﺩﺍﺕ ﺍﻝﻘﺭﺍﺀ ﺍﻝﺘﻲ ﺘﻬﺩﻑ ﺇﻝﻰ ﺇﺜﺭﺍﺀ ﻭ ﺘﺤﺴﻴﻥ ﺍﻝﻜﺘﺎﺏ ﻭ ﻫﻡ ﻤﺸﻜﻭﺭﻭﻥ ﻤﺴﺒﻘﺎ ﻋﻠﻰ ﺫﻝﻙ. .1ﺍﻝﺩﻭﺍل: .Iﺘﻤﺜﻴل ﺩﺍﻝﺔ : ﻨﻌﺘﺒﺭ ﺍﻝﺩﺍﻝﺔ fﺍﻝﻤﻌﺭﻓﺔ ﻋﻠﻰ ℝﺒـ f ( x ) = x3 − x 2 − 2 : . IIﻗﺭﺍﺀﺓ ﺍﻝﻔﺎﺼﻠﺔ αﻝﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻝﻤﻨﺤﻨﻲ ﻤﻊ ﻤﺤﻭﺭ ﺍﻝﻔﻭﺍﺼل: ﺍﻀﻐﻁ ﻤﺭﺓ ﺃﺨﺭﻯ ﻋﻠﻰ ﻋﻴﻥ ﻓﺎﺼﻠﺔ ﺃﻜﺒﺭ ﺃﻭ ﺒﺎﺴﺘﻌﻤﺎل ﻭ ﻨﻘﺭﺃ α ≈ 1, 6956208 ﻤﻥ αﺜﻡ ﺍﻨﻘﺭ ﻋﻴﻥ ﻓﺎﺼﻠﺔ ﺃﺼﻐﺭ ﻤﻥ α ﺜﻡ ﺍﻨﻘﺭ .2ﺍﻝﻤﺘﺘﺎﻝﻴﺎﺕ: ﺍﻝﻤﺘﺘﺎﻝﻴﺔ ﻤﻥ ﺍﻝﺸﻜل )un = f (n ﻨﻤﺜل ﺍﻝﻤﺘﺘﺎﻝﻴﺔ ) (unﺍﻝﻤﻌﺭﻓﺔ ﻋﻠﻰ ℕﺒـun = 2n 2 − n − 3 : 1 0 ﻭ ﻝﻜﺘﺎﺒﺔ n ﻨﺴﺘﻌﻤل ﻭﻨﺤﺩﺩ ﺍﻝﺨﺎﺼﻴﺔ seq ﻭ ﻨﺘﻤﻤﻡ Y max = 100 ، Y min = −5 ﻭ Y scl = 5 .3ﻤﺘﺘﺎﻝﻴﺔ ﻤﻌﺭﻓﺔ ﺒﻌﻼﻗﺔ ﺘﺭﺍﺠﻌﻴﺔ: 1 ﻨﻤﺜل ﺍﻝﻤﺘﺘﺎﻝﻴﺔ ) (unﺍﻝﻤﻌﺭﻓﺔ ﻋﻠﻰ ℕﺒـ u0 = 5 :ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺤﻴﺙ un = un −1 + 1 ، n ≥ 1 3 ،ﻨﺨﺘﺎﺭ ﺍﻝﻨﺎﻓﺫﺓ ﺜﻡ ﻭﻨﺨﺘﺎﺭ web ﺜﻡ ﻭﻨﺤﺩﺩ ﺍﻝﺨﺎﺼﻴﺔ ،seq ،ﻝﻜﺘﺎﺒﺔ uﻨﻀﻐﻁ ﺜﻡ 7 .4ﺍﻹﺤﺼﺎﺀ: ﻓﻴﻤﺎ ﻴﻠﻲ ﻨﻌﺘﺒﺭ ﺍﻝﺴﻠﺴﻠﺔ ﺍﻻﺤﺼﺎﺌﻴﺔ ﺍﻝﺘﺎﻝﻴﺔ: ﺍﻝﻜﺘﻠﺔ )(g 300 400 500 600 700 ﺍﻝﺘﻜﺭﺍﺭ 40 45 51 54 57 ﺍﻨﻘﺭ ﻹﻅﻬﺎﺭ ﺴﻠﺴﻠﺔ ﻹﺘﻤﺎﻡ ﺍﻝﺘﻜﺭﺍﺭ ﺍﻹﺠﻤﺎﻝﻲ EDIT ﻓﺘﺴﺠل ﺍﻝﻨﺘﺎﺌﺞ ﻓﻲ ﺍﻝﺘﻭﺍﺘﺭﺍﺕ ﻓﻲ ، L4 ﻓﻲ : L3 ﻭ ﺍﺘﻤﻡ ﺍﻝﻘﻭﺍﺌﻡ ﺍﻝﻌﻤﻭﺩ L4 ﺤﺩﺩ L4ﺜﻡ MATH5 (L2)2 (L3)3ﺜﻡ )(1 (L2) 2 )(Sum .5ﺤﺴﺎﺏ ﺍﻝﻤﻘﺎﻴﻴﺱ: )1 (CALC ﻭ ﻨﻘﺭﺃ Q1 ، σ X ، Xﻭ Q3 L2 ، L1 ﺍﻝﺼﻔﺤﺔ ﺍﻷﺒﻭﺍﺏ ﺍﻝﺼﻔﺤﺔ ﺍﻷﺒﻭﺍﺏ ﺍﻝﺒﺎﺏ :4ﺍﻝﺩﻭﺍل ﻜﺜﻴﺭﺍﺕ ﺍﻝﺤﺩﻭﺩ ﺍﻝﺒﺎﺏ :1ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻓﻲ ℤ ﺍﻷﻨﺸﻁﺔ 68................................................. ﺍﻷﻨﺸﻁﺔ 8.................................................. ﺩﺭﻭﺱ ﻭ ﻁﺭﺍﺌﻕ 70.................................... ﺩﺭﻭﺱ ﻭ ﻁﺭﺍﺌﻕ 10.................................... ﺃﻋﻤﺎل ﻤﻭﺠﻬﺔ 76........................................ ﺃﻋﻤﺎل ﻤﻭﺠﻬﺔ 18......................................... ﺍﺴﺘﻌﺩ ﻝﻠﺒﻜﺎﻝﻭﺭﻴﺎ 78..................................... ﺍﺴﺘﻌﺩ ﻝﻠﺒﻜﺎﻝﻭﺭﻴﺎ 20...................................... ﺘﻤﺎﺭﻴﻥ 80.................................................. ﺘﻤﺎﺭﻴﻥ 22................................................... ﺍﺨﺘﺒﺭ ﻤﻌﻠﻭﻤﺎﺘﻙ 86..................................... ﺍﺨﺘﺒﺭ ﻤﻌﻠﻭﻤﺎﺘﻙ 28...................................... ﺍﻝﺒﺎﺏ :5ﺍﻝﺩﻭﺍل ﺍﻝﺘﻨﺎﻅﺭﻴﺔ ﺍﻝﺒﺎﺏ :2ﺍﻝﻤﺘﺘﺎﻝﻴﺎﺕ ﺍﻝﻌﺩﺩﻴﺔ ﺍﻷﻨﺸﻁﺔ 88................................................. ﺍﻷﻨﺸﻁﺔ 30................................................. ﺩﺭﻭﺱ ﻭ ﻁﺭﺍﺌﻕ 90.................................... ﺩﺭﻭﺱ ﻭ ﻁﺭﺍﺌﻕ 32.................................... ﺃﻋﻤﺎل ﻤﻭﺠﻬﺔ 94........................................ ﺃﻋﻤﺎل ﻤﻭﺠﻬﺔ 40......................................... ﺍﺴﺘﻌﺩ ﻝﻠﺒﻜﺎﻝﻭﺭﻴﺎ 96..................................... ﺍﺴﺘﻌﺩ ﻝﻠﺒﻜﺎﻝﻭﺭﻴﺎ 42...................................... ﺘﻤﺎﺭﻴﻥ 98.................................................. ﺘﻤﺎﺭﻴﻥ 44................................................... ﺍﺨﺘﺒﺭ ﻤﻌﻠﻭﻤﺎﺘﻙ 104................................... ﺍﺨﺘﺒﺭ ﻤﻌﻠﻭﻤﺎﺘﻙ 48...................................... ﺍﻝﺒﺎﺏ :6ﺍﻹﺤﺼﺎﺀ ﻭ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻝﺒﺎﺏ :3ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺩﺍﻝﺔ ﺍﻷﻨﺸﻁﺔ 106............................................... ﺍﻷﻨﺸﻁﺔ 50................................................. ﺩﺭﻭﺱ ﻭ ﻁﺭﺍﺌﻕ 108.................................. ﺩﺭﻭﺱ ﻭ ﻁﺭﺍﺌﻕ 52.................................... ﺃﻋﻤﺎل ﻤﻭﺠﻬﺔ 116....................................... ﺃﻋﻤﺎل ﻤﻭﺠﻬﺔ 56......................................... ﺍﺴﺘﻌﺩ ﻝﻠﺒﻜﺎﻝﻭﺭﻴﺎ 118.................................... ﺍﺴﺘﻌﺩ ﻝﻠﺒﻜﺎﻝﻭﺭﻴﺎ 58...................................... ﺘﻤﺎﺭﻴﻥ 120................................................. ﺘﻤﺎﺭﻴﻥ 60................................................... ﺍﺨﺘﺒﺭ ﻤﻌﻠﻭﻤﺎﺘﻙ 128.................................... ﺍﺨﺘﺒﺭ ﻤﻌﻠﻭﻤﺎﺘﻙ 66...................................... ﺍﻝﻜﻔﺎﺀﺍﺕ ﺍﻝﻤﺴﺘﻬﺩﻓﺔ ﻤﻌﺭﻓﺔ ﻭ ﺘﺤﺩﻴﺩ ﺤﺎﺼل ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻭ ﺒﺎﻗﻴﻬﺎ. ﺤﺼﺭ ﻋﺩﺩ ﺒﻴﻥ ﻤﻀﺎﻋﻔﻴﻥ ﻤﺘﻌﺎﻗﺒﻴﻥ ﻝﻌﺩﺩ ﺼﺤﻴﺢ. ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻡ ﻋﺩﺩ ﻁﺒﻴﻌﻲ. ﻤﻌﺭﻓﺔ ﺘﻭﺍﻓﻕ ﻋﺩﺩﻴﻥ ﺼﺤﻴﺤﻴﻥ. ﻤﻌﺭﻓﺔ ﺨﻭﺍﺹ ﺍﻝﻤﻭﺍﻓﻘﺔ ﻭ ﺍﺴﺘﻌﻤﺎﻝﻬﺎ ﻓﻲ ﺤل ﻤﺸﻜﻼﺕ. ﺍﺴﺘﻌﻤﺎل ﻤﺒﺩﺃ ﺍﻻﺴﺘﺩﻻل ﺒﺎﻝﺘﺭﺍﺠﻊ ﻹﺜﺒﺎﺕ ﺼﺤﺔ ﺨﺎﺼﻴﺔ ﻤﺘﻌﻠﻘﺔ ﺒﻌﺩﺩ ﻁﺒﻴﻌﻲ. ا :ﺍﺴﺘﺨﺩﻡ ﺍﻹﻨﺴﺎﻥ ﺍﻝﺘﺸﻔﻴﺭ ) (CRY PTOGRAPHIEﻤﻨﺫ ﻨﺤﻭ ﺃﻝﻔﻲ ﻋﺎﻡ ﻗﺒل ﺍﻝﻤﻴﻼﺩ ﻝﺤﻤﺎﻴﺔ ﺭﺴﺎﺌﻠﻪ ﺍﻝﺴﺭﻴﺔ ،ﻭﺒﻠﻎ ﻫﺫﺍ ﺍﻻﺴﺘﺨﺩﺍﻡ ﺫﺭﻭﺘﻪ ﻓﻲ ﻓﺘﺭﺍﺕ ﺍﻝﺤﺭﻭﺏ ﺨﻭﻓ ﹰﺎ ﻤﻥ ﻭﻗﻭﻉ ﺍﻝﺭﺴﺎﺌل ﺍﻝﺤﺴﺎﺴﺔ ﻓﻲ ﺃﻴﺩﻱ ﺍﻝﻌﺩﻭ.ﻭﻗﺎﻡ ﻴﻭﻝﻴﻭﺱ ﻗﻴﺼﺭ ﺒﺘﻁﻭﻴﺭ ﺨﻭﺍﺭﺯﻤﻴﺘﻪ ﺍﻝﻤﻌﻴﺎﺭﻴﺔ ﺍﻝﻤﻌﺭﻭﻓﺔ ﺒﺎﺴﻡ ﺸﻔﺭﺓ ﻗﻴﺼﺭ ﺍﻝﺘﻲ ﻜﺎﻨﺕ ﻨﺼﺎ ﻤﺸﻔﱠﺭﹰﺍ ﻝﺘﺄﻤﻴﻥ ﺍﺘﺼﺎﻻﺘﻪ ﻭﻤﺭﺍﺴﻼﺘﻪ ﻤﻊ ﻗﺎﺩﺓ ﺠﻴﻭﺸﻪ. ﺍﻋﺘﻤﺩ ﺍﻝﻘﻴﺼﺭ ﻓﻲ ﺨﻭﺍﺭﺯﻤﻴﺘﻪ ﻋﻠﻰ ﺘﻌﻭﻴﺽ ﻜل ﺤﺭﻑ ﺒﺤﺭﻑ ﺁﺨﺭ ﻤﻥ ﺨﻼل ﻋﻤﻠﻴﺔ ﺴﺤﺏ ﺨﻁﻴﺔ ﻝﻜل ﺍﻝﺤﺭﻭﻑ.ﻓﻤﺜﻼ ﺒﺎﻝﻨﺴﺒﺔ ﻝﻠﺤﺭﻭﻑ ﺍﻷﺒﺠﺩﻴﺔ ﺇﺫﺍ ﻋﻭﻀﻨﺎ ﺍﻝﺤﺭﻑ ﺍ ﺒﺎﻝﺤﺭﻑ ﺩ ،ﻨﻌﻭﺽ ﺍﻝﺤﺭﻑ ﺏ ﺒﺎﻝﺤﺭﻑ ﻫـ ،ﺍﻝﺤﺭﻑ ﺝ ﺒﺎﻝﺤﺭﻑ ﻭ ﺇﻝﺦ... ﻥ ﻡ ل ﻙ ﻱ ﻁ ﺡ ﺯ ﻭ ﻩ ﺩ ﺝ ﺏ ﺃ ﻑ ﻉ ﺱ ﻥ ﻡ ل ﻙ ﻱ ﻁ ﺡ ﺯ ﻭ ﻩ ﺩ ﻍ ﻅ ﺽ ﺫ ﺥ ﺙ ﺕ ﺵ ﺭ ﻕ ﺹ ﻑ ﻉ ﺱ ﺝ ﺏ ﺃ ﻍ ﻅ ﺽ ﺫ ﺥ ﺙ ﺕ ﺵ ﺭ ﻕ ﺹ ﻓﻙ ،ﺒﺎﺴﺘﻌﻤﺎل ﺸﻔﺭﺓ ﻗﻴﺼﺭ ،ﺍﻝﺭﺴﺎﻝﺔ ﺍﻝﺘﺎﻝﻴﺔ :ﺩ ﺱ ﻕ ﻉ ﺱ ﻉ ﺭ ﺫ ﺩ ﻙ ﺩ ﺱ ﻑ ﻭ ﺩ ﻙ. ﺃﻜﺘﺏ ،ﺒﺎﺴﺘﻌﻤﺎل ﺸﻔﺭﺓ ﻗﻴﺼﺭ ،ﺭﺴﺎﻝﺔ ﺇﻝﻰ ﺼﺩﻴﻘﻙ. 7 اط اول ﺘﻌﺭﻴﻑ : 1ﻨﻘﻭل ﻋﻥ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺃﻨﻪ ﺘﺎﻡ ﺇﺫﺍ ﻜﺎﻥ ﻤﺴﺎﻭﻴﺎ ﻝﻤﺠﻤﻭﻉ ﻜل ﻗﻭﺍﺴﻤﻪ ﺍﻝﻤﻭﺠﺒﺔ ﻤﺎ ﻋﺩﺍ ﻨﻔﺴﻪ. ﻓﻤﺜﻼ 6ﻋﺩﺩ ﻜﺎﻤل ﻷﻥ ﻗﻭﺍﺴﻤﻪ ﺍﻝﻤﻭﺠﺒﺔ ﻫﻲ ﻋﻠﻰ ﺍﻝﺘﻭﺍﻝﻲ 3 ، 2 ، 1ﻭ 6ﻭ ﻝﺩﻴﻨﺎ . 1 + 2 + 3 = 6 .1ﺃﺜﺒﺕ ﺃﻥ ﺍﻝﻌﺩﺩﻴﻥ 28ﻭ 496ﻜﺎﻤﻼﻥ. .2ﻗﺎﺭﻥ ﻜﻼ ﻤﻥ ﺍﻝﻌﺩﺩﻴﻥ 27ﻭ 30ﺒﻤﺠﻤﻭﻉ ﻗﻭﺍﺴﻤﻪ ﺍﻝﻤﻭﺠﺒﺔ ﻤﺎ ﻋﺩﺍ ﻨﻔﺴﻪ. ﺘﻌﺭﻴﻑ : 2ﻨﻘﻭل ﻋﻥ ﻋﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ ﺃﻨﻬﻤﺎ ﻤﺘﺤﺎﺒﺎﻥ ﺇﺫﺍ ﻜﺎﻥ ﻤﺠﻤﻭﻉ ﺍﻝﻘﻭﺍﺴﻡ ﺍﻝﻤﻭﺠﺒﺔ ﻷﺤﺩﻫﻤﺎ ﻤﺎ ﻋﺩﺍ ﻨﻔﺴﻪ ﻤﺴﺎﻭﻴﺎ ﻝﻶﺨﺭ ﻭ ﺍﻝﻌﻜﺱ. .3ﺃﺜﺒﺕ ﺃﻥ ﺍﻝﻌﺩﺩﻴﻥ 220ﻭ 284ﻤﺘﺤﺎﺒﺎﻥ. ﻫل ﺘﻌﻠﻡ ﺃﻥ ﺍﻝﺭﻴﺎﻀﻴﺎﺘﻲ " ﻝﻴﻴﻭﻨﺎﺭﺩ ﺃﻭﻝﺭ" ﻗﺩ ﺒﺭﻫﻥ ﺒﺩﻭﻥ ﺍﺴﺘﻌﻤﺎل ﺍﻹﻋﻼﻡ ﺍﻵﻝﻲ ﺃﻥ ﺍﻝﻌﺩﺩ 2305843008139 952128ﻋﺩﺩ ﻤﺜﺎﻝﻲ. " ﻝﻴﻴﻭﻨﺎﺭﺩ ﺃﻭﻝﺭ" ﻤﻥ ﺃﻜﺒﺭ ﺍﻝﻌﻠﻤﺎﺀ ﺍﻝﺫﻴﻥ ﻋﺭﻓﻬﻡ ﺍﻝﺘﺎﺭﻴﺦ ،ﺍﺴﺘﻘ ﺭ ﻓﻲ ﺍﻝﺒﺩﺍﻴﺔ ﺒﹻ ﺴﺎﻥ ﺒﻴﺘﺭﺴﺒﻭﺭﻕ ﺜﻡ ﻓﻲ ﺒﺭﻝﻴﻥ ﺴﻨﺔ 1741ﺤﻴﺙ ﺘﺭﺃﺱ ﺃﻜﺎﺩﻴﻤﻴﺔ ﺍﻝﻌﻠﻭﻡ ﺇﻝﻰ ﻏﺎﻴﺔ . 1766 ا ،ا ء و ا ت و ه %#أ '( !"#ع ا ' *0ت ا ( .-ا *,-ا )*+و ا 3د1ت ا . *0)- EULER Leonhard Suisse, 1707-1783 اط ا 137 12 .1ﺒﺈﺘﺒﺎﻉ ﻨﻔﺱ ﺍﻝﻤﻨﻬﺠﻴﺔ ﺍﻝﻤﻘﺎﺒﻠﺔ ﻋﻴﻥ ﺒﺎﻗﻲ ﻭ ﺤﺎﺼل ﻗﺴﻤﺔ aﻋﻠﻰ b 17 11 ﻓﻲ ﺍﻝﺤﺎﻝﺘﻴﻥ ﺍﻝﺘﺎﻝﻴﺘﻴﻥ: 5 ∗ a = 676ﻭ . b = 13 ∗ a = 312ﻭ ، b = 46 ها137 = 12 ×11 + 5 : .2ﺃﺤﺼﺭ ﺍﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ aﺒﻴﻥ ﻤﻀﺎﻋﻔﻴﻥ ﻤﺘﻌﺎﻗﺒﻴﻥ ﻝﻠﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ b 12 137ه .11 ﻓﻲ ﺍﻝﺤﺎﻝﺘﻴﻥ ﺍﻝﺘﺎﻝﻴﺘﻴﻥ: 12 137ه .5 ∗ a = 2007ﻭ . b = 16 ∗ a = 170ﻭ ، b = 29 .3ﻋﻴﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﻜل ﻤﻥ ﺍﻝﻌﺩﺩﻴﻥ 660ﻭ 366ﻋﻠﻰ . 7ﻤﺎﺫﺍ ﺘﻼﺤﻅ ؟ ﻨﻘﻭل ﻋﻥ ﺍﻝﻌﺩﺩﻴﻥ 660ﻭ 366أ ان د 7و ] . 660 ≡ 366 [ 7 ه ا دان 153و "# 2008ا!ن د 5؟ ه ا دان 274و "# 69ا!ن د 3؟ ﺒﻴﻥ ﺃﻥ ﺍﻝﻌﺩﺩﻴﻥ a = 234ﻭ b = 146ﻤﺘﻭﺍﻓﻘﺎﻥ ﺒﺘﺭﺩﻴﺩ . n = 11ﻤﺎ ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ a − bﻋﻠﻰ n؟ ﺒﻴﻥ ﺃﻥ ﺍﻝﻌﺩﺩﻴﻥ a = 174ﻭ b = 109ﻤﺘﻭﺍﻓﻘﺎﻥ ﺒﺘﺭﺩﻴﺩ . n = 13ﻤﺎ ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ a − bﻋﻠﻰ n؟ ﻀﻊ ﺘﺨﻤﻴﻨﺎ. 8 اط ا ﻨﺫﻜﺭ ﺃﻥ ] a ≡ b [ nﻴﻌﻨﻲ ﺃﻥ ﻝﻠﻌﺩﺩﻴﻥ ﺍﻝﺼﺤﻴﺤﻴﻥ aﻭ bﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ . n ﻹﻨﺠﺎﺯ ﻭﺭﻗﺔ ﺍﻝﺤﺴﺎﺏ ﺃﺩﻨﺎﻩ ﺍﺘﺒﻊ ﺍﻝﺨﻁﻭﺍﺕ ﺍﻝﺘﺎﻝﻴﺔ: ∗ ﺒﻌﺩ ﺍﺨﺘﻴﺎﺭ ﺍﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ nﻭ ﺤﺠﺯﻩ ﻓﻲ ﺍﻝﺨﻠﻴﺔ ، D 2ﺃﺤﺠﺯ ﻓﻲ ﺍﻝﺨﻠﻴﺘﻴﻥ A 2ﻭ B 2ﻋﺩﺩﻴﻥ ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ nﻭ ﻓﻲ ﺍﻝﺨﻠﻴﺘﻴﻥ G 2ﻭ H 2ﻋﺩﺩﻴﻥ ﺁﺨﺭﻴﻥ ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ . n ∗ ﻝﺘﻌﻴﻴﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ aﻋﻠﻰ nﻓﻲ ﺍﻝﺨﻠﻴﺔ A 3ﺃﺤﺠﺯ ) = MOD (A 2; D 2ﺜﻡ ﻭﺍﺼل ﺒﻨﻔﺱ ﺍﻝﻜﻴﻔﻴﺔ... ∗ ﺒﻌﺩ ﺤﺠﺯ ﻋﺩﺩ ﻁﺒﻴﻌﻲ pﻓﻲ ﺍﻝﺨﻠﻴﺔ ، E 2ﺃﺤﺠﺯ ﻓﻲ ﺍﻝﺨﻠﻴﺔ = PUISSANCE(A2;E2) : G 5ﺜﻡ ﻭﺍﺼل ... .1ﻻﺤﻅ ﻤﺨﺘﻠﻑ ﺍﻝﺒﻭﺍﻗﻲ ﺍﻝﻤﺤﺼل ﻋﻠﻴﻬﺎ ﻓﻲ ﺍﻝﺴﻁﺭ 6ﺒﻌﺩ ﺘﻐﻴﻴﺭ ﺍﻷﻋﺩﺍﺩ ﺍﻝﺼﺤﻴﺤﺔ c ، b ، aﻭ dﻭ ﺍﻝﻌﺩﺩﻴﻥ ﺍﻝﻁﺒﻴﻌﻴﻴﻥ nﻭ pﻭﻓﻕ ﺍﻝﺸﺭﻭﻁ ﺍﻝﻤﺤﺩﺩﺓ ﺃﻋﻼﻩ. b؟ p .2ﻤﺎﺫﺍ ﺘﻼﺤﻅ ﻋﻠﻰ ﺍﻝﻌﺩﺩﻴﻥ a + cﻭ b + d؟ a × cﻭ b × d؟ aﻭ p .3ﺨﻤﻥ ﺒﻌﺽ ﺨﻭﺍﺹ ﺍﻝﻤﻭﺍﻓﻘﺔ ﺒﺘﺭﺩﻴﺩ . n ﺍﻝﻨﺸﺎﻁ ﺍﻝﺭﺍﺒﻊ ﻓﻲ ﺍﻝﻘﺩﻴﻡ ﻜﺎﻥ ﺍﻝﻴﻭﻨﺎﻥ ﻴﺘﻌﺎﻤﻠﻭﻥ ﺠﻴﺩﺍ ﻤﻊ ﺍﻝﻤﺭﺒﻊ ﺍﻝﺘﺎﻡ ﻝﻌﺩﺩ ﻁﺒﻴﻌﻲ ﻭ ﻗﺩ ﺘﻭﺼﻠﻭﺍ ﺇﻝﻰ ﺍﻝﻨﺘﻴﺠﺔ ﺍﻝﺘﺎﻝﻴﺔ: ﻜﻠﻤﺎ ﺠﻤﻌﻨﺎ ﺃﻋﺩﺍﺩﺍ ﻓﺭﺩﻴﺔ ﻤﺘﺘﺎﺒﻌﺔ ﻭ ﺒﺎﻝﺘﺘﺎﺒﻊ ﻨﺤﺼل ﻋﻠﻰ ﻤﺭﺒﻊ ﺘﺎﻡ ﻝﻌﺩﺩ ﻁﺒﻴﻌﻲ. ﻭ ﻫﻜﺫﺍ 1:ﻤﺭﺒﻊ ﺍﻝﻌﺩﺩ 1 + 3 = 4 ،1ﻭ 4ﻤﺭﺒﻊ ﺍﻝﻌﺩﺩ 1 + 3 + 5 = 9 ،2ﻭ 9ﻤﺭﺒﻊ ﺍﻝﻌﺩﺩ ... ،3 (1ﺃﻨﺠﺯ ﻭﺭﻗﺔ ﺍﻝﺤﺴﺎﺏ ﺍﻝﻤﻘﺎﺒﻠﺔ ﺒﺈﺘﺒﺎﻉ ﺍﻝﺨﻁﻭﺍﺕ ﺍﻝﺘﺎﻝﻴﺔ: ﻓﻲ ﺍﻝﻌﻤﻭﺩ Bﻭ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ﺍﻝﺨﻠﻴﺔ B 2ﺃﺤﺠﺯ ﺍﻷﻋﺩﺍﺩ ﺍﻝﻔﺭﺩﻴﺔ ﻤﻥ 1ﺇﻝﻰ .49 ﻓﻲ ﺍﻝﺨﻠﻴﺔ C 3ﺃﺤﺠﺯ = B 2 + B 3ﻭﻓﻲ ﺍﻝﺨﻠﻴﺔ C 4ﺃﺤﺠﺯ = C 3 + B 4 ﺜﻡ ﺍﺴﺤﺏ ﺇﻝﻰ ﺍﻷﺴﻔل ﺒﻊ ﺘﺤﺩﻴﺩ ﺍﻝﺨﻠﻴﺔ . C 4 (2ﻋﻴﻥ ﺍﻝﻤﺠﺎﻤﻴﻊ ﺍﻝﺘﺎﻝﻴﺔ. S = 1 + 3 + 5 + 7 + 9 + 11 + 13 : . S ′ = 1 + 3 + 5 + 7 + 9 +... + 21 + 23 . S ′′ = 1 + 3 + 5 + 7 + 9 +... + 47 + 49ﻤﺎﺫﺍ ﺘﻼﺤﻅ ؟ (3ﺨﻤﻥ ﺤﺴﺎﺏ ﺍﻝﻤﺠﻤﻭﻉ ) 1 + 3 + 5 +... + ( 2n −1ﺒﺩﻻﻝﺔ . n (4ﺒﻔﺭﺽ ﺍﻝﺘﺨﻤﻴﻥ ﺍﻝﺴﺎﺒﻕ ﺼﺤﻴﺢ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺤﻴﺙ n ≥ 1ﺃﺜﺒﺕ ﺼﺤﺘﻪ ﻤﻥ ﺃﺠل ﺍﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ . n + 1 ﻨﻘﻭل ﺃﻥ ﻫﺫﻩ ﺍﻝﺨﺎﺼﻴﺔ ﻭﺭﺍﺜﻴﺔ. ﻨﻘﻭل ﻋﻥ ﺨﺎﺼﻴﺔ ) P ( nﻤﺘﻌﻠﻘﺔ ﺒﺎﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ nﺃﻨﻬﺎ ﻭﺭﺍﺜﻴﺔ ﺇﺫﺍ ﻜﺎﻨﺕ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﺍﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ n + 1 ﻜﻠﻤﺎ ﻜﺎﻨﺕ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n 9 ↵ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻓﻲ ℤ .1ﻗﺎﺒﻠﻴﺔ ﺍﻝﻘﺴﻤﺔ ﻓﻲ ℤ ﺘﻌﺭﻴﻑ a :ﻭ bﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ﻭ bﻏﻴﺭ ﻤﻌﺩﻭﻡ.ﺍﻝﻘﻭل ﺃﻥ ﺍﻝﻌﺩﺩ bﻴﻘﺴﻡ ﺍﻝﻌﺩﺩ aﻴﻌﻨﻲ ﻭﺠﻭﺩ ﻋﺩﺩ ﺼﺤﻴﺢ kﺤﻴﺙ. a = kb :ﻨﻘﻭل ﻜﺫﻝﻙ ﺃﻥ bﻗﺎﺴﻡ ﻝﻠﻌﺩﺩ aﺃﻭ ﺃﻥ aﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ . b ﻨﻜﺘﺏ b aﻭ ﻨﻘﺭﺃ bﻴﻘﺴﻡ . a ﺃﻤﺜﻠﺔ: 48 = 8× 6ﻭ ﻤﻨﻪ 6 48 ) 48 = (−8)×(−6ﻭ ﻤﻨﻪ (−6) 48 (−65) = (−13)×5ﻭ ﻤﻨﻪ )5 (−65 (−65) = (−13)×5ﻭ ﻤﻨﻪ )(−13) (−65 ﻤﻼﺤﻅﺔ :ﻝﻠﻌﺩﺩﻴﻥ ﺍﻝﺼﺤﻴﺤﻴﻥ aﻭ −aﻨﻔﺱ ﺍﻝﻘﻭﺍﺴﻡ ﻓﻲ a = kb ) ℤﻴﻌﻨﻲ ( −a = (−k )b .2ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻓﻲ ℤ ﻤﺒﺭﻫﻨﺔ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ aﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ، bﺘﻭﺠﺩ ﺜﻨﺎﺌﻴﺔ ﻭﺤﻴﺩﺓ ) (q, rﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻝﺼﺤﻴﺤﺔ ﺤﻴﺙ a = bq + r :ﻭ . 0 ≤ r < b ﺘﺴﻤﻰ ﻋﻤﻠﻴﺔ ﺍﻝﺒﺤﺙ ﻋﻥ ﺍﻝﺜﻨﺎﺌﻴﺔ ) (q, rﺒﺎﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻝﻠﻌﺩﺩ aﻋﻠﻰ ﺍﻝﻌﺩﺩ . bﻴﺴﻤﻰ qﻭ rﺒﻬﺫﺍ ﺍﻝﺘﺭﺘﻴﺏ ﺤﺎﺼل ﻭ ﺒﺎﻗﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻝﻠﻌﺩﺩ aﻋﻠﻰ ﺍﻝﻌﺩﺩ . b ﺍﻝﺒﺭﻫﺎﻥ :ﺍﻝﻌﺩﺩ aﺇﻤﺎ ﻤﻀﺎﻋﻑ ﻝﹻ bﻭ ﺇﻤﺎ ﻤﺤﺼﻭﺭ ﺒﻴﻥ ﻤﻀﺎﻋﻔﻴﻥ ﻤﺘﺘﺎﺒﻌﻴﻥ ﻝﹻ bﺃﻱ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ qﻭﺤﻴﺩ ﺤﻴﺙ qb ≤ a < (q + 1) bﻭ ﻨﺴﺘﻨﺘﺞ ﻤﻥ ﻫﺫﺍ ﺃﻥ . 0 ≤ a − qb < b ﺒﻭﻀﻊ r = a − qbﻨﺤﺼل ﻋﻠﻰ a = bq + rﻤﻊ . 0 ≤ r < b ﻤﻼﺤﻅﺔ :ﻴﻤﻜﻥ ﺘﻤﺩﻴﺩ ﻤﻔﻬﻭﻡ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻝﻌﺩﺩ ﺼﺤﻴﺢ aﻋﻠﻰ ﻋﺩﺩ ﺼﺤﻴﺢ ﻏﻴﺭ ﻤﻌﺩﻭﻡ . b . 0≤r < b ﻭﻨﺤﺼل ﻋﻠﻰ a = bq + rﻭ ﺃﻤﺜﻠﺔ: 7ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ 37ﻋﻠﻰ 5ﻭ 2ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 37ﻋﻠﻰ . 5 . 37 = 5× 7 + 2 ﻭ ﻨﻼﺤﻅ ﺃﻥ 35 ≤ 37 < 40ﺃﻱ ) 5× 7 ≤ 37 < 5×(7 + 1ﻭ . 37 − 35 = 2 13ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ 95ﻋﻠﻰ 7ﻭ 4ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 95ﻋﻠﻰ . 7 . 95 = 7 ×13 + 4 ﻭ ﻨﻼﺤﻅ ﺃﻥ 91 ≤ 95 < 98ﻭ . 95 − 91 = 4 16ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ 192ﻋﻠﻰ 12ﻭ 0ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 192ﻋﻠﻰ . 12 . 192 = 12×16 ﻭ ﻨﻼﺤﻅ ﺃﻥ 192 ≤ 192 < 204ﻭ . 192 −192 = 0 −8ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ −39ﻋﻠﻰ 5ﻭ 1ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ −39ﻋﻠﻰ . 5 . −39 = 5×(−8) + 1 ﻭ ﻨﻼﺤﻅ ﺃﻥ −40 ≤ −39 < −35ﻭ . −39 − (−40) = 1 10 ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل:1ﻋﻴﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ ﺍﻝﺼﺤﻴﺢ aﻋﻠﻰ ﺍﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ ، bﺜﻡ ﺃﺤﺼﺭ ﺍﻝﻌﺩﺩ aﺒﻴﻥ ﻤﻀﺎﻋﻔﻴﻥ ﻤﺘﻌﺎﻗﺒﻴﻥ ﻝﻠﻌﺩﺩ bﻓﻲ ﻜل ﺤﺎﻝﺔ ﻤﻥ ﺍﻝﺤﺎﻻﺕ ﺍﻵﺘﻴﺔ. a = −7361.3ﻭ . b = 47 a = 725.2ﻭ . b = 91 a = 8159.1ﻭ . b = 52 ﺤل 156. 8159 = 52×156 + 47.1 :ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ 8159ﻋﻠﻰ 52ﻭ 47ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 8159ﻋﻠﻰ . 52 52×156 ≤ 8159 < 52×157ﺃﻱ . 8112 ≤ 8159 < 8164 7. 725 = 91× 7 + 88.2ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ 725ﻋﻠﻰ 91ﻭ 88ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 725ﻋﻠﻰ . 91 91× 7 ≤ 725 < 91×8ﺃﻱ . 637 ≤ 725 < 728 − 157. −7361 = 47 ×(−157) + 18.3ﻫﻭ ﺤﺎﺼل ﻗﺴﻤﺔ −7361ﻋﻠﻰ 47ﻭ 18ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ −7361ﻋﻠﻰ 47 ×(−157) ≤ −7361 < 47 ×(−156). 47ﺃﻱ . −7379 ≤ −7361 < −7332 ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل a :2ﻋﺩﺩ ﺼﺤﻴﺢ ﺒﺎﻗﻲ ﻗﺴﻤﺘﻪ ﻋﻠﻰ 10ﻫﻭ . 6 .2ﻤﺎ ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ aﻋﻠﻰ 2؟ .1ﻤﺎ ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ aﻋﻠﻰ 5؟ a = 10k + 6ﺤﻴﺙ kﻋﺩﺩ ﺼﺤﻴﺢ . ﺤل: a = 10k + 5 + 1ﻭ ﻤﻨﻪ a = 5 (2k + 1) + 1ﻭﻤﻨﻪ ﺒﺎﻗﻲ ﻗﺴﻤﺔ aﻋﻠﻰ 5ﻫﻭ . 1 .1 ) a = 2(5k + 3ﻭﻤﻨﻪ ﺒﺎﻗﻲ ﻗﺴﻤﺔ aﻋﻠﻰ 2ﻫﻭ . 0 .2 ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل :3ﺤﻠل ﺍﻝﻌﺩﺩ 1372ﺇﻝﻰ ﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻝﻴﺔ ﻭ ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻤﻪ . α ﻁﺭﻴﻘﺔ :ﻋﺩﺩ ﻗﻭﺍﺴﻡ ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺘﺤﻠﻴﻠﻪ ﺇﻝﻰ ﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻝﻴﺔ n = a1α1 × a2α 2 ×... × a p pﻫﻭ : )(α1 + 1) × (α 2 + 1) ×... × (α p + 1 ﻨﺤﺴﺏ ﺠﺩﺍﺀ ﺍﻷﻋﺩﺍﺩ ﺍﻝﻤﺤﺼل ﻋﻠﻴﻬﺎ . ﺤل. 1372 = 22 × 73 (1:ﻋﺩﺩ ﻗﻭﺍﺴﻡ 1372ﻫﻭ . ( 2 + 1)( 3 + 1) = 12ﺍﻝﻌﺩﺩ 1372ﻴﻘﺒل ﺇﺫﻥ 12ﻗﺎﺴﻤﺎ . (2ﻝﺘﻜﻥ D1372ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻡ . 1372ﻹﻴﺠﺎﺩ ﺍﻝﻤﺠﻤﻭﻋﺔ D1372ﻴﻤﻜﻥ ﺍﺴﺘﻌﻤﺎل ﺍﻝﺸﺠﺭﺓ ﺍﻵﺘﻴﺔ . 1 7 20 1 7×7=49 2 7×49=343 2×7=14 21 2 2×7×7=98 4 2×7×49=686 4×7=28 22 1; 2; 4;7;14; 28; 49;98; 4 4×49=196 D1372 = ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻡ ﺍﻝﻌﺩﺩ 1372ﻫﻲ ﺇﺫﻥ 196;343; 686;1372 4×343=1372 11 ↵ ﺍﻝﻤﻭﺍﻓﻘﺎﺕ ﻓﻲ ℤ .1ﺘﻌﺭﻴﻑ ﺘﻌﺭﻴﻑ n :ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ.ﺍﻝﻘﻭل ﺃﻥ ﻋﺩﺩﻴﻥ ﺼﺤﻴﺤﻴﻥ aﻭ bﻤﺘﻭﺍﻓﻘﺎﻥ ﺒﺘﺭﺩﻴﺩ n ﻴﻌﻨﻲ ﺃﻥ ﻝﻠﻌﺩﺩﻴﻥ aﻭ bﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ . n ﻨﺭﻤﺯ ] a ≡ b [ nﻭ ﻨﻘﺭﺃ aﻴﻭﺍﻓﻕ bﺒﺘﺭﺩﻴﺩ . n ﺃﻤﺜﻠﺔ. −59 ≡ −3 ، −20 ≡ 1[7 ] ، 24 ≡ 3[7 ] ، 12 ≡ 34 ، 27 ≡ 92 : ﻤﻼﺤﻅﺔ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ . x ≡ 0 ، x .2ﻤﺒﺭﻫﻨﺔ ﻤﺒﺭﻫﻨﺔ a :ﻭ bﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ﻭ nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ.ﻴﻜﻭﻥ ﻝﹻ aﻭ bﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ nﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ a − bﻤﻀﺎﻋﻔﺎ ﻝﻠﻌﺩﺩ . n ﺍﻝﺒﺭﻫﺎﻥ :ﻨﻔﺭﺽ ﺃﻥ ﻝﹻ aﻭ bﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ rﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ . n ﻭ ﻤﻨﻪ ﻨﻀﻊ a = nq + rﻭ b = nq '+ rﺤﻴﺙ qﻭ ' qﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ﻭ . 0 ≤ r < n a − b = nq ′′ ﻭ ﻤﻨﻪ )' . a − b = nq + r − nq '− r = n (q − qﺒﻭﻀﻊ ' q ′′ = q − qن q ′′ 7#د .8*,ﻨﺴﺘﻨﺘﺞ ﻫﻜﺫﺍ ﺃﻥ a − bﻤﻀﺎﻋﻑ ﻝـ . n ﻋﻜﺴﻴﺎ :ﻨﻔﺭﺽ a − bﻤﻀﺎﻋﻑ ﻝـ . nﻴﻭﺠﺩ ﺇﺫﻥ ﻋﺩﺩ ﺼﺤﻴﺢ kﺤﻴﺙ ﺃﻥ . a − b = k n ﻝﻴﻜﻥ rﺒﺎﻗﻲ ﻗﺴﻤﺔ bﻋﻠﻰ . n ﻝﺩﻴﻨﺎ b = nq + rﺤﻴﺙ qﻋﺩﺩ ﺼﺤﻴﺢ ﻭ . 0 ≤ r < n ﻭ ﻤﻨﻪ . a = b + k n = nq + r + k n = ( q + k ) n + r ﺒﻤﺎ ﺃﻥ q + kﻋﺩﺩ ﺼﺤﻴﺢ ﻭ 0 ≤ r < nﻓﺈﻥ rﻫﻭ ﺒﺎﻗﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻝﻠﻌﺩﺩ aﻋﻠﻰ . n ﻭﻤﻨﻪ ﻝﹻ aﻭ bﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ . n ﻨﺘﻴﺠﺔ a :ﻭ bﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ﻭ nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ.ﻴﻜﻭﻥ aﻭ bﻤﺘﻭﺍﻓﻘﻴﻥ ﺒﺘﺭﺩﻴﺩ nﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ a − bﻤﻀﺎﻋﻔﺎ ﻝـ . n ﺨﺎﺼﻴﺔ n :ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻴﺨﺘﻠﻑ ﻋﻥ . (n ≥ 2) 1 ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ aﻴﻭﺍﻓﻕ ،ﺒﺘﺭﺩﻴﺩ ، nﺒﺎﻗﻲ ﻗﺴﻤﺘﻪ ﻋﻠﻰ . n ا%هن a :ﻋﺩﺩ ﺼﺤﻴﺢ ﻭ rﺒﺎﻗﻲ ﻗﺴﻤﺘﻪ ﻋﻠﻰ . n ﻨﻌﻠﻡ ﺃﻥ a = nq + rﺤﻴﺙ qﻋﺩﺩ ﺼﺤﻴﺢ ﻭ . 0 ≤ r < nﻭ ﻤﻨﻪ . a − r = nq ﻭ ﺒﺎﻝﺘﺎﻝﻲ a − rﻤﻀﺎﻋﻑ ﻝِـ . n ﻤﻼﺤﻅﺔ :ﻨﻘﻭل ﺃﻥ rﻫﻭ ﺍﻝﺒﺎﻗﻲ ﺇﻻ ﺇﺫﺍ ﻜﺎﻥ . 0 ≤ r < nﻓﻤﺜﻼ ] 16 ≡ 6 [5ﻭ 6ﻝﻴﺱ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 16ﻋﻠﻰ 5 ﻷﻥ . 6 ≥ 5ﺃﻤﺎ ﺍﻝﺒﺎﻗﻲ ﻓﻬﻭ 1ﻷﻥ ] 16 ≡ 1[5ﻭ . 0 ≤ 1 < 5 12 ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل :1ﻤﻥ ﺒﻴﻥ ﺍﻝﻤﻭﺍﻓﻘﺎﺕ ﺍﻵﺘﻴﺔ ﺃﺫﻜﺭ ﺍﻝﺼﺤﻴﺤﺔ ﻭ ﺍﻝﺨﺎﻁﺌﺔ: 58 ≡ −5[7 ] (4 ؛ 478 ≡ 32 (3 ؛ −32 ≡ 18 (2 ؛ 26 ≡ 11 (1 483 ≡ 36 [7 ] (8 ؛ 1312 ≡ 25 (7 ؛ 144 ≡ 11 (6 ؛ 632 ≡ 14 (5 ﻁﺭﻴﻘﺔ :ﻝﻠﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺃﻥ ] a ≡ b [ nﻴﻤﻜﻥ ﺍﻝﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺃﻥ a − bﻤﻀﺎﻋﻑ ﻝِـ nﺃﻭ ﺍﻝﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺃﻥ ﻝﹻ aﻭ b ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ . n ﺤل: 26 −11 = 15 (1ﻭ . 15 = 3×5ﺇﺫﻥ ] 26 ≡ 11[5ﺼﺤﻴﺤﺔ. −32 −18 = −50 (2ﻭ . −50 = (−5)×10ﺇﺫﻥ ] −32 ≡ 18[10ﺼﺤﻴﺤﺔ. 478 − 32 = 446 (3ﻭ . 446 = 89× 5 + 1ﺇﺫﻥ ] 478 ≡ 32 [5ﺨﺎﻁﺌﺔ .ﻭ ﻨﻜﺘﺏ ]. 478 ≡ 32 [5 58 + 5 = 63 (4ﻭ . 63 = 9× 7ﺇﺫﻥ ] 58 ≡ −5[7ﺼﺤﻴﺤﺔ. . 632 = 3969 (5ﺒﺎﻗﻲ ﻗﺴﻤﺔ 632ﻋﻠﻰ 5ﻫﻭ ﺇﺫﻥ 4ﻭﺒﻤﺎ ﺃﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ 14ﻋﻠﻰ 5ﻫﻭ ﻜﺫﻝﻙ 4ﻓﺈﻥ ] 63 2 ≡ 14 [5ﺼﺤﻴﺤﺔ. 144 = 19× 7 + 11 (6ﻭ ﺒﻤﺎ ﺃﻥ ﺍﻝﻌﺩﺩ 144ﻴﻭﺍﻓﻕ ﺒﺘﺭﺩﻴﺩ 19ﺒﺎﻗﻲ ﻗﺴﻤﺘﻪ ﻋﻠﻰ 19ﻨﺴﺘﻨﺘﺞ ﺃﻥ ] 144 ≡ 11[19ﺼﺤﻴﺤﺔ. 131 2 = 1430×12 + 1 (7ﻭ 25 = 2×12 + 1ﺘﺤﺼﻠﻨﺎ ﻋﻠﻰ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ 12ﺇﺫﻥ ] 131 2 ≡ 25[12ﺼﺤﻴﺤﺔ. 48 3 = 15799× 7 + 6 (8ﻭ 36 = 5× 7 + 1ﻝﻡ ﻨﺤﺼل ﻋﻠﻰ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ 7ﺇﺫﻥ ] 483 ≡ 36 [7ﺨﺎﻁﺌﺔ.ﻭ ﻨﻜﺘﺏ ] . 483 ≡ 36 [7 ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل :2ﻋﻴﻥ ﻓﻲ ﻜل ﺤﺎﻝﺔ ﻤﻥ ﺍﻝﺤﺎﻻﺕ ﺍﻵﺘﻴﺔ )] ( a ≡ b [ nﺒﺎﻗﻲ ﻗﺴﻤﺔ aﻋﻠﻰ nﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ b ﻋﻠﻰ ، nﺜﻡ ﺃﺫﻜﺭ ﺼﺤﺔ ﺃﻭ ﺨﻁﺄ ﺍﻝﻤﻭﺍﻓﻘﺔ. 158 ≡ 39 [17 ] (4 ؛ 471 ≡ 30 (3 ؛ −322 ≡ 78[ 4] (2 ؛ 262 ≡ 927 (1 ﺤل: 262 = 5×52 + 2 (1ﻭ 927 = 5×185 + 2ﺇﺫﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 262ﻋﻠﻰ 5ﻫﻭ 2ﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 927 ﻋﻠﻰ 5ﻫﻭ 2ﻭ ﻤﻨﻪ 262ﻭ 927ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ 5ﺇﺫﻥ ] 262 ≡ 927 [5ﺼﺤﻴﺤﺔ . −322 = 4×(−81) + 2 (2ﻭ 78 = 4×19 + 2ﺇﺫﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ −322ﻋﻠﻰ 4ﻫﻭ 2ﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 78ﻋﻠﻰ 4ﻫﻭ 2ﻭ ﻤﻨﻪ −322ﻭ 78ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ 4ﺇﺫﻥ ] −322 ≡ 78[ 4ﺼﺤﻴﺤﺔ . 471 = 8×58 + 7 (3ﻭ 30 = 8×3 + 6ﺇﺫﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 471ﻋﻠﻰ 8ﻫﻭ 7ﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 30ﻋﻠﻰ 8ﻫﻭ 6 ﻭ ﻤﻨﻪ 471ﻭ 30ﻝﻴﺱ ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ 8ﺇﺫﻥ ] 471 ≡ 30[8ﺨﺎﻁﺌﺔ.ﻭ ﻨﻜﺘﺏ ]. 471≡ 30 [8 158 = 17×9 + 5 (4ﻭ 39 = 17 × 2 + 5ﺇﺫﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 158ﻋﻠﻰ 17ﻫﻭ 5ﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 39ﻋﻠﻰ 17 ﻫﻭ 5ﻭ ﻤﻨﻪ 158ﻭ 39ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ 17ﺇﺫﻥ ] 158 ≡ 39[17ﺼﺤﻴﺤﺔ. 13 ↵ ﺨﻭﺍﺹ ﺍﻝﻤﻭﺍﻓﻘﺎﺕ ﻓﻲ ℤ ﺍﻝﺨﺎﺼﻴﺔ :1ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ aﻝﺩﻴﻨﺎ. a ≡ a [ n ] : ا%هن :ﻝﺩﻴﻨﺎ a − a = 0 × nﻭ ﻤﻨﻪ a − aﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ . n ﺍﻝﺨﺎﺼﻴﺔ a :2ﻭ bﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ﻭ nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ. ﺇﺫﺍ ﻜﺎﻥ ] a ≡ b [ nﻓﺈﻥ ] . b ≡ a [ n ا%هن :إذا آن ﻝﹻ aﻭ bﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ nﻓﺈﻥ ﻝﹻ bﻭ aﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ . n ﺍﻝﺨﺎﺼﻴﺔ) 3ﺨﺎﺼﻴﺔ ﺍﻝﺘﻌﺩﻱ( n :ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ b ، a.ﻭ cﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ. ﺇﺫﺍ ﻜﺎﻥ ) ] a ≡ b [ nﻭ ] ( b ≡ c [ nﻓﺈﻥ ] . a ≡ c [ n ا%هن b ، a :ﻭ cﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ ﺤﻴﺙ ) ] a ≡ b [ nﻭ ] .( b ≡ c [ n ) ] a ≡ b [ nﻭ ] ( b ≡ c [ nﻴﻌﻨﻲ ) a − b = k nﻭ k )( b − c = k ' nﻭ ' kﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ( ﻭ ﻤﻨﻪ ﻭ ﺒﺎﻝﺠﻤﻊ ﻨﺤﺼل ﻋﻠﻰ . a − c = ( k + k ') nﺒﻤﺎ ﺃﻥ ' k + kﻋﺩﺩ ﺼﺤﻴﺢ ﻓﺈﻥ ] . a ≡ c [ n ﺍﻝﺨﺎﺼﻴﺔ) 4ﺨﺎﺼﻴﺔ ﺍﻝﺘﻼﺅﻡ ﻤﻊ ﺍﻝﺠﻤﻊ( n :ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ c ، b ، a.ﻭ dﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ. ﺇﺫﺍ ﻜﺎﻥ ) ] a ≡ b [ nﻭ ] ( c ≡ d [ nﻓﺈﻥ ] . a + c ≡ b + d [ n ا%هن c ، b ، a :ﻭ dﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ ﺤﻴﺙ ) ] a ≡ b [ nﻭ ] .( c ≡ d [ n ) ] a ≡ b [ nﻭ ] ( c ≡ d [ nﻴﻌﻨﻲ ) a − b = k nﻭ k )( c − d = k ' nﻭ ' kﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ( ﻭﻤﻨﻪ ﻭ ﺒﺎﻝﺠﻤﻊ ﻨﺤﺼل ﻋﻠﻰ . (a + c ) − (b + d ) = (k + k ') nﺒﻤﺎ ﺃﻥ ' k + kﻋﺩﺩ ﺼﺤﻴﺢ ﻓﺈﻥ ] . a + c ≡ b + d [ n ﺍﻝﺨﺎﺼﻴﺔ) 5ﺨﺎﺼﻴﺔ ﺍﻝﺘﻼﺅﻡ ﻤﻊ ﺍﻝﻀﺭﺏ( n :ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ c ، b ، a.ﻭ dﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ. ﺇﺫﺍ ﻜﺎﻥ ) ] a ≡ b [ nﻭ ] ( c ≡ d [ nﻓﺈﻥ ] . a ×c ≡ b ×d [ n ا%هن c ، b ، a :ﻭ dﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ ﺤﻴﺙ ﺃﻥ) ] a ≡ b [ nﻭ ] .( c ≡ d [ n ) ] a ≡ b [ nﻭ ] ( c ≡ d [ nﻴﻌﻨﻲ ) a − b = k nﻭ k )( c − d = k ' nﻭ ' kﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ( ﻝﺩﻴﻨﺎ a c − b d = a c − ad + ad − b d = a (c − d ) + d (a − b) = a k ' n + d k n = ( a k '+ d k ) n ﺒﻤﺎ ﺃﻥ a k '+ d kﻋﺩﺩ ﺼﺤﻴﺢ ﻓﺈﻥ ] . a c ≡ b d [ n :()*+ﻴﺘﻡ ﺘﻌﻤﻴﻡ ﺍﻝﺨﺎﺼﻴﺔ ﺍﻝﺴﺎﺒﻘﺔ ﺇﻝﻰ ﺠﺩﺍﺀ ﻋﺩﺓ ﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ. ﺍﻝﺨﺎﺼﻴﺔ n :6ﻭ pﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ a.ﻭ bﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ. ﺇﺫﺍ ﻜﺎﻥ ] a ≡ b [ nﻓﺈﻥ ] . a p ≡ b p [ n ا%هن :ﻴﻤﻜﻨﻙ ﺍﺴﺘﻌﻤﺎل ﺍﻻﺴﺘﺩﻻل ﺒﺎﻝﺘﺭﺍﺠﻊ ) ﺃﻨﻅﺭ ﺍﻝﺘﻤﺎﺭﻴﻥ (. 14 ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل :1ﻝﺘﻜﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻝﺼﺤﻴﺤﺔ ﺍﻝﺘﺎﻝﻴﺔ b = 837 ، a = 255 :ﻭ . c = 3691 .1ﻋﻴﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻷﻋﺩﺍﺩ b ، aﻭ cﻋﻠﻰ ﺍﻝﻌﺩﺩ . 11 .2ﺒﺎﺴﺘﻌﻤﺎل ﺍﻝﻤﻭﺍﻓﻘﺎﺕ ﻋﻴﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﻜل ﻤﻥ . a ×b × c ، a 2 ، a + b + c ، a × c ، a + b ﺤل: .1ﺒﺎﺴﺘﻌﻤﺎل ﺤﺎﺴﺒﺔ ﻨﺠﺩ ﺃﻥ ﺒﻭﺍﻗﻲ ﺍﻷﻋﺩﺍﺩ b ، aﻭ cﻋﻠﻰ ﺍﻝﻌﺩﺩ 11ﻫﻲ 6 ، 1 ، 2ﻋﻠﻰ ﺍﻝﺘﺭﺘﻴﺏ. ]a ≡ 2 [11 ﻭ ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻝﺠﻤﻊ ﻨﺠﺩ ] a + b ≡ 3[11ﻭ ﻤﻨﻪ ﺍﻝﺒﺎﻗﻲ ﻫﻭ.3 .2ﻝﺩﻴﻨﺎ: ]b ≡ 1[11 ﻝﺩﻴﻨﺎ ] a ≡ 2[11ﻭ ]. c ≡ 6 [11ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻝﻀﺭﺏ ﻨﺠﺩ ] ac ≡ 12 [11ﻭ ﺒﻤﺎ ﺃﻥ ]12 ≡ 1 [11 ﻓﺈﻨﻪ ﺒﺎﻝﺘﻌﺩﻱ ] ac ≡ 1[11ﻭ ﻤﻨﻪ ﺍﻝﺒﺎﻗﻲ ﻫﻭ.1 ]a ≡ 2 [11 ﻝﺩﻴﻨﺎ b ≡ 1 :ﻭ ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻝﺠﻤﻊ ﻨﺠﺩ ] a + b + c ≡ 9[11ﻭ ﺍﻝﺒﺎﻗﻲ ﻫﻭ . 9 ] c ≡ 6 [11 ﻝﺩﻴﻨﺎ a ≡ 2 :ﻭ ﺒﺘﻁﺒﻴﻕ ﺍﻝﺨﺎﺼﻴﺔ 6ﻨﺠﺩ ] a ≡ 2 [11ﺃﻱ ] a ≡ 4[11ﻭ ﺍﻝﺒﺎﻗﻲ ﻫﻭ . 4 2 2 2 ]a ≡ 2[11 ] b ≡ 1[11ﻭ ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻝﻀﺭﺏ ﻨﺠﺩ ] a ×b × c ≡ 1× 2× 6[11ﺃﻱ ]a ×b × c ≡ 12 [11 ] c ≡ 6[11 ﻭ ] 12 ≡ 1[11ﻭ ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻝﺘﻌﺩﻱ ﻨﺠﺩ ] a ×b × c ≡ 1[11ﻭ ﺍﻝﺒﺎﻗﻲ ﻫﻭ .1 ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل a :2ﻭ bﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ ﺤﻴﺙ ] a ≡ 3 [5ﻭ ]. b ≡ 4 [5 .1ﺒﻴﻥ ﺃﻥ ﺍﻝﻌﺩﺩ 2a + bﻴﻘﺒل ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ . 5 .2ﻋﻴﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ 2a 2 + b 2ﻋﻠﻰ . 5 .3ﺘﺤﻘﻕ ﺃﻥ ]. b ≡ −1 [5ﺍﺴﺘﻨﺘﺞ ﺒﺎﻗﻲ ﻗﺴﻤﺔ b 2007ﻭ b 1428ﻋﻠﻰ . 5 ﺤل: ]2a ≡ 1 [5 ]2a ≡ 6 [5 ]a ≡ 3 [5 ﻷﻥ ]. 6 ≡ 1 [5ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻝﺠﻤﻊ ﻨﺤﺼل ﺃﻱ ﻭ ﻤﻨﻪ .1ﻝﺩﻴﻨﺎ ] b ≡ 4 [5 ] b ≡ 4 [5 ]b ≡ 4 [5 ﻋﻠﻰ 2a + b ≡ 5 :ﻭ ﺒﻤﺎ ﺃﻥ ] 5 ≡ 0 [5ﻓﺈﻥ ]. 2a + b ≡ 0 [5ﺒﺎﻗﻲ ﻗﺴﻤﺔ 2a + bﻋﻠﻰ 5ﻫﻭ . 0ﻨﺴﺘﻨﺘﺞ ﻫﻜﺫﺍ ﺃﻥ ﺍﻝﻌﺩﺩ 2a + bﻴﻘﺒل ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ . 5 ]2a 2 ≡ 3 [5 ] 2a 2 ≡ 2×9 [5 ]a ≡ 3 [5 2ﻷﻥ ] 18 ≡ 3 [5ﻭ ]. 16 ≡ 1 [5 2ﺃﻱ ﻭ ﻤﻨﻪ .2ﻝﺩﻴﻨﺎ b ≡ 1 [ 5 ] b ≡ 16 [ 5 ] ]b ≡ 4 [5 ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻝﺠﻤﻊ ﻨﺤﺼل ﻋﻠﻰ. 2a + b ≡ 4 :ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ 2a + bﻋﻠﻰ 5ﻫﻭ ﺇﺫﻥ . 4 2 2 2 2 .3ﻤﻥ ﺍﻝﻭﺍﻀﺢ ﺃﻥ ] 4 ≡ −1 [5ﻭ ﻤﻨﻪ ﺒﺎﺴﺘﻌﻤﺎل ﺨﺎﺼﻴﺔ ﺍﻝﺘﻌﺩﻱ ﻨﺤﺼل ﻋﻠﻰ ]. b ≡ −1 [5 ) b 2007 ≡ ( −1ﻭ ] b 1428 ≡ 11428 [5ﺃﻱ ] b 2007 ≡ −1[5ﻭ ]. b 1428 ≡ 1[5 ﺒﺘﻁﺒﻴﻕ ﺍﻝﺨﺎﺼﻴﺔ 6ﻨﺤﺼل ﻋﻠﻰ ][5 2007 ﻫﻭ 4ﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ b 1428ﻋﻠﻰ 5ﻫﻭ . 1 ﻭ ﺒﻤﺎ ﺃﻥ ] −1 ≡ 4 [5ﻓﺈﻥ ]. b 2007 ≡ 4 [5ﻨﺴﺘﻨﺘﺞ ﺃﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ b 2007ﻋﻠﻰ 5 15 ↵ ﺍﻻﺴﺘﺩﻻل ﺒﺎﻝﺘﺭﺍﺠﻊ .1ﻤﺒﺩﺃ ﺍﻻﺴﺘﺩﻻل ﺒﺎﻝﺘﺭﺍﺠﻊ ﻤﺴﻠﻤﺔ P ( n) :ﺨﺎﺼﻴﺔ ﻤﺘﻌﻠﻘﺔ ﺒﻌﺩﺩ ﻁﺒﻴﻌﻲ nﻭ n0ﻋﺩﺩ ﻁﺒﻴﻌﻲ. ﻝﻠﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺼﺤﺔ ﺍﻝﺨﺎﺼﻴﺔ ) P ( nﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﻴﺴﺎﻭﻱ n0ﻴﻜﻔﻲ ﺃﻥ: .1ﻨﺘﺄﻜﺩ ﻤﻥ ﺼﺤﺔ ﺍﻝﺨﺎﺼﻴﺔ ﻤﻥ ﺃﺠل n0ﺃﻱ ) . P ( n0 .2ﻨﻔﺭﺽ ﺃﻥ ﺍﻝﺨﺎﺼﻴﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻜﻴﻔﻲ nﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﻴﺴﺎﻭﻱ n0ﺃﻱ ) P (n ) ﻓﺭﻀﻴﺔ ﺍﻝﺘﺭﺍﺠﻊ( ﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ﺍﻝﺨﺎﺼﻴﺔ ﻤﻥ ﺃﺠل n + 1ﺃﻱ ). P (n + 1 ﻓﺈﻥ ﺍﻝﺨﻼﺼﺔ: )P (n + 1 ﺇﺫﺍ ﻜﺎﻨﺕ )P ( n ) P ( n0 ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺼﺤﻴﺤﺔ ﺼﺤﻴﺤﺔ ﺼﺤﻴﺤﺔ nﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﻴﺴﺎﻭﻱ n0 ) P ( nﺼﺤﻴﺤﺔ. ﺍﻝﻤﺭﺤﻠﺔ 2 ﺍﻝﻤﺭﺤﻠﺔ 1 ﻤﻼﺤﻅﺔ :ﺒﺼﻔﺔ ﻋﺎﻤﺔ ﺍﻝﻤﺭﺤﻠﺔ ﺍﻷﻭﻝﻰ ﺘﺘﻤﺜل ﻓﻲ ﻋﻤﻠﻴﺔ ﺘﺤﻘﻕ ﺒﺴﻴﻁﺔ ﻻ ﺘﻁﺭﺡ ﺃﻱ ﻤﺸﻜل ﺇﻻ ﺃﻨﻬﺎ ﺘﺒﻘﻰ ﻀﺭﻭﺭﻴﺔ ﻷﻨﻪ ﻴﻤﻜﻥ ﻝﺨﺎﺼﻴﺔ ﺃﻥ ﺘﻜﻭﻥ ﻭﺭﺍﺜﻴﺔ ﻭ ﻝﻜﻥ ﺨﺎﻁﺌﺔ. ﻤﺜﺎل :ﺍﻝﺨﺎﺼﻴﺔ ":ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ 3n ، nﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ " 5ﺨﺎﻁﺌﺔ ﺭﻏﻡ ﺃﻨﻬﺎ ﻭﺭﺍﺜﻴﺔ.ﺒﺎﻝﻔﻌل: ﺇﺫﺍ ﻜﺎﻥ 3nﻤﻀﺎﻋﻔﺎ ﻝﻠﻌﺩﺩ 5ﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ kﺒﺤﻴﺙ . 3n = 5k ﻝﺩﻴﻨﺎ ﺇﺫﻥ ) 3n +1 = 3 × 3n = 3 ( 5k ) = 5 ( 3Kﻭ ﻤﻨﻪ 3n +1ﻫﻭ ﺍﻵﺨﺭ ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ.5 .2ﻤﺜﺎل )n ( n + 1 = " 1 + 2 + 3 +... + n ﻝﻨﺜﺒﺕ ﺼﺤﺔ ﺍﻝﺨﺎﺼﻴﺔ ﺍﻝﺘﺎﻝﻴﺔ " :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻏﻴﺭ ﻤﻌﺩﻭﻡ، 2 1× 2 = 1ﻭ ﻤﻨﻪ ﺍﻝﺨﺎﺼﻴﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل . n = 1 ﺍﻝﻤﺭﺤﻠﺔ ﺍﻷﻭﻝﻰ :ﻤﻥ ﺃﺠل n = 1ﻝﺩﻴﻨﺎ: 2 ﺍﻝﻤﺭﺤﻠﺔ ﺍﻝﺜﺎﻨﻴﺔ ) ﺍﻝﻭﺭﺍﺜﺔ (: )n ( n + 1 = . 1 + 2 + 3 +... + n ﻨﻔﺭﺽ ﺼﺤﺔ ﺍﻝﺨﺎﺼﻴﺔ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺤﻴﺙ n ≥ 1ﺃﻱ: 2 = ). 1 + 2 + 3 +... + n + ( n + 1 ﻝﻨﺒﺭﻫﻥ ﺼﺤﺔ ﺍﻝﺨﺎﺼﻴﺔ ﻤﻥ ﺃﺠل n + 1ﺃﻱ( n + 1)( n + 2 ) : 2 )n ( n + 1 = )1 + 2 + 3 +... + n + ( n + 1) = (1 + 2 + 3 +... + n ) + ( n + 1 ﻝﺩﻴﻨﺎ+ ( n + 1) : 2 ) n ( n + 1) + 2 ( n + 1) ( n + 1)( n + 2 = ). 1 + 2 + 3 +... + n + ( n + 1 = ﻭ ﻤﻨﻪ 2 2 )n ( n + 1 = " 1 + 2 + 3 +... + n ﺍﻝﺨﻼﺼﺔ " :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻏﻴﺭ ﻤﻌﺩﻭﻡ، 2 16 ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل:1ﺃﺜﺒﺕ ،ﺒﺎﺴﺘﻌﻤﺎل ﺍﻻﺴﺘﺩﻻل ﺒﺎﻝﺘﺭﺍﺠﻊ ،ﺃﻨﻪ: ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ، nﺍﻝﻌﺩﺩ n3 − nﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ . 3 ﺤل: ﺍﻝﺨﺎﺼﻴﺔ " n3 − nﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ " 3ﻤﺘﻌﻠﻘﺔ ﺒﺎﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ . nﻨﺴﺘﻌﻤل ﺍﻻﺴﺘﺩﻻل ﺒﺎﻝﺘﺭﺍﺠﻊ. ﺍﻝﻤﺭﺤﻠﺔ :1ﻤﻥ ﺃﺠل 03 − 0 = 0 = 3× 0 ، n = 0ﻭ ﻤﻨﻪ 03 − 0ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ .3 ﻨﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻝﺨﺎﺼﻴﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل . n = 0 ﺍﻝﻤﺭﺤﻠﺔ :2ﻨﻔﺭﺽ ﺃﻥ ﺍﻝﺨﺎﺼﻴﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺤﻴﺙ n ≥ 0 ﺃﻱ n3 − n :ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ .3 ﻨﻀﻊ n3 − n = 3kﺤﻴﺙ kﻋﺩﺩ ﻁﺒﻴﻌﻲ .ﻭ ﻤﻨﻪ n3 = 3k + n ﻭ ﻨﺒﺭﻫﻥ ﺃﻥ ﺍﻝﺨﺎﺼﻴﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل n + 1ﺃﻱ (n + 1) − ( n + 1)ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ .3 3 3 (n + 1) −(n +1) = n3 + 3n 2 + 3n +1− n −1 = (3k + n) + 3n 2 + 2n 3 )(n + 1) −(n +1) = 3k + 3n2 + 3n = 3(k + n2 + n ﻭ ﻭ ﺒﻤﺎ ﺃﻥ ) 3( k + n 2 + nﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ 3ﻨﺴﺘﻨﺘﺞ ﺃﻥ ) (n + 1) − ( n + 1ﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ . 3 3 ﺍﻝﺨﻼﺼﺔ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ n3 − n ، nﻤﻀﺎﻋﻑ ﻝﻠﻌﺩﺩ . 3 ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل :2ﻨﺭﻤﺯ ﺒﹻ ) P (nﺇﻝﻰ ﺍﻝﺨﺎﺼﻴﺔ ﺍﻝﺘﺎﻝﻴﺔ " :ﺍﻝﻌﺩﺩ 3ﻴﻘﺴﻡ ﺍﻝﻌﺩﺩ 4n + 1ﺤﻴﺙ nﻋﺩﺩ ﻁﺒﻴﻌﻲ". .1ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ، nﺇﺫﺍ ﻜﺎﻨﺕ ) P ( nﺼﺤﻴﺤﺔ ﺘﻜﻭﻥ ) P ( n + 1ﺼﺤﻴﺤﺔ. .2ﻫل ﻴﻤﻜﻨﻨﺎ ﺍﺴﺘﻨﺘﺎﺝ ﺃﻥ ﺍﻝﺨﺎﺼﻴﺔ ) P ( nﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ n؟ ﺍﺸﺭﺡ. ﺤل: .1ﻨﻔﺭﺽ ﺃﻥ ) P (nﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻜﻴﻔﻲ nﺃﻱ ﺃﻥ ﺍﻝﻌﺩﺩ 3ﻴﻘﺴﻡ ﺍﻝﻌﺩﺩ 4n + 1ﻭ ﻴﻤﻜﻨﻨﺎ ﺃﻥ ﻨﻌﺒﺭ ﻋﻥ ﺫﻝﻙ ﺒﻭﻀﻊ 4n + 1 = 3kﺤﻴﺙ kﻋﺩﺩ ﺼﺤﻴﺢ. ﻝﻨﺒﺭﻫﻥ ﺃﻥ ) P ( n +1ﺼﺤﻴﺤﺔ ﺃﻱ ﺃﻥ ﺍﻝﻌﺩﺩ 3ﻴﻘﺴﻡ ﺍﻝﻌﺩﺩ . 4n +1 + 1 ﻝﺩﻴﻨﺎ 4n +1 + 1 = 4 × 4n + 1ﻭ ﺒﻤﺎ ﺃﻥ ) 4n = 3k − 1ﻤﻥ ﺍﻝﻔﺭﻀﻴﺔ ﺍﻝﺴﺎﺒﻘﺔ ( ﻨﺴﺘﻨﺘﺞ ﺃﻥ: 4n +1 + 1 = 4 ( 3k − 1) + 1 ﻝﺩﻴﻨﺎ ﺇﺫﻥ 4n +1 + 1 = 4 × 3k − 4 + 1 = 3 ( 4k ) − 3ﻭ ﻤﻨﻪ ). 4n +1 + 1 = 3 ( 4k − 1 ﻝﺩﻴﻨﺎ ﺇﺫﻥ 4n +1 + 1 = 3k ′ﻤﻊ k ′ = 4k − 1ﻭ ﻫﻭ ﻋﺩﺩ ﺼﺤﻴﺢ.ﻨﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻝﻌﺩﺩ 3ﻴﻘﺴﻡ ﺍﻝﻌﺩﺩ . 4n +1 + 1 ﻭ ﻤﻨﻪ ﻓﺎﻝﺨﺎﺼﻴﺔ ) P (n + 1ﺼﺤﻴﺤﺔ. .2ﻻ ﻴﻤﻜﻨﻨﺎ ﺍﺴﺘﻨﺘﺎﺝ ﺃﻥ ﺍﻝﺨﺎﺼﻴﺔ ) P (nﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻓﻼﺒﺩ ﻤﻥ ﺍﻝﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺘﻬﺎ ﻤﻥ ﺃﺠل n = 0ﻷﻥ ﻭﺭﺍﺜﻴﺔ ﺍﻝﺨﺎﺼﻴﺔ ﺘﺒﻘﻰ ﻏﻴﺭ ﻜﺎﻓﻴﺔ. ﻨﻼﺤﻅ ﺃﻥ ﺍﻝﺨﺎﺼﻴﺔ ﻏﻴﺭ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل n = 0ﻷﻥ ﺍﻝﻌﺩﺩ 3ﻻ ﻴﻘﺴﻡ ﺍﻝﻌﺩﺩ 2ﻭ ﺒﺎﻝﺘﺎﻝﻲ ﻓﻬﻲ ﻏﻴﺭ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n 17 ﺍﻝﺘﺸﻔﻴﺭ ﺍﻝﺘﺂﻝﻔﻲ ﻴﺴﺘﻌﻤل ﺍﻝﺘﺸﻔﻴﺭ ﻹﺨﻔﺎﺀ ﺍﻝﻤﻌﻠﻭﻤﺎﺕ ﻭ ﺍﻝﻤﺭﺍﺴﻼﺕ ﻭ ﻗﺩ ﺸﺎﻉ ﻓﻲ ﺃﻴﺎﻤﻨﺎ ﺍﺴﺘﻌﻤﺎل ﻫﺫﺍ ﺍﻝﻤﺼﻁﻠﺢ. ﺘﺘﻠﺨﺹ ﻁﺭﻴﻘﺔ ﺍﻝﺘﺸﻔﻴﺭ ﺍﻝﺘﺂﻝﻔﻲ ﻓﻲ ﺇﺭﻓﺎﻕ ﻜل ﺤﺭﻑ ﺃﺒﺠﺩﻱ ﻤﺭﻗﻡ ﺒﻌﺩﺩ ) xﺤﻴﺙ 0 ≤ x ≤ 27ﻓﻲ ﺤﺎﻝﺔ ﺍﻷﺒﺠﺩﻴﺔ ﺍﻝﻌﺭﺒﻴﺔ ( ﺒﺎﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ yﺒﺎﻗﻲ ﻗﺴﻤﺔ a x + bﻋﻠﻰ 28ﺃﻱ ﺍﻝﻤﻌﺭﻑ ﺒﹻ ] y ≡ ax + b [ 28ﺤﻴﺙ ( a ≠ 0 ) aﻭ bﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻤﻌﻠﻭﻤﺎﻥ ﻓﻘﻁ ﻤﻥ ﻁﺭﻑ ﺍﻝﻤﺭﺴل ﻭ ﺍﻝﻤﺴﺘﻘﺒل.ﺘﺴﻤﻰ ﺍﻝﺜﻨﺎﺌﻴﺔ ) ( a ;bﻤﻔﺘﺎﺡ ﺍﻝﺸﻔﺭﺓ. .1ﻤﺜﺎل :ﻤﻥ ﺃﺠل a = 3ﻭ b = 7ﻨﺤﺼل ﻋﻠﻰ ﺍﻝﺠﺩﻭل ﺍﻝﺘﺎﻝﻲ: ﻥ ﻡ ل ﻙ ﻱ ﻁ ﺡ ﺯ ﻭ ﻫـ ﺩ ﺝ ﺏ ﺃ ﺍﻝﺤﺭﻑ 13 12 11 10 9 8 7 6 5 4 3 2 1 0 x 18 15 12 9 6 3 0 25 22 19 16 13 10 7 y ﻕ ﻉ ﻡ ﻱ ﺯ ﺩ ﺃ ﺽ ﺙ ﺭ ﻑ ﻥ ﻙ ﺡ ﺍﻝﺘﺸﻔﻴﺭ ﻍ ﻅ ﺽ ﺫ ﺥ ﺙ ﺕ ﺵ ﺭ ﻕ ﺹ ﻑ ﻉ ﺱ ﺍﻝﺤﺭﻑ 27 26 25 24 23 22 21 20 19 18 17 16 15 14 x 4 1 26 23 20 17 14 11 8 5 2 27 24 21 y ﻫـ ﺏ ﻅ ﺥ ﺵ ﺹ ﺱ ل ﻁ ﻭ ﺝ ﻍ ﺫ ﺕ ﺍﻝﺘﺸﻔﻴﺭ ﻤﺎ ﻫﻲ ﺍﻝﻜﻠﻤﺔ ﺍﻝﺘﻲ ﺘﺸﻔﻴﺭﻫﺎ " ﻙ ﺡ ﻱ " " ،ﺡ ﻡ ﻥ ﺽ ﺡ ﺯ ﻁ " ﻋﻴﻥ ﺘﺸﻔﻴﺭﺍ ﻝﻠﻌﺒﺎﺭﺓ " ﺨﻤﺴﺔ ﺠﻭﻴﻠﻴﺔ ﻋﻴﺩ ﺍﻻﺴﺘﻘﻼل " .2ﺘﻁﺒﻴﻕ: ﺍﺴﺘﻌﻤل ﺍﻝﻤﻔﺘﺎﺡ ) ( 3;5ﻹﻨﺸﺎﺀ ﺠﺩﻭل ﻤﻤﺎﺜل ﻝﻠﺴﺎﺒﻕ. ﺍﺴﺘﻌﻤل ﺍﻝﻤﻔﺘﺎﺡ ) ( 3;5ﻝﻔﻙ ﺍﻝﺘﺸﻔﻴﺭ ﻭ ﻗﺭﺍﺀﺓ ﺍﻝﺭﺴﺎﻝﺔ ﺍﻝﺘﺎﻝﻴﺔ ":ﻭﺵ ﻙ ﻑ ﺵ ﺽ ﻥ ﻁ ﺯ ﺙ ﻩ ﺱ ﻭ ﻙ ﻉ ﺵ ﺯ " ﻗﻡ ﺒﺘﺸﻔﻴﺭ ﺤﻜﻤﺔ ﻤﻥ ﺍﻝﺤﻜﻡ ﺍﻝﺸﻬﻴﺭﺓ ﻭ ﺍﻁﻠﺏ ﻤﻥ ﺯﻤﻴﻠﻙ ﻓﻜﻬﺎ ﻭ ﻗﺭﺍﺀﺘﻬﺎ. .3ﻤﻼﺤﻅ ﻫﺎﻤﺔ ﻨﺄﺨﺫ ﺍﻵﻥ a = 7ﻭ b = 3 . 7 × 9 + 3 ≡ 7 ×1 + 3 ][ 28 ﺘﺤﻘﻕ ﻤﺜﻼ ﺃﻥ ﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ﺒﺎﻝﻨﺴﺒﺔ ﻝﻠﺤﺭﻓﻴﻥ ﺏ ﻭ ﻱ ﻤﻥ ﺍﻝﺤﺭﻭﻑ ﺍﻷﺒﺠﺩﻴﺔ ؟ ﻋﻴﻥ ﻤﻥ ﺒﻴﻥ ﺍﻝﺤﺭﻭﻑ ﺍﻷﺒﺠﺩﻴﺔ ،ﺤﺭﻓﻴﻥ ﺃﻭ ﺃﻜﺜﺭ ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺘﺸﻔﻴﺭ. ﻋﻴﻥ ﻜل ﺍﻝﺤﺭﻭﻑ ﺍﻷﺒﺠﺩﻴﺔ ﺍﻝﺘﻲ ﺘﺸﻔﻴﺭﻫﺎ . 3 ﻨﻼﺤﻅ ﺃﻨﻪ ﻓﻲ ﻫﺫﻩ ﺍﻝﺤﺎﻝﺔ ﻤﺜﻼ ﺘﻭﺠﺩ ﺤﺭﻭﻑ ﻴﺘﻡ ﺘﺸﻔﻴﺭﻫﺎ ﺒﻨﻔﺱ ﺍﻝﺤﺭﻑ ﻤﻤﺎ ﻴﺴﺒﺏ ﺼﻌﻭﺒﺎﺕ ﺒﺎﻝﻨﺴﺒﺔ ﻝﻜل ﻤﻥ ﺍﻝﻤﺭﺴل ﻭ ﺍﻝﻤﺴﺘﻘﺒل. ﻋﻴﻥ ) . PGCD ( a ; 28ﻫل ﺍﻝﻌﺩﺩﺍﻥ aﻭ 28ﺃﻭﻝﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ ؟ ﻓﻲ ﺍﻝﺤﺎﻝﺔ ﺍﻝﻌﺎﻤﺔ ﻭ ﺘﺠﻨﺒﺎ ﻝﻠﻭﻗﻭﻉ ﻓﻲ ﺤﺎﻝﺔ ﻤﻤﺎﺜﻠﺔ ﻝﻠﺴﺎﺒﻘﺔ ﻨﺨﺘﺎﺭ ﺍﻝﻌﺩﺩ aﺃﻭﻝﻴﺎ ﻤﻊ ﺍﻝﻌﺩﺩ 28ﻓﻲ ﺤﺎﻝﺔ ﺍﻝﺤﺭﻭﻑ ﺍﻷﺒﺠﺩﻴﺔ. 18 ﻴﻭﻡ ﺍﻷﺴﺒﻭﻉ ﺍﻝﺫﻱ ﻴﺼﺎﺩﻑ ﺘﺎﺭﻴﺨﺎ ﻤﻌﻴﻨﺎ ﺼﺎﺩﻑ ﺃﻭل ﺠﺎﻨﻔﻲ 2007ﻴﻭﻡ ﺍﻻﺜﻨﻴﻥ .ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﻫﺫﺍ ﻴﻤﻜﻥ ﺘﺤﺩﻴﺩ ﻴﻭﻡ ﺍﻷﺴﺒﻭﻉ ﺍﻝﺫﻱ ﻴﺼﺎﺩﻑ ﺃﻱ ﻴﻭﻡ ﻤﻥ ﺍﻝﺴﻨﻭﺍﺕ ﺍﻝﺴﺎﺒﻘﺔ ﺃﻭ ﺍﻝﻘﺎﺩﻤﺔ. (1ﻨﺭﻴﺩ ﻤﻌﺭﻓﺔ ﺍﻝﻴﻭﻡ ﻨﺭﻴﺩ ﺍﻝﺫﻱ ﺼﺎﺩﻑ ﺨﻤﺴﺔ ﺠﻭﻴﻠﻴﺔ .1962 ـ ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺍﻷﻴﺎﻡ nﺍﻝﺘﻲ ﺘﻔﺼل ﺒﻴﻥ ﺃﻭل ﺠﺎﻨﻔﻲ 2007ﻭ ﺨﻤﺴﺔ ﺠﻭﻴﻠﻴﺔ ) 1962ﻻ ﻴﺤﺴﺏ ﺇﻻ ﺃﺤﺩ ﺍﻝﺘﺎﺭﻴﺨﻴﻥ ﻓﻲ ﺍﻝﻤﺠﻤﻭﻉ ﻜﻤﺎ ﺘﺄﺨﺫ ﺍﻝﺴﻨﺔ ﺍﻝﻜﺎﺒﺴﺔ ﺍﻝﺘﻲ ﻋﺩﺩ ﺃﻴﺎﻤﻬﺎ . ( 366 ـ ﺒﻘﺴﻤﺔ ﺍﻝﻌﺩﺩ ﺍﻝﻤﻭﺠﻭﺩ ﺴﺎﺒﻘﺎ ﻋﻠﻰ ، 7ﺃﻭﺠﺩ ﻋﺩﺩ ﺍﻷﺴﺎﺒﻴﻊ qﺍﻝﺘﻲ ﻤﺭﺕ ﺒﻴﻥ ﺍﻝﺘﺎﺭﻴﺨﻴﻥ. ـ ﻋﻴﻥ ﺍﻝﻌﺩﺩ rﻝﻸﻴﺎﻡ ﺍﻝﻤﺘﺒﻘﻴﺔ ﺒﻌﺩ ﻤﺭﻭﺭ ﻫﺫﻩ ﺍﻷﺴﺎﺒﻴﻊ ﺒﻴﻥ ﺍﻝﺘﺎﺭﻴﺨﻴﻥ.ﺃﻜﺘﺏ nﺒﺩﻻﻝﺔ qﻭ . r ـ ﺍﺴﺘﻨﺘﺞ ﻴﻭﻡ ﺍﻷﺴﺒﻭﻉ ﺍﻝﺫﻱ ﺼﺎﺩﻑ ﺨﻤﺴﺔ ﺠﻭﻴﻠﻴﺔ.1962 (2ﺒﻨﻔﺱ ﺍﻝﻁﺭﻴﻘﺔ ﻋﻴﻥ ﻴﻭﻡ ﺍﻷﺴﺒﻭﻉ ﺍﻝﺫﻱ ﻴﺼﺎﺩﻑ ﺃﻭل ﻨﻭﻓﻤﺒﺭ ﻤﻥ ﺍﻝﺴﻨﺔ ﺍﻝﻘﺎﺩﻤﺔ. (3ﻤﺎ ﻫﻭ ﻴﻭﻡ ﺍﻷﺴﺒﻭﻉ ﺍﻝﺫﻱ ﻴﺼﺎﺩﻑ ﺍﻻﺤﺘﻔﺎل ﺒﻤﺭﻭﺭ ﻗﺭﻥ ﻋﻥ ﺘﺎﺭﻴﺦ ﺍﻻﺴﺘﻘﻼل ؟ (4ﻋﻴﻥ ﻴﻭﻡ ﺍﻷﺴﺒﻭﻉ ﺍﻝﺫﻱ ﺼﺎﺩﻑ ﺃﻭل ﻨﻭﻓﻤﺒﺭ 1954؟ # (5ه" ا "م ا /ي -دف ر* )#دك ؟ ﺘﻌﻴﻴﻥ ﺒﻭﺍﻗﻲ ﻗﺴﻤﺔ ﻗﻭﻯ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻋﻠﻰ ﺁﺨﺭ ﻨﻬﺩﻑ ﺇﻝﻰ ﺘﻌﻴﻴﻥ ،ﺤﺴﺏ ﻗﻴﻡ ﺍﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ ، nﺒﻭﺍﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ ﺍﻝﻁﺒﻴﻌﻲ 2nﻋﻠﻰ . 5 .1ﻭﻀﻊ ﺘﺨﻤﻴﻥ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻝﻤﺠﺩﻭل ﺃﺤﺠﺯ ﻓﻲ ﺍﻝﻌﻤﻭﺩ Aﺍﻷﻋﺩﺍﺩ ﺍﻝﻁﺒﻴﻌﻴﺔ ﻤﻥ 0ﺇﻝﻰ . 27ﻓﻲ ﺍﻝﺨﻠﻴﺔ B 2ﺃﺤﺠﺯ = 2A 2ﺜﻡ ﺍﺴﺤﺏ ﺇﻝﻰ ﺍﻷﺴﻔل ﺒﻌﺩ ﺘﺤﺩﻴﺩﻫﺎ.ﻓﻲ ﺍﻝﺨﻠﻴﺔ C 2ﺃﺤﺠﺯ ) = MOD ( B 2;5ﺜﻡ ﺍﺴﺤﺏ ﺇﻝﻰ ﺍﻷﺴﻔل ﺒﻌﺩ ﺘﺤﺩﻴﺩﻫﺎ. ﻤﺎﺫﺍ ﺘﻼﺤﻅ ؟ ﻀﻊ ﺘﺨﻤﻴﻨﺎ. .2ﺇﺜﺒﺎﺕ ﺼﺤﺔ ﺍﻝﺘﺨﻤﻴﻥ ]. 24 ≡... [5 و ]23 ≡... [5 ، ]22 ≡... [5 ، ]21 ≡... [5 ﺃﻨﻘل ﺜﻡ ﺃﺘﻤﻡ ﻤﺎ ﻴﻠﻲ: ﺍﺴﺘﻨﺘﺞ ﺒﻭﺍﻗﻲ ﻗﺴﻤﺔ 2nﻋﻠﻰ 5ﻤﻥ ﺃﺠل . 1 ≤ n ≤ 4 ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ 24 k ≡ 1 ، kﺜﻡ ﺒﺎﺴﺘﻌﻤﺎل ﺨﻭﺍﺹ ﺍﻝﻤﻭﺍﻓﻘﺔ ﺃ ﺃﺘﻤﻡ ) ﺒﻌﺩ ﻨﻘﻠﻬﺎ ( ﻤﺎ ﻴﻠﻲ: ]. 24 k +3 ≡... [5 ، ]24 k + 2 ≡... [5 ، ]24 k +1 ≡... [5 ﻤﺎ ﻫﻭ ﺇﺫﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 2nﻋﻠﻰ 5ﺇﺫﺍ ﻜﺎﻥ n = 4k + 2 ، n = 4k + 1 ، n = 4kﻭ n = 4k + 3؟ .3ﺘﻁﺒﻴﻘﺎﺕ ﻋﻴﻥ ﺒﻭﺍﻗﻲ ﻗﺴﻤﺔ ﻜل ﻤﻥ 21428ﻭ 22007ﻋﻠﻰ . 5 ﻋﻠﻰ . 5 2 × 250 − 3 × 22000 + 283 ﻋﻴﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ ﺘﺤﻘﻕ ﺃﻥ ] 2007 ≡ 2 [5ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺒﺎﻗﻲ ﻗﺴﻤﺔ 2007 2008ﻋﻠﻰ . 5 ﺒﻴﻥ ﺃﻥ ﺍﻝﻌﺩﺩ ﻴﻘﺒل 3 ×122002 − 3 × 2007 2000 + 2 × 422003ﺍﻝﻘﺴﻤﺔ ﻋﻠﻰ . 5 19 ﻤﻭﻀﻭﻉ ﻤﺤﻠﻭل .1ﻋﻴﻥ ﻜل ﺍﻷﻋﺩﺍﺩ ﺍﻝﺼﺤﻴﺤﺔ ﻗﻭﺍﺴﻡ ﺍﻝﻌﺩﺩ . 6 %*.2ا? اد ا > n ,*,ا -ن %#أ 3 ! ( n − 4 ) @Aد . 6 .3ﻋﻴﻥ ا? اد ا > n ,*,ا -ن %#أ 3 ! ( n + 2 ) @Aد . 6 n +2 = .a .4ﻨﻌﺘﺒﺭ ﺍﻝﻌﺩﺩ ﺍﻝﻨﺎﻁﻕ aﺤﻴﺙ n −4 6 .a = 1+ ﺘﺤﻘﻕ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﺼﺤﻴﺢ nﻴﺨﺘﻠﻑ ﻋﻥ ، 4 n −4 ﺍﺴﺘﻨﺘﺞ ﺍﻷﻋﺩﺍﺩ ﺍﻝﺼﺤﻴﺤﺔ nﺍﻝﺘﻲ ﻴﻜﻭﻥ ﻤﻥ ﺃﺠﻠﻬﺎ aﻋﺩﺩﺍ ﺼﺤﻴﺤﺎ. n −4 = .b .5ﻨﻌﺘﺒﺭ ﺍﻝﻌﺩﺩ ﺍﻝﻨﺎﻁﻕ bﺤﻴﺙ n +2 6 .b = 1− ﺘﺤﻘﻕ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﺼﺤﻴﺢ nﻴﺨﺘﻠﻑ ﻋﻥ ، 2 n +2 ﺍﺴﺘﻨﺘﺞ ﺍﻷﻋﺩﺍﺩ ﺍﻝﺼﺤﻴﺤﺔ nﺍﻝﺘﻲ ﻴﻜﻭﻥ ﻤﻥ ﺃﺠﻠﻬﺎ bﻋﺩﺩﺍ ﺼﺤﻴﺤﺎ. ﺘﻌﺎﻝﻴﻕ ﺤل ﻤﺨﺘﺼﺭ FG 1 -أ %**3G B- HIا! 6 Bﻓﻲ . ℤ (1ﺇﺫﺍ ﺭﻤﺯﻨﺎ ﺇﻝﻰ ﻤﺠﻤﻭﻋﺔ ﻗﻭﺍﺴﻡ ﺍﻝﻌﺩﺩ 6ﻓﻲ ℤﺒﹻ D 6 ﻓﺈﻥ } D 6 = {−6; − 3; − 2; − 1;1; 2;3;6 -إ D 6 3أن ) ( n − 4 3 B! ( n − 4 ) (2د 6 . n = n ′ + 4 3 n − 4 = n′ - n −4 −6 −3 −2 −1 1 2 3 6 n −2 1 2 3 5 6 7 10 -إ D 6 3أن ) ( n + 2 6 3 B! ( n + 2 ) (3 n +2 −6 −3 −2 −1 1 2 3 6 . n = n ′ − 2 3 n + 2 = n′ - n −8 −5 −4 −3 −1 0 1 4 6 n −4+6 n +2 1+ = = (4ﻝﺩﻴﻨﺎ: KLJ -ت أن % x = yأن y %# MNG n −4 n −4 n −4 ل إ . x 6 a = 1+ ﻭ ﻤﻨﻪ n −4 ﻴﻜﻭﻥ ﺇﺫﻥ aﻋﺩﺩﺍ ﺼﺤﻴﺤﺎ ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ) ِ ! ( n − 4ـ 6 QR-I 3-I -ا "ال ا .P . ﻋﻨﺼﺭ ﻤﻥ } {−2 ;1; 2;3;5; 6; 7;10 ﺃﻱ n 6 n +2−6 n −4 B3I -أن 3د %ا > −6 %*,*,و F)I 6 1− = = (5ﻝﺩﻴﻨﺎ: n +2 n +2 n +2 ا Tا! S# ( Bا? اد ا >. ℤ ,*, 6 b = 1− ﻭ ﻤﻨﻪ n +2 ﻴﻜﻭﻥ ﺇﺫﻥ bﻋﺩﺩﺍ ﺼﺤﻴﺤﺎ ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ) ِ ! ( n + 2ـ 6 ﻋﻨﺼﺭ ﻤﻥ } {−8 ; − 5; − 4; − 3; − 1;0;1; 4 ﺃﻱ n 20 ﻤﻭﻀﻭﻉ ﻤﻊ ﺇﺭﺸﺎﺩﺍﺕ ﻴﺘﻜﻭﻥ ﺭﻗﻡ ﺍﻝﺤﺴﺎﺏ ﺍﻝﺠﺎﺭﻱ ﻹﺤﺩﻯ ﺍﻝﺒﻨﻭﻙ ﻤﻥ 15ﺭﻗﻤﺎ ،ﻤﺭﺘﺒﺔ ﻤﻥ ﺍﻝﻴﺴﺎﺭ ﺇﻝﻰ ﺍﻝﻴﻤﻴﻥ ،ﻴﺘﻡ ﺘﺤﺩﻴﺩﻫﺎ ﺒﺎﻝﻨﺴﺒﺔ ﻝﻜل ﻤﺸﺘﺭﻙ ﻭﻓﻕ ﺍﻝﻨﻤﻁ ﺍﻝﺘﺎﻝﻲ: ﺍﻝﺭﻗﻡ ﺍﻷﻭل ﻫﻭ ﺇﻤﺎ 1ﻭ ﺇﻤﺎ 2ﺤﺴﺏ ﺠﻨﺱ ﺍﻝﻤﺸﺘﺭﻙ. ﺍﻝﺭﻗﻤﺎﻥ ﺍﻝﻤﻭﺍﻝﻴﺎﻥ ﻫﻤﺎ ﺍﻝﺭﻗﻤﺎﻥ ﺍﻷﺨﻴﺭﺍﻥ ﺍﻝﻤﻭﺠﻭﺩﺍﻥ ﻓﻲ ﺴﻨﺔ ﻤﻴﻼﺩﻩ. ﺍﻝﺭﻗﻤﺎﻥ ﺍﻝﻤﻭﺍﻝﻴﺎﻥ ﻴﻌﻴﻨﺎﻥ ﺸﻬﺭ ﻤﻴﻼﺩﻩ. ﺍﻝﺭﻗﻤﺎﻥ ﺍﻝﻤﻭﺍﻝﻴﺎﻥ ﻫﻤﺎ ﺭﻤﺯ ﻭﻻﻴﺔ ﺇﻗﺎﻤﺘﻪ. ﺍﻷﺭﻗﺎﻡ ﺍﻝﺴﺘﺔ ﺍﻝﻤﻭﺍﻝﻴﺔ ﻫﻲ ﺭﻗﻡ ﺒﻁﺎﻗﺔ ﺘﻌﺭﻴﻔﻪ ﺍﻝﻭﻁﻨﻴﺔ. ﺍﻝﺭﻗﻤﺎﻥ ﺍﻷﺨﻴﺭﺍﻥ ﻫﻤﺎ ﺍﻝﻤﻔﺘﺎﺡ ) ﻴﻤﻜﻥ ﺃﻥ ﻴﻜﻭﻥ ﺃﻭل ﺍﻝﺭﻗﻤﻴﻥ ﻤﻥ ﺍﻝﻤﻔﺘﺎﺡ ﻤﻌﺩﻭﻤﺎ (. ﻴﺘﻡ ﺘﻌﻴﻴﻥ ﺍﻝﻤﻔﺘﺎﺡ ) ﻤﻔﺘﺎﺡ ﺍﻝﻤﺭﺍﻗﺒﺔ ( ﻜﻤﺎ ﻴﻠﻲ: ﺍﻝﻤﻔﺘﺎﺡ ﻫﻭ 97 − rﺤﻴﺙ rﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻝﻌﺩﺩ ﺍﻝﻤﻜﻭﻥ ﻤﻥ ﺍﻷﺭﻗﺎﻡ ﺍﻝﺜﻼﺜﺔ ﻋﺸﺭ ﺍﻷﻭﻝﻰ ﻋﻠﻰ . 97 .1ﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ ﻤﻔﺘﺎﺡ ﺍﻝﻤﺭﺍﻗﺒﺔ ﺍﻝﺨﺎﺹ ﺒﺭﻗﻡ ﺍﻝﺤﺴﺎﺏ . 2 85 05 33 565 001 89 .2ﺃﺜﻨﺎﺀ ﺇﺠﺭﺍﺀ ﻋﻤﻠﻴﺔ ﺴﺤﺏ ﺘﻡ ﺤﺠﺯ ﺨﻁﺄ ﺍﻝﺭﻗﻡ ) 2 85 05 33 569 001 89ﺨﻁﺄ ﻓﻲ ﺍﻝﺭﻗﻡ ﺍﻝﻌﺎﺸﺭ (. ﺘﺤﻘﻕ ﺃﻥ ﻤﻔﺘﺎﺡ ﺍﻝﻤﺭﺍﻗﺒﺔ ﻓﻲ ﻫﺫﻩ ﺍﻝﺤﺎﻝﺔ ﻴﺴﻤﺢ ﻤﻥ ﺍﻜﺘﺸﺎﻑ ﻭﺠﻭﺩ ﺨﻁﺄ. .3ﻝﻴﻜﻥ Bﺭﻗﻡ ﺤﺴﺎﺏ ﻭ ﻝﻴﻜﻥ Aﺍﻝﻌﺩﺩ ﺍﻝﻤﻜﻭﻥ ﻤﻥ ﺍﻷﺭﻗﺎﻡ ﺍﻝﺜﻼﺜﺔ ﻋﺸﺭ ﺍﻷﻭﻝﻰ ﻝﻠﻌﺩﺩ ) Bﺩﻭﻥ ﺍﻝﻤﻔﺘﺎﺡ(. ﺃﻜﺘﺏ ﺍﻝﻌﺩﺩ Aﻋﻠﻰ ﺍﻝﺸﻜل H ×106 + Lﺤﻴﺙ . ( B = 2 85 05 33 565 001 89 ) 0 ≤ L < 106 ﺒﻴﻥ ﺃﻥ ] 106 ≡ 27 [97ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺃﻥ ﻝﻠﻌﺩﺩﻴﻥ Aﻭ 27H + Lﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ . 97 ﺒﺎﺴﺘﻌﻤﺎل ﺍﻝﻨﺘﻴﺠﺔ ﺍﻝﺴﺎﺒﻘﺔ ﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ ﻤﻔﺘﺎﺡ ﺍﻝﻤﺭﺍﻗﺒﺔ ﺍﻝﺨﺎﺹ ﺒﺭﻗﻡ ﺍﻝﺤﺴﺎﺏ . 2 85 05 33 565 001 89 ﺃﺫﻜﺭ ﻤﺜﺎﻻ ﻝﺨﻁﺄ ﻻ ﻴﺴﻤﺢ ﺍﻝﻤﻔﺘﺎﺡ ﻤﻥ ﺍﻜﺘﺸﺎﻑ ﻭﺠﻭﺩﻩ. ﺇﺭﺸﺎﺩﺍﺕ .1ﺒﺎﻗﻲ ﻗﺴﻤﺔ 2 85 05 33 565 001ﻋﻠﻰ 97ﻫﻭ 8ﻭ ﻤﻨﻪ ﺍﻝﻤﻔﺘﺎﺡ ﻫﻭ . 97 − 8 = 89 ﻴﻤﻜﻥ ﺍﺴﺘﻌﻤﺎل ﺤﺎﺴﺒﺔ ﺘﺴﻤﺢ ﻤﻥ ﺘﻌﻴﻴﻥ ﺒﺎﻗﻲ ﺍﻝﻘﺴﻤﺔ ﻤﺜل . casio 89 .2ﺍﻝﻤﻔﺘﺎﺡ ﻫﻭ . 66 .3ﻻﺤﻅ ﺃﻥ ) 106 = (102ﺜﻡ ﻨﺴﺘﻌﻤل ﺨﻭﺍﺹ ﺍﻝﻤﻭﺍﻓﻘﺔ. 3 ﻨﺄﺨﺫ ﺭﻗﻤﻲ ﺤﺴﺎﺏ ﻝﻬﻤﺎ ﻨﻔﺱ ﺍﻝﺠﺯﺀ Hﺒﺤﻴﺙ ﻴﻜﻭﻥ ﻝﺠﺯﺃﻴﻬﻤﺎ Lﻭ L ′ ﻨﻔﺱ ﺍﻝﺒﺎﻗﻲ ﻓﻲ ﺍﻝﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻋﻠﻰ . 97 ﻨﺫﻜﺭ ﻋل ﺴﺒﻴل ﺍﻝﻤﺜﺎل ﺍﻝﻌﺩﺩﻴﻥ 2 85 05 33 565 001 89ﻭ . 2 85 05 33 565 098 89 21 10ﻋﻴﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻝﺼﺤﻴﺤﺔ xﺍﻝﺘﻲ ﻤﻥ ﺃﺠﻠﻬﺎ ﻴﻜﻭﻥ ﺍﻝﻌﺩﺩ ,ر .(%-,. x − 5ﻤﻀﺎ?