Lecture Notes: Schrodinger's Equation PDF
Document Details
Uploaded by Deleted User
Tags
Summary
These lecture notes cover the Schrödinger equation and its applications in quantum mechanics. Key concepts like De Broglie waves and the probabilistic interpretation of wave functions are introduced. The notes detail the time-dependent and time-independent forms of the equation.
Full Transcript
Lecte lotes. : Schrodige Eq utbis ehe- dimeuSi + 2M 4-time-depodeut 2m 2? fo. Ware-1923 behavs lihe t bag a ane A movip ebiect mt...
Lecte lotes. : Schrodige Eq utbis ehe- dimeuSi + 2M 4-time-depodeut 2m 2? fo. Ware-1923 behavs lihe t bag a ane A movip ebiect mtte have genenaliettan all foms ot and þartile -- dual chaa testts. SAVe Moa.Beyh. 1924 Ware funeti epeatie ate Wavr des(ajbud by he saefunctit a toject trine t is h,y,t) aud at te thu þoit foud in infniteal alume dv l- dadyde) alout a point x,9,2) derted by Pa,y)dV is in Castekja coerdiateo. AV da dyde Va,y,*,A) + Cmplez functinn In genesal 2 hastile muof ee seneukne He tatal Sime te to al 4 normaled waur-functi. chaafestts f eue futs contrhluuo aud i\ple valued, finite mut he fiit, t n o and y novmalezle Eq:) arabe7 as 2 S t oy t o "muof to erO Qnd ’to oven all sce e fiite Constut vrale Ez: for a wane Yo,o) C eapl-) fid the " C that mmaliees te wave (A: Co foud i tee itenal (Aus: s64). 2 tine) Aame at ttoiet mometum an ofo erat aud packet tecntetf spechal thsprevides Amytehutes a(u) eneg oetun and leyerE)no vales ef ek ui þasttkeAesoibesa ay) chanpeowavepat undgoes pachet oare te k, V dicekion, and conttrtueut fte each As auith wave a(k) elatrinstt) (non k) Qud E/* Lcos A (x-at)J si(kx-ust) u i + plae - t)i(kq- Ae Wene (10) feotile foe a Scdoödigds Equcka bare kCE*-a) Y= A e- (w: k, k ÞA). EY - KE PE tue + U. 2m -tine fr. 3D. + t 2m (-& I8 calleA Hamtaia A 2 lt) E(*) 4) e-iat 2 ) EPR) tw + U) da neheutet for foa padele, Ub) o da As fuch. ika ik a slctrtn to S iet Heue teis all pobabiletio calated fon Yu. Uecallecl statt and can de caleaatud fm tutiine. indatendeut were bith a patile a 2 P(G t)dv 2 þsbailty deuy Codita astine to poitn þababi spau þobabiihy veies. tuselatrt ie setifil vesfy tka fos thiiwe cmsdr shredinpen' theo tte fastcle at time iot a P7,) AV Crntat te inteyal in the then spae entisx to luneV votu td convegeo. se 4 ineal nemalizati lape venishes at pakt y the eestauceo ad velne wae a tor V 2,PR, -So.d =AV#) deus cusneut pebaliity Tv()- 2me a. I)-6 tuatasswmed kan real. U(,*)w - (*)= et + J4v at abability ofchage af eate The lrea) patde tonian a a opnat Hermitau Called e atthey wlich ditn fo this gatisfa cm wfuck thntot he A. at t H abovoe Cah We tojon arni ** s(°,)= Re deutg Ct abiig contauty aualbrous to (1V) that Bee e from Expetatin Values clascical cAQO CARO. ’ vale of posta. Cooiate. Th qruatum mechamics e detri he po ita i The expeotci ale of tue posti ao woHe as TStaudad duriatra for momutum 7 we associata Sh qreartum mechoncs axampte, ottn, momeutumm, «each obseake fr aambfe ehogy all a oeeaes. Aseouatad dpat (oae- dimeusio) prstit momuchm E t 2 t potertialeg 5 A Kinett eng K Hamiltnia H A-+U). ad Eapeotctra. values 7 9 Thee-dneninl Caee ddV = d'g. stich is all are Guivaleut moeutum: E xpxetetri vele peneltt it ay Exputati value U )P(+) d*