Summary

This document contains several problems and solutions on laser physics. The problems cover concepts like stimulated emission, spontaneous emission, and energy levels. These problems are focused on a theoretical physics principles of laser physics.

Full Transcript

# Laser ## Problem 1 The wavelength of emission is 7000Å and the coefficient of spontaneous emission is 10<sup>8</sup>s<sup>-1</sup>. Find the coefficient of stimulated emission. ### Solution Coefficient of stimulated emission (B<sub>21</sub>) = <sup>3</sup><sub>8π</sub><sup>hv</sup><sup>3</su...

# Laser ## Problem 1 The wavelength of emission is 7000Å and the coefficient of spontaneous emission is 10<sup>8</sup>s<sup>-1</sup>. Find the coefficient of stimulated emission. ### Solution Coefficient of stimulated emission (B<sub>21</sub>) = <sup>3</sup><sub>8π</sub><sup>hv</sup><sup>3</sup>A<sub>21</sub> = <sup>h<sup>3</sup></sup><sub>8πν<sup>3</sup></sub>A<sub>21</sub> where A<sub>21</sub> = coefficient of spontaneous emission = 10<sup>8</sup>s<sup>-1</sup> .. B<sub>21</sub> = (7000 × 10<sup>-10</sup>)<sup>3</sup> × 10<sup>8</sup> 8 × 3.14 × 6.626 × 10<sup>-34</sup> m. kg<sup>-1</sup> = (2.06 × 10<sup>21</sup>) m. kg<sup>-1</sup> ## Problem 2 Find the temperature at which the rate of stimulated emission is equal to the rate of spontaneous emission. Assume λ = 6000Å. ### Solution We know R = <sup>rate of stimulated emission</sup>/<sub>rate of spontaneous emission</sub> = <sup>1</sup>/<sub>ehv/kT - 1</sub> Here, R = 1; So <sup>1</sup>/<sub>ehv/kT -1</sub> = 1 or, ehv/kT = 2 or, hv/kT = ln2 or, <sup>hc</sup>/<sub>λkT</sub> = 0.693 or, T = (6.626 × 10<sup>-34</sup>) × (3 × 10<sup>8</sup>) / (6000 × 10<sup>-10</sup>) × (1.38 × 10<sup>-23</sup>) × 0.693 K = 34642.4 K ## Problem 1 When an electron jumps from an energy level of 5.44 × 10<sup>-19</sup>J to an energy level of 2.42 × 10<sup>-19</sup>J, find the wavelength and colour of the photon. ### Solution The wavelength of emitted photon λ = <sup>hc</sup>/<sub>E<sub>2</sub>-E<sub>1</sub></sub> = (6.626 × 10<sup>-34</sup> × 3 × 10<sup>8</sup>) / (5.44 × 10<sup>-19</sup> – 2.42 × 10<sup>-19</sup>) m = 6.582 × 10<sup>-7</sup>m = 658nm The colour of the photon is red. ## Problem 3 Find the energy difference between the two energy levels of neon atoms of a He-Ne gas laser. The transition between these levels gives a light of wavelength 632.8 nm. Also calculate the number of photons emitted per second to give a power output of 2 mW. ### Solution The energy difference between the two energy levels of neon atoms, ΔE = <sup>hc</sup>/<sub>λ</sub> = (6.63 × 10<sup>-34</sup> × 3 × 10<sup>8</sup>) / (632.8 × 10<sup>-9</sup>) = 3.143 × 10<sup>-19</sup> J = <sup>3.143 × 10<sup>-19</sup></sup>/<sub>1.6 × 10<sup>-19</sup></sub> eV = 1.96 eV [: 1 eV = 1.6 × 10<sup>-19</sup> J] If n is the number of photons emitted per second, to give a power output of 2 mW, or, P = η × ΔΕ η = <sup>P</sup>/<sub>ΔΕ</sub> = <sup>2 × 10<sup>-3</sup>W</sup>/<sub>3.143 × 10<sup>-19</sup> J</sub> = 6.363 × 10<sup>15</sup> ## Problem 4 In a lasing process the ratio of population of two energy levels out of which upper one corresponds to metastable state is 1 : 1.009 × 10<sup>25</sup>. Calculate the wavelength of laser beam at 320 K. ### Solution If the number of atoms per unit volume in the lower energy state and metastable state are N<sub>1</sub> and N<sub>2</sub> respectively then, <sup>N<sub>1</sub></sup>/<sub>N<sub>2</sub></sub> = 1 / 1.009 × 10<sup>25</sup> or, N<sub>2</sub> / N<sub>1</sub> = 1.009 × 10<sup>-25</sup> T= 320K Now, from Boltzmann relation, [equation (7.5)] we get, <sup>N<sub>2</sub></sup>/<sub>N<sub>1</sub></sub> = e<sup>-(E<sub>2</sub>-E<sub>1</sub>)</sup>/<sub>kT</sub> or, 1.009 × 10<sup>-25</sup> = e<sup>-ΔΕ</sup>/<sub>kT</sub> or, <sup>ΔΕ</sup>/<sub>kT</sub> = ln (1.009 × 10<sup>-25</sup>) or, ΔΕ = 1.38 × 10<sup>-23</sup> x 320 x 57.555 [ k = Boltzmann’s constant = 1.38 x 10<sup>-23</sup>J. K<sup>-1</sup>] = 2.54 × 10<sup>-19</sup> J If λ be the wavelength of the laser beam, then, hc / λ = ΔΕ or, λ = <sup>hc</sup>/<sub>ΔΕ</sub> = (6.63 × 10<sup>-34</sup>J) × (3 × 10<sup>8</sup> m. s<sup>-1</sup>)/<sub>2.54 × 10<sup>-19</sup> J</sub> = 7.83 x 10<sup>-7</sup> m = 783 x 10<sup>-9</sup> m = 783 nm ## Problem 5 In a He-Ne laser transition from 3S to 2P level gives a laser emission of wavelength 632.8 nm. If the 2P level has energy equal to 15.2 × 10<sup>-19</sup> J, calculate the pumping energy required. Assume no loss. ### Solution We know, pumping energy = energy of 2P level + energy of photon = 15.2 × 10<sup>-19</sup> J + hv = 15.2 × 10<sup>-19</sup>J + <sup>hc</sup>/<sub>λ</sub> = 15.2 × 10<sup>-19</sup> J + <sup>6.62 × 10<sup>-34</sup> J.s×3×10<sup>8</sup>m. s<sup>-1</sup></sup>/<sub>632.8 x 10<sup>-9</sup> m</sub> = 15.2 × 10<sup>-19</sup> J + 3.13 × 10<sup>-19</sup> J = 18.33 × 10<sup>-19</sup> J = 11.46 eV [: 1 eV = 1.6 × 10<sup>-19</sup> J] ## Problem 6 Find the ratio of populations of the two states in thermal equilibrium at room temperature 27<sup>o</sup>C. The wavelength corresponding to the energy gap between two states is 6000Å. ### Solution If N<sub>2</sub> and N<sub>1</sub> are the number of atoms available at the upper energy (E<sub>2</sub>) state and lower energy (E<sub>1</sub>) state respectively, then we can write, <sup>N<sub>2</sub></sup>/<sub>N1</sub> = e<sup>ΔΕ</sup>/<sub>kT</sub>, where ΔΕ = E<sub>2</sub> - E<sub>1</sub> or, <sup>N<sub>2</sub></sup>/<sub>N1</sub> = e<sup>hv</sup>/<sub>kT</sub> = e<sup>hc</sup>/<sub>λkT</sub> = 1.89 x 10<sup>-35</sup>

Use Quizgecko on...
Browser
Browser