Materials Chemistry II – Kinetics – Lecture 2 PDF
Document Details
Uploaded by Deleted User
2024
Stanislav Mráz
Tags
Summary
This lecture covers thermodynamics concepts, including the relationship between statistical physics, partition functions, and macroscopic properties. It details how systems, configurations, and statistical ensembles relate to internal energy, entropy, and Gibbs free energy. The lecture also introduces the thermodynamic square and Guggenheim scheme.
Full Transcript
Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz Topics and questions 1) What have we learnt so far ? 2) Thermodynamics square / Guggenheim scheme 3) Relationship between statistical physics (partition functions - q, Q) and macroscopic properti...
Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz Topics and questions 1) What have we learnt so far ? 2) Thermodynamics square / Guggenheim scheme 3) Relationship between statistical physics (partition functions - q, Q) and macroscopic properties (thermodynamic state functions) - internal energy U - entropy S - Helmholtz energy A - pressure p - Gibbs energy G 2 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 What have we learnt so far ? We have considered a system. A system can be anything, e.g. molecules. 𝜀𝜀 A system can be in a configuration. 0 A statistical ensemble is a collection of configurations a system can be in. 𝐸𝐸 = 0 𝑊𝑊 = 1 W is weight of a configuration 𝐸𝐸 = 𝜀𝜀 𝑊𝑊 = 3 𝐸𝐸 = 2𝜀𝜀 𝑊𝑊 = 3 𝑊𝑊 = 3 𝑊𝑊 = 6 𝑊𝑊 = 3𝑥𝑥𝑥𝑥𝑥𝑥 = 3! 𝐸𝐸 = 3𝜀𝜀 𝑊𝑊 = 1 𝑁𝑁! 𝐸𝐸 = 4𝜀𝜀 𝑊𝑊 = 3 𝑊𝑊 = 3 𝑊𝑊 = 𝑛𝑛0 ! 𝑛𝑛1 ! 𝑛𝑛2 ! … 𝐸𝐸 = 5𝜀𝜀 𝑊𝑊 = 3 A system will be found in the configuration 𝐸𝐸 = 6𝜀𝜀 𝑊𝑊 = 1 with the largest weight 3 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 What have we learnt so far ? … continues We have looked for a maximum of weight W of a configuration ! ! 𝑑𝑑𝑑𝑑 = 0 𝑑𝑑 𝑙𝑙𝑙𝑙 𝑊𝑊 = 0 by a method of undetermined (Lagrange) multipliers 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑊𝑊 𝑑𝑑 𝑙𝑙𝑙𝑙 𝑊𝑊 = 𝑑𝑑𝑛𝑛𝑖𝑖 = 0 𝜕𝜕 𝑛𝑛𝑖𝑖 𝑖𝑖 constant total number molecules of a system 𝑁𝑁 = 𝑛𝑛𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 = 0 𝑖𝑖 𝑖𝑖 constant total energy of a system 𝐸𝐸 = 𝑛𝑛𝑖𝑖 𝜀𝜀𝑖𝑖 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 = 0 𝑖𝑖 𝑖𝑖 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑊𝑊 Lagrange multipliers 𝛼𝛼 and − 𝛽𝛽 𝑑𝑑𝑛𝑛𝑖𝑖 + 𝛼𝛼 𝑑𝑑𝑛𝑛𝑖𝑖 − 𝛽𝛽 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 = 0 𝜕𝜕 𝑛𝑛𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖𝑖 … Stirling’s approximation 𝑙𝑙𝑙𝑙 𝑛𝑛! ≈ 𝑛𝑛 𝑙𝑙𝑙𝑙 𝑛𝑛 − 𝑛𝑛 … … Boltzmann distribution (pi) pi – probability of the occupation of the i-th energy level 𝑛𝑛𝑖𝑖 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑝𝑝𝑖𝑖 = = 𝑞𝑞 = 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑗𝑗 q - molecular (microcanonical) partition function 𝑁𝑁 ∑𝑗𝑗 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑗𝑗 𝑗𝑗 4 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 What have we learnt so far ? … end statistical ensembles microcanonical ensemble 𝑞𝑞 = 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 q – molecular partition function 𝑖𝑖 εi – energy of the i-th energy level - isolated system with constant energy E - characteristic thermodynamic state function S (entropy) canonical ensemble 𝑄𝑄 = 𝑒𝑒 −𝛽𝛽𝐸𝐸𝑖𝑖 Ei – energy of the state i of the system 𝑖𝑖 - constant temperature T - characteristic thermodynamic state function A (Helmholtz energy) for independent molecules distinguishable - different in chemical nature – Ar vs. Ne 𝑄𝑄 = 𝑞𝑞 𝑁𝑁 - Ti in a solid state with a set of coordinates 𝑞𝑞 𝑁𝑁 indistinguishable - particles free to move – Ar gas 𝑄𝑄 = 𝑁𝑁! - Ti vapor (gas phase) Gibbs paradox 5 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Thermodynamic square / Guggenheim scheme Good Physicists Have Studied Under Very Ambitious Teachers (*) -S U V H A -p G T thermodynamic state functions variables V = constant for U – internal energy S – entropy microcanonical and H – enthalpy V – volume √ canonical ensembles A – Helmholtz energy p – pressure T = constant for a G – Gibbs energy T – temperature √ canonical ensemble *hint: search for other mnemonics in internet 6 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Internal energy U -S U V H A -p G T Any individual molecule can be in states with various energies 𝜀𝜀2 The lowest energy level ε 0 is often taken as 0 𝜀𝜀1 and all other energies will be measured relative to ε 0 𝜀𝜀0 = 0 The total energy of a system is given by We can use Boltzmann distribution 𝐸𝐸 = 𝑛𝑛𝑖𝑖 𝜀𝜀𝑖𝑖 𝑛𝑛𝑖𝑖 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 1 −𝛽𝛽𝜀𝜀 𝑝𝑝𝑖𝑖 = = −𝛽𝛽𝜀𝜀 = 𝑒𝑒 𝑖𝑖 𝑖𝑖 𝑁𝑁 ∑𝑗𝑗 𝑒𝑒 𝑗𝑗 𝑞𝑞 𝑞𝑞 = 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑖𝑖 𝑁𝑁 −𝛽𝛽𝜀𝜀 𝑛𝑛𝑖𝑖 = 𝑒𝑒 𝑖𝑖 𝑞𝑞 7 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Internal energy U -S U V H A -p G T Any individual molecule can be in states with various energies 𝜀𝜀2 The lowest energy level ε 0 is often taken as 0 𝜀𝜀1 and all other energies will be measured relative to ε 0 𝜀𝜀0 = 0 The total energy of a system is given by We can use Boltzmann distribution 𝐸𝐸 = 𝑛𝑛𝑖𝑖 𝜀𝜀𝑖𝑖 𝑛𝑛𝑖𝑖 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 1 −𝛽𝛽𝜀𝜀 𝑝𝑝𝑖𝑖 = = −𝛽𝛽𝜀𝜀 = 𝑒𝑒 𝑖𝑖 𝑖𝑖 𝑁𝑁 ∑𝑗𝑗 𝑒𝑒 𝑗𝑗 𝑞𝑞 𝑁𝑁 𝐸𝐸 = 𝜀𝜀𝑖𝑖 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑞𝑞 𝑞𝑞 = 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑁𝑁 −𝛽𝛽𝜀𝜀 𝑛𝑛𝑖𝑖 = 𝑒𝑒 𝑖𝑖 𝑞𝑞 8 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Internal energy U -S U V H A -p G T Any individual molecule can be in states with various energies 𝜀𝜀2 The lowest energy level ε 0 is often taken as 0 𝜀𝜀1 and all other energies will be measured relative to ε 0 𝜀𝜀0 = 0 The total energy of a system is given by We can use Boltzmann distribution 𝐸𝐸 = 𝑛𝑛𝑖𝑖 𝜀𝜀𝑖𝑖 𝑛𝑛𝑖𝑖 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 1 −𝛽𝛽𝜀𝜀 𝑝𝑝𝑖𝑖 = = −𝛽𝛽𝜀𝜀 = 𝑒𝑒 𝑖𝑖 𝑖𝑖 𝑁𝑁 ∑𝑗𝑗 𝑒𝑒 𝑗𝑗 𝑞𝑞 𝑁𝑁 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑑𝑑 𝐸𝐸 = 𝜀𝜀𝑖𝑖 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝜀𝜀𝑖𝑖 𝑒𝑒 =− 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑞𝑞 𝑑𝑑𝛽𝛽 𝑞𝑞 = 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑖𝑖 𝑁𝑁 𝑑𝑑 −𝛽𝛽𝜀𝜀 𝑁𝑁 𝑑𝑑 𝑖𝑖 𝐸𝐸 = − 𝑒𝑒 𝑖𝑖 =− 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑁𝑁 −𝛽𝛽𝜀𝜀 𝑞𝑞 𝑑𝑑𝛽𝛽 𝑞𝑞 𝑑𝑑𝛽𝛽 𝑛𝑛𝑖𝑖 = 𝑒𝑒 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑞𝑞 9 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Internal energy U -S U V H A -p G T Any individual molecule can be in states with various energies 𝜀𝜀2 The lowest energy level ε 0 is often taken as 0 𝜀𝜀1 and all other energies will be measured relative to ε 0 𝜀𝜀0 = 0 The total energy of a system is given by We can use Boltzmann distribution 𝐸𝐸 = 𝑛𝑛𝑖𝑖 𝜀𝜀𝑖𝑖 𝑛𝑛𝑖𝑖 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 1 −𝛽𝛽𝜀𝜀 𝑝𝑝𝑖𝑖 = = −𝛽𝛽𝜀𝜀 = 𝑒𝑒 𝑖𝑖 𝑖𝑖 𝑁𝑁 ∑𝑗𝑗 𝑒𝑒 𝑗𝑗 𝑞𝑞 𝑁𝑁 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑑𝑑 𝐸𝐸 = 𝜀𝜀𝑖𝑖 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝜀𝜀𝑖𝑖 𝑒𝑒 =− 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑞𝑞 𝑑𝑑𝛽𝛽 𝑞𝑞 = 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑖𝑖 𝑁𝑁 𝑑𝑑 −𝛽𝛽𝜀𝜀 𝑁𝑁 𝑑𝑑 𝑖𝑖 𝐸𝐸 = − 𝑒𝑒 𝑖𝑖 =− 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑁𝑁 −𝛽𝛽𝜀𝜀 𝑞𝑞 𝑑𝑑𝛽𝛽 𝑞𝑞 𝑑𝑑𝛽𝛽 𝑛𝑛𝑖𝑖 = 𝑒𝑒 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑞𝑞 𝑁𝑁 𝑑𝑑𝑞𝑞 𝑑𝑑 𝑙𝑙𝑙𝑙 𝑞𝑞 𝐸𝐸 = − = −𝑁𝑁 𝑞𝑞 𝑑𝑑𝛽𝛽 𝑑𝑑𝛽𝛽 In order to calculate the internal energy U of a system, we may have to add a constant U0 𝑈𝑈 = 𝑈𝑈0 + 𝐸𝐸 10 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Internal energy U -S U V H A -p G T Any individual molecule can be in states with various energies 𝜀𝜀2 The lowest energy level ε 0 is often taken as 0 𝜀𝜀1 and all other energies will be measured relative to ε 0 𝜀𝜀0 = 0 The total energy of a system is given by We can use Boltzmann distribution 𝐸𝐸 = 𝑛𝑛𝑖𝑖 𝜀𝜀𝑖𝑖 𝑛𝑛𝑖𝑖 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 1 −𝛽𝛽𝜀𝜀 𝑝𝑝𝑖𝑖 = = −𝛽𝛽𝜀𝜀 = 𝑒𝑒 𝑖𝑖 𝑖𝑖 𝑁𝑁 ∑𝑗𝑗 𝑒𝑒 𝑗𝑗 𝑞𝑞 𝑁𝑁 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑑𝑑 𝐸𝐸 = 𝜀𝜀𝑖𝑖 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝜀𝜀𝑖𝑖 𝑒𝑒 =− 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑞𝑞 𝑑𝑑𝛽𝛽 𝑞𝑞 = 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑖𝑖 𝑁𝑁 𝑑𝑑 −𝛽𝛽𝜀𝜀 𝑁𝑁 𝑑𝑑 𝑖𝑖 𝐸𝐸 = − 𝑒𝑒 𝑖𝑖 =− 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑁𝑁 −𝛽𝛽𝜀𝜀 𝑞𝑞 𝑑𝑑𝛽𝛽 𝑞𝑞 𝑑𝑑𝛽𝛽 𝑛𝑛𝑖𝑖 = 𝑒𝑒 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑞𝑞 𝑁𝑁 𝑑𝑑𝑞𝑞 𝑑𝑑 𝑙𝑙𝑙𝑙 𝑞𝑞 𝐸𝐸 = − = −𝑁𝑁 𝑞𝑞 𝑑𝑑𝛽𝛽 𝑑𝑑𝛽𝛽 In order to calculate the internal energy U of a system, we may have to add a constant U0 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑈𝑈 = 𝑈𝑈0 − 𝑁𝑁 𝜕𝜕𝜕𝜕 𝑁𝑁𝑁𝑁 11 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Entropy S -S U V H A -p G T 1st thermodynamic law 𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑞𝑞 + 𝛿𝛿𝑤𝑤 the change of the internal energy is given by sum of - the energy transferred to the system as heat 𝛿𝛿𝑞𝑞 - the work done on the system 𝛿𝛿𝑤𝑤 = −𝑝𝑝𝑝𝑝𝑝𝑝 = 0 (𝑉𝑉 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.) 2nd thermodynamic law 𝛿𝛿𝑞𝑞 - thermodynamic definition of entropy 𝑑𝑑𝑑𝑑 = → 𝛿𝛿𝛿𝛿 = 𝑇𝑇 𝑑𝑑𝑑𝑑 𝑇𝑇 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝑇𝑇 𝑑𝑑𝑑𝑑 → 𝑑𝑑𝑑𝑑 = 𝑇𝑇 𝑈𝑈 = 𝑈𝑈0 + 𝐸𝐸 𝐸𝐸 = 𝑛𝑛𝑖𝑖 𝜀𝜀𝑖𝑖 𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑖𝑖 𝑑𝑑𝜀𝜀𝑖𝑖 + 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑑𝑑𝑑𝑑 = 0 + 𝑑𝑑𝑑𝑑 𝑑𝑑𝜀𝜀𝑖𝑖 = 0 the energy levels do not change at V = const. 𝑑𝑑𝑑𝑑 = 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 𝑑𝑑𝑑𝑑 = 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑑𝑑𝑑𝑑 1 𝑑𝑑𝑑𝑑 = = 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 = 𝑘𝑘𝛽𝛽 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 𝑇𝑇 𝑇𝑇 𝑖𝑖 𝑖𝑖 12 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Entropy S -S U V H A -p G T 1st thermodynamic law 𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑞𝑞 + 𝛿𝛿𝑤𝑤 the change of the internal energy is given by sum of - the energy transferred to the system as heat 𝛿𝛿𝑞𝑞 - the work done on the system 𝛿𝛿𝑤𝑤 = −𝑝𝑝𝑝𝑝𝑝𝑝 = 0 (𝑉𝑉 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.) 2nd thermodynamic law 𝛿𝛿𝑞𝑞 - thermodynamic definition of entropy 𝑑𝑑𝑑𝑑 = → 𝛿𝛿𝛿𝛿 = 𝑇𝑇 𝑑𝑑𝑑𝑑 𝑇𝑇 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝑇𝑇 𝑑𝑑𝑑𝑑 → 𝑑𝑑𝑑𝑑 = 𝑇𝑇 𝑈𝑈 = 𝑈𝑈0 + 𝐸𝐸 𝐸𝐸 = 𝑛𝑛𝑖𝑖 𝜀𝜀𝑖𝑖 𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑖𝑖 𝑑𝑑𝜀𝜀𝑖𝑖 + 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑑𝑑𝑑𝑑 = 0 + 𝑑𝑑𝑑𝑑 𝑑𝑑𝜀𝜀𝑖𝑖 = 0 the energy levels do not change at V = const. 𝑑𝑑𝑑𝑑 = 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 𝑑𝑑𝑑𝑑 = 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑑𝑑𝑑𝑑 1 𝑑𝑑𝑑𝑑 = = 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 = 𝑘𝑘𝛽𝛽 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 𝑇𝑇 𝑇𝑇 𝑖𝑖 𝑖𝑖 13 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Entropy S - … continues (1) … -S U V H A -p G T 𝑑𝑑𝑑𝑑 1 𝑑𝑑𝑑𝑑 = = 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 = 𝑘𝑘𝛽𝛽 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 = 𝑘𝑘 𝛽𝛽𝛽𝛽𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 𝑇𝑇 𝑇𝑇 𝑖𝑖 𝑖𝑖 𝑖𝑖 In order to determine the most probable system configuration W, we have solved a set of equations 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑊𝑊 + 𝛼𝛼 − 𝛽𝛽𝜀𝜀𝑖𝑖 = 0 𝜕𝜕 𝑛𝑛𝑖𝑖 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑊𝑊 𝛽𝛽𝜀𝜀𝑖𝑖 = + 𝛼𝛼 𝜕𝜕 𝑛𝑛𝑖𝑖 𝑑𝑑𝑑𝑑 1 𝑑𝑑𝑑𝑑 = = 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 = 𝑘𝑘𝛽𝛽 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 𝑇𝑇 𝑇𝑇 𝑖𝑖 𝑖𝑖 14 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Entropy S - … continues (1) … -S U V H A -p G T 𝑑𝑑𝑑𝑑 1 𝑑𝑑𝑑𝑑 = = 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 = 𝑘𝑘𝛽𝛽 𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 = 𝑘𝑘 𝛽𝛽𝛽𝛽𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 𝑇𝑇 𝑇𝑇 𝑖𝑖 𝑖𝑖 𝑖𝑖 In order to determine the most probable system configuration W, we have solved a set of equations 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑊𝑊 + 𝛼𝛼 − 𝛽𝛽𝜀𝜀𝑖𝑖 = 0 𝜕𝜕 𝑛𝑛𝑖𝑖 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑊𝑊 𝛽𝛽𝜀𝜀𝑖𝑖 = + 𝛼𝛼 𝜕𝜕 𝑛𝑛𝑖𝑖 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑊𝑊 𝑑𝑑𝑑𝑑 = 𝑘𝑘 + 𝛼𝛼 𝑑𝑑𝑛𝑛𝑖𝑖 𝜕𝜕 𝑛𝑛𝑖𝑖 𝑖𝑖 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑊𝑊 𝑑𝑑𝑑𝑑 = 𝑘𝑘 𝑑𝑑𝑛𝑛𝑖𝑖 + 𝑘𝑘𝛼𝛼 𝑑𝑑𝑛𝑛𝑖𝑖 𝑁𝑁 = 𝑛𝑛𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑛𝑛𝑖𝑖 = 0 𝜕𝜕 𝑛𝑛𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑊𝑊 𝑑𝑑𝑑𝑑 = 𝑘𝑘 𝑑𝑑𝑛𝑛𝑖𝑖 𝜕𝜕 𝑛𝑛𝑖𝑖 𝑖𝑖 𝑑𝑑𝑑𝑑 = 𝑘𝑘 𝑑𝑑 𝑙𝑙𝑙𝑙 𝑊𝑊 𝑆𝑆 = 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑊𝑊 Boltzmann equation 15 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Boltzmann equation 𝑆𝑆 = 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑊𝑊 W is a weight of a configuration 𝑇𝑇 → 0 𝑊𝑊 = 1 𝑙𝑙𝑙𝑙 𝑊𝑊 = 0 𝑆𝑆 = 0 3rd thermodynamic law 𝑆𝑆 = 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑊𝑊 Boltzmann equation 16 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Entropy S = function (q) - … continues (2) … -S U V H A -p G T microcanonical ensemble q – molecular partition function 𝑁𝑁! 𝑆𝑆 = 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑊𝑊 𝑊𝑊 = Boltzmann distribution 𝑛𝑛0 ! 𝑛𝑛1 ! 𝑛𝑛2 ! … 𝑁𝑁! 𝑛𝑛𝑖𝑖 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 𝑙𝑙𝑙𝑙 𝑊𝑊 = 𝑙𝑙𝑙𝑙 𝑛𝑛0 ! 𝑛𝑛1 ! 𝑛𝑛2 ! … ≈ 𝑁𝑁 𝑙𝑙𝑙𝑙 𝑁𝑁 − 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 𝑛𝑛𝑖𝑖 𝑝𝑝𝑖𝑖 = = 𝑁𝑁 ∑𝑗𝑗 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑗𝑗 = 𝑞𝑞 𝑖𝑖 ≈ 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 𝑁𝑁 − 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 𝑛𝑛𝑖𝑖 𝑛𝑛𝑖𝑖 = 𝑁𝑁 𝑝𝑝𝑖𝑖 𝑖𝑖 𝑛𝑛𝑖𝑖 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 ≈ − 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 = −𝑁𝑁 𝑝𝑝𝑖𝑖 𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖 𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖 = 𝑙𝑙𝑙𝑙 𝑁𝑁 𝑞𝑞 𝑖𝑖 𝑖𝑖 = −𝑁𝑁 𝑝𝑝𝑖𝑖 −𝛽𝛽𝜀𝜀𝑖𝑖 − 𝑙𝑙𝑙𝑙 𝑞𝑞 = 𝑙𝑙𝑙𝑙 𝑒𝑒 −𝛽𝛽𝜀𝜀𝑖𝑖 − 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑖𝑖 = −𝛽𝛽𝜀𝜀𝑖𝑖 − 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑆𝑆 = −𝑁𝑁𝑁𝑁 𝑝𝑝𝑖𝑖 −𝛽𝛽𝜀𝜀𝑖𝑖 − 𝑙𝑙𝑙𝑙 𝑞𝑞 = −𝑁𝑁𝑁𝑁 −𝛽𝛽 𝑝𝑝𝑖𝑖 𝜀𝜀𝑖𝑖 − 𝑝𝑝𝑖𝑖 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑖𝑖 𝑖𝑖 𝑖𝑖 17 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Entropy S = function (q) - … continues (2) … -S U V H A -p G T microcanonical ensemble q – molecular partition function 𝑁𝑁! 𝑆𝑆 = 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑊𝑊 𝑊𝑊 = boundary conditions 𝑛𝑛0 ! 𝑛𝑛1 ! 𝑛𝑛2 ! … 𝑁𝑁! 𝑙𝑙𝑙𝑙 𝑊𝑊 = 𝑙𝑙𝑙𝑙 𝐸𝐸 = 𝑛𝑛𝑖𝑖 𝜀𝜀𝑖𝑖 𝑛𝑛0 ! 𝑛𝑛1 ! 𝑛𝑛2 ! … ≈ 𝑁𝑁 𝑙𝑙𝑙𝑙 𝑁𝑁 − 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 𝑛𝑛𝑖𝑖 𝑖𝑖 𝑖𝑖 𝐸𝐸 𝑛𝑛𝑖𝑖 ≈ 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 𝑁𝑁 − 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 𝑛𝑛𝑖𝑖 = 𝜀𝜀 = 𝑝𝑝𝑖𝑖 𝜀𝜀𝑖𝑖 𝑖𝑖 𝑁𝑁 𝑁𝑁 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑛𝑛𝑖𝑖 ≈ − 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 = −𝑁𝑁 𝑝𝑝𝑖𝑖 𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖 𝑁𝑁 𝑖𝑖 𝑖𝑖 𝑁𝑁 = 𝑛𝑛𝑖𝑖 = −𝑁𝑁 𝑝𝑝𝑖𝑖 −𝛽𝛽𝜀𝜀𝑖𝑖 − 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑖𝑖 𝑁𝑁 𝑛𝑛𝑖𝑖 𝑖𝑖 = = 𝑝𝑝𝑖𝑖 = 1 𝑁𝑁 𝑁𝑁 𝑆𝑆 = −𝑁𝑁𝑁𝑁 𝑝𝑝𝑖𝑖 −𝛽𝛽𝜀𝜀𝑖𝑖 − 𝑙𝑙𝑙𝑙 𝑞𝑞 = −𝑁𝑁𝑁𝑁 −𝛽𝛽 𝑝𝑝𝑖𝑖 𝜀𝜀𝑖𝑖 − 𝑝𝑝𝑖𝑖 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖𝑖 18 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Entropy S = function (q) - … continues (2) … -S U V H A -p G T microcanonical ensemble q – molecular partition function 𝑁𝑁! 𝑆𝑆 = 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑊𝑊 𝑊𝑊 = boundary conditions 𝑛𝑛0 ! 𝑛𝑛1 ! 𝑛𝑛2 ! … 𝑁𝑁! 𝑙𝑙𝑙𝑙 𝑊𝑊 = 𝑙𝑙𝑙𝑙 𝐸𝐸 = 𝑛𝑛𝑖𝑖 𝜀𝜀𝑖𝑖 𝑛𝑛0 ! 𝑛𝑛1 ! 𝑛𝑛2 ! … ≈ 𝑁𝑁 𝑙𝑙𝑙𝑙 𝑁𝑁 − 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 𝑛𝑛𝑖𝑖 𝑖𝑖 𝑖𝑖 𝐸𝐸 𝑛𝑛𝑖𝑖 ≈ 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 𝑁𝑁 − 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 𝑛𝑛𝑖𝑖 = 𝜀𝜀 = 𝑝𝑝𝑖𝑖 𝜀𝜀𝑖𝑖 𝑖𝑖 𝑁𝑁 𝑁𝑁 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑛𝑛𝑖𝑖 ≈ − 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 = −𝑁𝑁 𝑝𝑝𝑖𝑖 𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖 𝑁𝑁 𝑖𝑖 𝑖𝑖 𝑁𝑁 = 𝑛𝑛𝑖𝑖 = −𝑁𝑁 𝑝𝑝𝑖𝑖 −𝛽𝛽𝜀𝜀𝑖𝑖 − 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑖𝑖 𝑁𝑁 𝑛𝑛𝑖𝑖 𝑖𝑖 = = 𝑝𝑝𝑖𝑖 = 1 𝑁𝑁 𝑁𝑁 𝑆𝑆 = −𝑁𝑁𝑁𝑁 𝑝𝑝𝑖𝑖 −𝛽𝛽𝜀𝜀𝑖𝑖 − 𝑙𝑙𝑙𝑙 𝑞𝑞 = −𝑁𝑁𝑁𝑁 −𝛽𝛽 𝑝𝑝𝑖𝑖 𝜀𝜀𝑖𝑖 − 𝑝𝑝𝑖𝑖 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖𝑖 we have defined 𝑆𝑆 = 𝑘𝑘𝛽𝛽 𝐸𝐸 + 𝑁𝑁𝑁𝑁 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑈𝑈 = 𝑈𝑈0 + 𝐸𝐸 𝐸𝐸 = 𝑈𝑈 − 𝑈𝑈0 19 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Entropy S = function (q) - end -S U V H A -p G T microcanonical ensemble q – molecular partition function 𝑁𝑁! 𝑆𝑆 = 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑊𝑊 𝑊𝑊 = boundary conditions 𝑛𝑛0 ! 𝑛𝑛1 ! 𝑛𝑛2 ! … 𝑁𝑁! 𝑙𝑙𝑙𝑙 𝑊𝑊 = 𝑙𝑙𝑙𝑙 𝐸𝐸 = 𝑛𝑛𝑖𝑖 𝜀𝜀𝑖𝑖 𝑛𝑛0 ! 𝑛𝑛1 ! 𝑛𝑛2 ! … ≈ 𝑁𝑁 𝑙𝑙𝑙𝑙 𝑁𝑁 − 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 𝑛𝑛𝑖𝑖 𝑖𝑖 𝑖𝑖 𝐸𝐸 𝑛𝑛𝑖𝑖 ≈ 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 𝑁𝑁 − 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 𝑛𝑛𝑖𝑖 = 𝜀𝜀 = 𝑝𝑝𝑖𝑖 𝜀𝜀𝑖𝑖 𝑖𝑖 𝑁𝑁 𝑁𝑁 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑛𝑛𝑖𝑖 ≈ − 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙 = −𝑁𝑁 𝑝𝑝𝑖𝑖 𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖 𝑁𝑁 𝑖𝑖 𝑖𝑖 𝑁𝑁 = 𝑛𝑛𝑖𝑖 = −𝑁𝑁 𝑝𝑝𝑖𝑖 −𝛽𝛽𝜀𝜀𝑖𝑖 − 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑖𝑖 𝑁𝑁 𝑛𝑛𝑖𝑖 𝑖𝑖 = = 𝑝𝑝𝑖𝑖 = 1 𝑁𝑁 𝑁𝑁 𝑆𝑆 = −𝑁𝑁𝑁𝑁 𝑝𝑝𝑖𝑖 −𝛽𝛽𝜀𝜀𝑖𝑖 − 𝑙𝑙𝑙𝑙 𝑞𝑞 = −𝑁𝑁𝑁𝑁 −𝛽𝛽 𝑝𝑝𝑖𝑖 𝜀𝜀𝑖𝑖 − 𝑝𝑝𝑖𝑖 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖𝑖 we have defined 𝑆𝑆 = 𝑘𝑘𝛽𝛽 𝐸𝐸 + 𝑁𝑁𝑁𝑁 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑈𝑈 = 𝑈𝑈0 + 𝐸𝐸 𝑆𝑆 = 𝑘𝑘𝛽𝛽 𝑈𝑈 − 𝑈𝑈0 + 𝑁𝑁𝑁𝑁 𝑙𝑙𝑙𝑙 𝑞𝑞 𝐸𝐸 = 𝑈𝑈 − 𝑈𝑈0 20 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Microcanonical and canonical ensemble ensemble microcanonical canonical constant N, V, E N, V, T characteristic state function S (entropy) A (Helmholtz energy) partition function q (molecular) Q (canonical) for independent 𝑞𝑞 molecules 𝑄𝑄 = 𝑞𝑞 𝑁𝑁 (distinguishable) 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑞𝑞 𝜕𝜕 𝑁𝑁 𝑙𝑙𝑙𝑙 𝑞𝑞 internal energy U 𝑈𝑈 = 𝑈𝑈0 − 𝑁𝑁 𝑈𝑈 = 𝑈𝑈0 − 𝜕𝜕𝜕𝜕 𝑁𝑁𝑁𝑁 𝜕𝜕𝜕𝜕 𝑁𝑁𝑁𝑁 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑁𝑁 𝑈𝑈 = 𝑈𝑈0 − 𝜕𝜕𝜕𝜕 𝑁𝑁𝑁𝑁 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑈𝑈 = 𝑈𝑈0 − 𝜕𝜕𝜕𝜕 𝑁𝑁𝑁𝑁 entropy S 𝑆𝑆 = 𝑘𝑘𝛽𝛽 𝑈𝑈 − 𝑈𝑈0 + 𝑁𝑁𝑁𝑁 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑆𝑆 = 𝑘𝑘𝛽𝛽 𝑈𝑈 − 𝑈𝑈0 + 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑞𝑞 𝑁𝑁 𝑆𝑆 = 𝑘𝑘𝛽𝛽 𝑈𝑈 − 𝑈𝑈0 + 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 21 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Helmholtz energy A -S U V H A -p G T The Helmholtz energy A is defined as 𝐴𝐴 = 𝑈𝑈 − 𝑇𝑇𝑇𝑇 entropy S 𝑆𝑆 = 𝑘𝑘𝛽𝛽 𝑈𝑈 − 𝑈𝑈0 + 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 1 𝑈𝑈 − 𝑈𝑈0 𝛽𝛽 = 𝑆𝑆 = + 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑘𝑘𝑘𝑘 𝑇𝑇 𝑈𝑈 − 𝑈𝑈0 𝐴𝐴 = 𝑈𝑈 − 𝑇𝑇 + 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑇𝑇 𝐴𝐴 = 𝑈𝑈 − 𝑈𝑈 − 𝑈𝑈0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐴𝐴 = 𝑈𝑈 − 𝑈𝑈 + 𝑈𝑈0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐴𝐴 = 𝑈𝑈0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 / 𝑇𝑇 = 0 𝐴𝐴 = 𝑈𝑈 − 𝑇𝑇 𝑆𝑆 𝐴𝐴0 = 𝑈𝑈0 − 0 𝑆𝑆 𝐴𝐴0 = 𝑈𝑈0 entropy S 𝑆𝑆 = 𝑘𝑘𝛽𝛽 𝑈𝑈 − 𝑈𝑈0 + 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 22 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Helmholtz energy A -S U V H A -p G T The Helmholtz energy A is defined as 𝐴𝐴 = 𝑈𝑈 − 𝑇𝑇𝑇𝑇 entropy S 𝑆𝑆 = 𝑘𝑘𝛽𝛽 𝑈𝑈 − 𝑈𝑈0 + 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 1 𝑈𝑈 − 𝑈𝑈0 𝛽𝛽 = 𝑆𝑆 = + 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑘𝑘𝑘𝑘 𝑇𝑇 𝑈𝑈 − 𝑈𝑈0 𝐴𝐴 = 𝑈𝑈 − 𝑇𝑇 + 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑇𝑇 𝐴𝐴 = 𝑈𝑈 − 𝑈𝑈 − 𝑈𝑈0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐴𝐴 = 𝑈𝑈 − 𝑈𝑈 + 𝑈𝑈0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐴𝐴 = 𝑈𝑈0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 / 𝑇𝑇 = 0 𝐴𝐴 = 𝑈𝑈 − 𝑇𝑇 𝑆𝑆 𝐴𝐴0 = 𝑈𝑈0 − 0 𝑆𝑆 𝐴𝐴0 = 𝑈𝑈0 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 23 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Pressure p -S U V H A -p G T Thermodynamic square Good Physicists Have Studied Under Very Ambitious Teachers 𝜕𝜕𝜕𝜕 𝜕𝜕𝐴𝐴 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑 𝜕𝜕𝜕𝜕 𝜕𝜕𝑇𝑇 -S U V 𝑇𝑇 𝑉𝑉 𝑑𝑑𝑑𝑑 = −𝑝𝑝 𝑑𝑑𝑑𝑑 − 𝑆𝑆 𝑑𝑑𝑑𝑑 H A 𝜕𝜕𝐴𝐴 𝑝𝑝 = − / 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 -p G T 𝜕𝜕𝑉𝑉 𝑇𝑇 24 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Pressure p -S U V H A -p G T Thermodynamic square Good Physicists Have Studied Under Very Ambitious Teachers 𝜕𝜕𝜕𝜕 𝜕𝜕𝐴𝐴 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑 𝜕𝜕𝜕𝜕 𝜕𝜕𝑇𝑇 -S U V 𝑇𝑇 𝑉𝑉 𝑑𝑑𝑑𝑑 = −𝑝𝑝 𝑑𝑑𝑑𝑑 − 𝑆𝑆 𝑑𝑑𝑑𝑑 H A 𝜕𝜕𝐴𝐴 𝑝𝑝 = − / 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 -p G T 𝜕𝜕𝑉𝑉 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑝𝑝 = 𝑘𝑘𝑘𝑘 𝜕𝜕𝑉𝑉 𝑇𝑇 25 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Enthalpy H -S U V H A -p G T Enthalpy H is defined as 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐻𝐻 = 𝑈𝑈 + 𝑝𝑝𝑝𝑝 𝑈𝑈 = 𝑈𝑈0 − 𝑝𝑝 = 𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝜕𝜕𝑉𝑉 𝑇𝑇 𝑉𝑉 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐻𝐻 = 𝑈𝑈0 − + 𝑘𝑘𝑘𝑘𝑘𝑘 / 𝐻𝐻0 = 𝑈𝑈0 𝜕𝜕𝜕𝜕 𝑉𝑉 𝜕𝜕𝜕𝜕 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑝𝑝 = 𝑘𝑘𝑘𝑘 𝜕𝜕𝑉𝑉 𝑇𝑇 26 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Enthalpy H -S U V H A -p G T Enthalpy H is defined as 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐻𝐻 = 𝑈𝑈 + 𝑝𝑝𝑝𝑝 𝑈𝑈 = 𝑈𝑈0 − 𝑝𝑝 = 𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝜕𝜕𝑉𝑉 𝑇𝑇 𝑉𝑉 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐻𝐻 = 𝑈𝑈0 − + 𝑘𝑘𝑘𝑘𝑘𝑘 / 𝐻𝐻0 = 𝑈𝑈0 𝜕𝜕𝜕𝜕 𝑉𝑉 𝜕𝜕𝜕𝜕 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐻𝐻 = 𝐻𝐻0 − + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑉𝑉 𝜕𝜕𝜕𝜕 𝑇𝑇 27 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Gibbs energy G -S U V H A -p G T Gibbs energy G is defined as 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑇𝑇 / 𝐻𝐻 = 𝑈𝑈 + 𝑝𝑝𝑝𝑝 𝑝𝑝 = 𝑘𝑘𝑘𝑘 𝜕𝜕𝑉𝑉 𝑇𝑇 𝐺𝐺 = 𝑈𝑈 + 𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑇𝑇 𝐺𝐺 = 𝑈𝑈 − 𝑇𝑇𝑇𝑇 + 𝑝𝑝𝑝𝑝 / 𝐴𝐴 = 𝑈𝑈 − 𝑇𝑇𝑇𝑇 𝐺𝐺 = 𝐴𝐴 + 𝑝𝑝𝑝𝑝 / 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐺𝐺 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 + 𝑘𝑘𝑘𝑘𝑘𝑘 / 𝐴𝐴0 = 𝐺𝐺0 𝜕𝜕𝜕𝜕 𝑇𝑇 28 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Gibbs energy G -S U V H A -p G T Gibbs energy G is defined as 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑇𝑇 / 𝐻𝐻 = 𝑈𝑈 + 𝑝𝑝𝑝𝑝 𝑝𝑝 = 𝑘𝑘𝑘𝑘 𝜕𝜕𝑉𝑉 𝑇𝑇 𝐺𝐺 = 𝑈𝑈 + 𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑇𝑇 𝐺𝐺 = 𝑈𝑈 − 𝑇𝑇𝑇𝑇 + 𝑝𝑝𝑝𝑝 / 𝐴𝐴 = 𝑈𝑈 − 𝑇𝑇𝑇𝑇 𝐺𝐺 = 𝐴𝐴 + 𝑝𝑝𝑝𝑝 / 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐺𝐺 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 + 𝑘𝑘𝑘𝑘𝑘𝑘 / 𝐴𝐴0 = 𝐺𝐺0 𝜕𝜕𝜕𝜕 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐺𝐺 = 𝐺𝐺0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑇𝑇 29 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Summary (canonical ensemble) -S U V H A -p G T V V A T T 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 constants 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕𝜕𝜕 𝜕𝜕𝑉𝑉 𝑇𝑇 𝑉𝑉 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑈𝑈 = 𝑈𝑈0 − 𝜕𝜕𝜕𝜕 𝑉𝑉 𝑈𝑈 − 𝑈𝑈0 1 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑆𝑆 = + 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 = − + 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑇𝑇 𝑇𝑇 𝜕𝜕𝜕𝜕 𝑉𝑉 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑝𝑝 = 𝑘𝑘𝑘𝑘 𝜕𝜕𝑉𝑉 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐻𝐻 = 𝐻𝐻0 − + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑉𝑉 𝜕𝜕𝜕𝜕 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐺𝐺 = 𝐺𝐺0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑇𝑇 30 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Summary (canonical ensemble) -S U V H A -p G T V U0 V A T T 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 constants 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕𝜕𝜕 𝜕𝜕𝑉𝑉 𝑇𝑇 𝑉𝑉 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑈𝑈 = 𝑈𝑈0 − 𝜕𝜕𝜕𝜕 𝑉𝑉 𝑈𝑈 − 𝑈𝑈0 1 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑆𝑆 = + 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 = − + 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑇𝑇 𝑇𝑇 𝜕𝜕𝜕𝜕 𝑉𝑉 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑝𝑝 = 𝑘𝑘𝑘𝑘 𝜕𝜕𝑉𝑉 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐻𝐻 = 𝐻𝐻0 − + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑉𝑉 𝜕𝜕𝜕𝜕 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐺𝐺 = 𝐺𝐺0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑇𝑇 31 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Summary (canonical ensemble) -S U V H A -p G T V U0 V A T T 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 constants 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕𝜕𝜕 𝜕𝜕𝑉𝑉 𝑇𝑇 𝑉𝑉 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑈𝑈 = 𝑈𝑈0 − 𝜕𝜕𝜕𝜕 𝑉𝑉 1 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑆𝑆 = 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 − 𝑇𝑇 𝜕𝜕𝜕𝜕 𝑉𝑉 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑝𝑝 = 𝑘𝑘𝑘𝑘 𝜕𝜕𝑉𝑉 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐻𝐻 = 𝐻𝐻0 − + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑉𝑉 𝜕𝜕𝜕𝜕 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐺𝐺 = 𝐺𝐺0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑇𝑇 32 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Summary (canonical ensemble) -S U V H A -p G T V U0 V A A0 T T 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 constants 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕𝜕𝜕 𝜕𝜕𝑉𝑉 𝑇𝑇 𝑉𝑉 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑈𝑈 = 𝑈𝑈0 − 𝜕𝜕𝜕𝜕 𝑉𝑉 1 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑆𝑆 = 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 − 𝑇𝑇 𝜕𝜕𝜕𝜕 𝑉𝑉 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑝𝑝 = 𝑘𝑘𝑘𝑘 𝜕𝜕𝑉𝑉 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐻𝐻 = 𝐻𝐻0 − + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑉𝑉 𝜕𝜕𝜕𝜕 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐺𝐺 = 𝐺𝐺0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑇𝑇 33 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Summary (canonical ensemble) -S U V H A -p G T V U0 V A A0 T T 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 constants 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕𝜕𝜕 𝜕𝜕𝑉𝑉 𝑇𝑇 𝑉𝑉 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑈𝑈 = 𝑈𝑈0 − 𝜕𝜕𝜕𝜕 𝑉𝑉 1 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑆𝑆 = 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 − 𝑇𝑇 𝜕𝜕𝜕𝜕 𝑉𝑉 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑝𝑝 = 𝑘𝑘𝑘𝑘 𝜕𝜕𝑉𝑉 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐻𝐻 = 𝐻𝐻0 − + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑉𝑉 𝜕𝜕𝜕𝜕 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐺𝐺 = 𝐺𝐺0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑇𝑇 34 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Summary (canonical ensemble) -S U V H A -p G T V U0 V A H0 A0 T T 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 constants 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕𝜕𝜕 𝜕𝜕𝑉𝑉 𝑇𝑇 𝑉𝑉 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑈𝑈 = 𝑈𝑈0 − 𝜕𝜕𝜕𝜕 𝑉𝑉 1 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑆𝑆 = 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 − 𝑇𝑇 𝜕𝜕𝜕𝜕 𝑉𝑉 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑝𝑝 = 𝑘𝑘𝑘𝑘 𝜕𝜕𝑉𝑉 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐻𝐻 = 𝐻𝐻0 − + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑉𝑉 𝜕𝜕𝜕𝜕 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐺𝐺 = 𝐺𝐺0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑇𝑇 35 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Summary (canonical ensemble) -S U V H A -p G T V U0 V A H0 A0 T G0 T 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 constants 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕𝜕𝜕 𝜕𝜕𝑉𝑉 𝑇𝑇 𝑉𝑉 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑈𝑈 = 𝑈𝑈0 − 𝜕𝜕𝜕𝜕 𝑉𝑉 1 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑆𝑆 = 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 − 𝑇𝑇 𝜕𝜕𝜕𝜕 𝑉𝑉 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑝𝑝 = 𝑘𝑘𝑘𝑘 𝜕𝜕𝑉𝑉 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐻𝐻 = 𝐻𝐻0 − + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑉𝑉 𝜕𝜕𝜕𝜕 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐺𝐺 = 𝐺𝐺0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑇𝑇 36 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Summary (canonical ensemble) -S U V H A -p G T V U0 V A H0 A0 T G0 T 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 constants 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕𝜕𝜕 𝜕𝜕𝑉𝑉 𝑇𝑇 𝑉𝑉 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑈𝑈 = 𝑈𝑈0 − 𝜕𝜕𝜕𝜕 𝑉𝑉 1 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑆𝑆 = 𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 − / 𝑥𝑥 𝑇𝑇 𝑇𝑇 𝜕𝜕𝜕𝜕 𝑉𝑉 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑝𝑝 = 𝑘𝑘𝑘𝑘 / 𝑥𝑥 𝑉𝑉 𝜕𝜕𝑉𝑉 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐻𝐻 = 𝐻𝐻0 − + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑉𝑉 𝜕𝜕𝜕𝜕 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐺𝐺 = 𝐺𝐺0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑇𝑇 37 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Summary (canonical ensemble) -S U V H A -p G T V U0 V A H0 A0 T G0 T 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 constants 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕𝜕𝜕 𝜕𝜕𝑉𝑉 𝑇𝑇 𝑉𝑉 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑈𝑈 = 𝑈𝑈0 − 𝜕𝜕𝜕𝜕 𝑉𝑉 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑆𝑆𝑆𝑆 = 𝑘𝑘𝑇𝑇 𝑙𝑙𝑙𝑙 𝑄𝑄 − 𝜕𝜕𝜕𝜕 𝑉𝑉 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝑉𝑉 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐻𝐻 = 𝐻𝐻0 − + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑉𝑉 𝜕𝜕𝜕𝜕 𝑇𝑇 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝐺𝐺 = 𝐺𝐺0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 + 𝑘𝑘𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕 𝑇𝑇 38 Materials Chemistry II – Kinetics – Lecture 2 Thermodynamics Stanislav Mráz | Winter semester 2024 / 25 Summary (canonical ensemble) -S U V H A -p G T V U0 V A H0 A0 T G0 T 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 constants 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕𝜕𝜕 𝜕𝜕𝑉𝑉 𝑇𝑇 𝑉𝑉 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑈𝑈 = 𝑈𝑈0 − 𝜕𝜕𝜕𝜕 𝑉𝑉 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑆𝑆𝑆𝑆 = 𝑘𝑘𝑇𝑇 𝑙𝑙𝑙𝑙 𝑄𝑄 − 𝜕𝜕𝜕𝜕 𝑉𝑉 𝐴𝐴 = 𝐴𝐴0 − 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝜕𝜕 𝑙𝑙𝑙𝑙 𝑄𝑄 𝑋𝑋 = (𝑋𝑋0 ) ± 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 𝑄𝑄 − + ?