Laser Problems PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document contains several problems and solutions on laser physics. The problems cover concepts like stimulated emission, spontaneous emission, and energy levels. These problems are focused on a theoretical physics principles of laser physics.
Full Transcript
# Laser ## Problem 1 The wavelength of emission is 7000Å and the coefficient of spontaneous emission is 10<sup>8</sup>s<sup>-1</sup>. Find the coefficient of stimulated emission. ### Solution Coefficient of stimulated emission (B<sub>21</sub>) = <sup>3</sup><sub>8π</sub><sup>hv</sup><sup>3</su...
# Laser ## Problem 1 The wavelength of emission is 7000Å and the coefficient of spontaneous emission is 10<sup>8</sup>s<sup>-1</sup>. Find the coefficient of stimulated emission. ### Solution Coefficient of stimulated emission (B<sub>21</sub>) = <sup>3</sup><sub>8π</sub><sup>hv</sup><sup>3</sup>A<sub>21</sub> = <sup>h<sup>3</sup></sup><sub>8πν<sup>3</sup></sub>A<sub>21</sub> where A<sub>21</sub> = coefficient of spontaneous emission = 10<sup>8</sup>s<sup>-1</sup> .. B<sub>21</sub> = (7000 × 10<sup>-10</sup>)<sup>3</sup> × 10<sup>8</sup> 8 × 3.14 × 6.626 × 10<sup>-34</sup> m. kg<sup>-1</sup> = (2.06 × 10<sup>21</sup>) m. kg<sup>-1</sup> ## Problem 2 Find the temperature at which the rate of stimulated emission is equal to the rate of spontaneous emission. Assume λ = 6000Å. ### Solution We know R = <sup>rate of stimulated emission</sup>/<sub>rate of spontaneous emission</sub> = <sup>1</sup>/<sub>ehv/kT - 1</sub> Here, R = 1; So <sup>1</sup>/<sub>ehv/kT -1</sub> = 1 or, ehv/kT = 2 or, hv/kT = ln2 or, <sup>hc</sup>/<sub>λkT</sub> = 0.693 or, T = (6.626 × 10<sup>-34</sup>) × (3 × 10<sup>8</sup>) / (6000 × 10<sup>-10</sup>) × (1.38 × 10<sup>-23</sup>) × 0.693 K = 34642.4 K ## Problem 1 When an electron jumps from an energy level of 5.44 × 10<sup>-19</sup>J to an energy level of 2.42 × 10<sup>-19</sup>J, find the wavelength and colour of the photon. ### Solution The wavelength of emitted photon λ = <sup>hc</sup>/<sub>E<sub>2</sub>-E<sub>1</sub></sub> = (6.626 × 10<sup>-34</sup> × 3 × 10<sup>8</sup>) / (5.44 × 10<sup>-19</sup> – 2.42 × 10<sup>-19</sup>) m = 6.582 × 10<sup>-7</sup>m = 658nm The colour of the photon is red. ## Problem 3 Find the energy difference between the two energy levels of neon atoms of a He-Ne gas laser. The transition between these levels gives a light of wavelength 632.8 nm. Also calculate the number of photons emitted per second to give a power output of 2 mW. ### Solution The energy difference between the two energy levels of neon atoms, ΔE = <sup>hc</sup>/<sub>λ</sub> = (6.63 × 10<sup>-34</sup> × 3 × 10<sup>8</sup>) / (632.8 × 10<sup>-9</sup>) = 3.143 × 10<sup>-19</sup> J = <sup>3.143 × 10<sup>-19</sup></sup>/<sub>1.6 × 10<sup>-19</sup></sub> eV = 1.96 eV [: 1 eV = 1.6 × 10<sup>-19</sup> J] If n is the number of photons emitted per second, to give a power output of 2 mW, or, P = η × ΔΕ η = <sup>P</sup>/<sub>ΔΕ</sub> = <sup>2 × 10<sup>-3</sup>W</sup>/<sub>3.143 × 10<sup>-19</sup> J</sub> = 6.363 × 10<sup>15</sup> ## Problem 4 In a lasing process the ratio of population of two energy levels out of which upper one corresponds to metastable state is 1 : 1.009 × 10<sup>25</sup>. Calculate the wavelength of laser beam at 320 K. ### Solution If the number of atoms per unit volume in the lower energy state and metastable state are N<sub>1</sub> and N<sub>2</sub> respectively then, <sup>N<sub>1</sub></sup>/<sub>N<sub>2</sub></sub> = 1 / 1.009 × 10<sup>25</sup> or, N<sub>2</sub> / N<sub>1</sub> = 1.009 × 10<sup>-25</sup> T= 320K Now, from Boltzmann relation, [equation (7.5)] we get, <sup>N<sub>2</sub></sup>/<sub>N<sub>1</sub></sub> = e<sup>-(E<sub>2</sub>-E<sub>1</sub>)</sup>/<sub>kT</sub> or, 1.009 × 10<sup>-25</sup> = e<sup>-ΔΕ</sup>/<sub>kT</sub> or, <sup>ΔΕ</sup>/<sub>kT</sub> = ln (1.009 × 10<sup>-25</sup>) or, ΔΕ = 1.38 × 10<sup>-23</sup> x 320 x 57.555 [ k = Boltzmann’s constant = 1.38 x 10<sup>-23</sup>J. K<sup>-1</sup>] = 2.54 × 10<sup>-19</sup> J If λ be the wavelength of the laser beam, then, hc / λ = ΔΕ or, λ = <sup>hc</sup>/<sub>ΔΕ</sub> = (6.63 × 10<sup>-34</sup>J) × (3 × 10<sup>8</sup> m. s<sup>-1</sup>)/<sub>2.54 × 10<sup>-19</sup> J</sub> = 7.83 x 10<sup>-7</sup> m = 783 x 10<sup>-9</sup> m = 783 nm ## Problem 5 In a He-Ne laser transition from 3S to 2P level gives a laser emission of wavelength 632.8 nm. If the 2P level has energy equal to 15.2 × 10<sup>-19</sup> J, calculate the pumping energy required. Assume no loss. ### Solution We know, pumping energy = energy of 2P level + energy of photon = 15.2 × 10<sup>-19</sup> J + hv = 15.2 × 10<sup>-19</sup>J + <sup>hc</sup>/<sub>λ</sub> = 15.2 × 10<sup>-19</sup> J + <sup>6.62 × 10<sup>-34</sup> J.s×3×10<sup>8</sup>m. s<sup>-1</sup></sup>/<sub>632.8 x 10<sup>-9</sup> m</sub> = 15.2 × 10<sup>-19</sup> J + 3.13 × 10<sup>-19</sup> J = 18.33 × 10<sup>-19</sup> J = 11.46 eV [: 1 eV = 1.6 × 10<sup>-19</sup> J] ## Problem 6 Find the ratio of populations of the two states in thermal equilibrium at room temperature 27<sup>o</sup>C. The wavelength corresponding to the energy gap between two states is 6000Å. ### Solution If N<sub>2</sub> and N<sub>1</sub> are the number of atoms available at the upper energy (E<sub>2</sub>) state and lower energy (E<sub>1</sub>) state respectively, then we can write, <sup>N<sub>2</sub></sup>/<sub>N1</sub> = e<sup>ΔΕ</sup>/<sub>kT</sub>, where ΔΕ = E<sub>2</sub> - E<sub>1</sub> or, <sup>N<sub>2</sub></sup>/<sub>N1</sub> = e<sup>hv</sup>/<sub>kT</sub> = e<sup>hc</sup>/<sub>λkT</sub> = 1.89 x 10<sup>-35</sup>