Exercise 2.1 and 2.2 PDF
Document Details
Uploaded by SignificantRuthenium6334
GDC Shah Essa Bilot Sharif
Khalid Mehmood
Tags
Summary
This document contains exercises and solutions about average rate of change of functions, finding average velocity for the specified intervals (e.g. from t=2 to t=2.1) and the first principle for derivative of y = x^n. The problems are from Chapter 2. The exercises cover functions like y = x^2 + 4, and y = x^2 - 6x + 8.
Full Transcript
Exercise 2.1 Chapter 2 average rate of change h ...
Exercise 2.1 Chapter 2 average rate of change h h t t h t Chapter 2 With t tmax tmin t t then t 8.5 8 0.5 f x x f x Substituting h t 2t 7 Average rate of change y x x h h 8.5 h 8 Exercise 2.1 t 0.5 Q1. Find the average rate of change of the h 2 8.5 7 2 8 7 following functions over the indicated intervals: t 0.5 a). y x2 4 from x=2 to x=3 h 17 16 Sol: We have y f x x 4 2 0.246 t 0.5 y f x x f x Q2. Use definition to find out average rate of change average rate of change over specified interval for following functions: x x a). s 2t 3 from t=2 to t=5 With x xmax xmin then x 3 2 1 Solution: We have s t 2t 3 y f 3 f 2 average rate of change s s t t s t x x t t y 3 4 2 4 With t tmax tmin then t 5 2 3 2 2 x 1 s s 5 s 2 y t 9 4 4 4 13 8 3 x s 2 5 3 2 2 3 y t 3 5 x s 10 3 4 3 1 t 3 b). y x 2 x from x=-3 to x=3 s 6 3 2 1 t 3 Solution: We have y f x x 2 x s 3 2 t With x xmax xmin then x 3 3 6 b). y x2 6x 8 from x=3 to x=3.1 y f 3 f 3 average rate of change Solution: We have y f x x 6 x 8 2 x 6 average rate of change y f x x f x 2 1 1 3 3 3 3 3 3 2 y x x With x xmax xmin then x 3.1 3 0.1 x 6 y 9 1 9 1 y f 3.1 f 3 x 6 x 0.1 y 10 8 2 3.12 6 3.1 8 32 6 3 8 y x 6 6 x 0.1 y y 9.61 18.6 8 9 18 8 1 x 3 x 0.1 c). s 2t 3 5t 7 from t=1 to t=3 y 0.99 1 Solution: We have s t 2t 5t 7 3 x 0.1 y 0.99 1 0.01 1 With t tmax tmin then x 3 1 2 0.1 x 0.1 0.1 10 s s 3 s 1 A r2 average rate of change c). from r=2 to r=2.1 t 2 Solution: We have A r r 2 s 2 3 5 3 7 2 1 5 1 7 3 3 A A r r A r t 2 average rate of change r r s 2 27 15 7 2 5 7 t 2 With r rmax rmin then r 2.1 2 0.1 s 54 8 4 42 A A 2.1 A 2 t 2 2 r 0.1 s A 2.1 2 2 2 21 t r 0.1 d). h 2t 7 from t=8 to t=8.5 A 4.41 4 Solution: We have h t 2t 7 r 0.1 Khalid Mehmood Lect: GDC Shah Essa Bilot Available at http://www.MathCity.org Page 17 Exercise 2.2 Chapter 2 A 0.41 With t tmax tmin then t 5 3 2 r 0.1 p p 5 p 3 A 4.1 12.88 r t 2 p 3 5 5 1 3 3 3 1 d). h t 9 from t=9 to t=16 2 2 Solution: We have h t t 9 t 2 With t tmax tmin then t 16 9 7 p 3 25 6 3 9 4 average rate of change h h 16 h 9 t 2 t 7 p 75 6 27 4 h 16 9 9 9 t 2 t 7 p 50 h 4 9 3 9 25 t 2 t 7 First principle for derivative h 4 3 1 dy y f x x f x t 7 7 lim lim Q3. A ball is thrown straight up. Its height after t seconds dx x0 x x0 x is given by the formula h t 16t 2 80t Find the Slope when two point P1 x1 , y1 , P2 x2 , y2 are h given Slope = m y2 y1 average velocity for the specified intervals x2 x1 t a). From t=2 to t=2.1 Differentiation of y x n by first principle Rule Solution: We have h t 16t 80t If f x x so f x x x x 2 n n With t tmax tmin then t 2.1 2 0.1 Using first principle for derivative of f x h h 2.1 h 2 f x x f x average rate of change d f x lim t 0.1 dx x 0 x h 16 2.1 80 2.1 16 2 80 2 x x 2 2 xn n f x lim t 0.1 x 0 x h 16 4.41 168 16 4 160 Using binomial theorem n n 1 t x x x n nx n 1x x n 2 x n 2 0.1 2! h 70.56 168 64 160 x x n xn t 0.1 so f x lim h 1.44 x 0 x 14.4 x nx x 2! x n2 x n n 1 n 1 xn 2 t 0.1 n f x lim b). From t=2 to t=2.01 x 0 x Solution: We have h t 16t 80t 2 x n2 x n n 1 nx n1x 2 With t tmax tmin then t 2.01 2 0.01 f x lim 2! x 0 x h h 2.1 h 2 x nx 2! x x n 1 n n 1 n 2 average rate of change t 0.1 f x lim x 0 x 16 2.012 80 2.01 16 2 2 80 2 h n n 1 n 2 f x lim nx 2! x x n 1 t 0.01 x 0 h 16 4.0401 160.8 16 4 160 f x nx n1 2! x n2 0 0 0 n n 1 t 0.01 h 64.6416 160.8 64 160 f x nx n 1 t 0.01 Exercise 2.2 h 0.1584 15.84 Q1. Use first Principle to determine the derivative t 0.01 of the following functions. Q4. The rate of change of price is called inflation. a). f x 3x price P in rupees after t years is p t 3t t 1 2 Solution: We have f x 3 x Find the average rate of change of inflation from t=3 to t=5 years. What the rate of change means? Explain First principle for derivative Solution: We have p t 3t t 1 2 dy y f x x f x lim lim p p t t p t dx x0 x x0 x average rate of change Substituting f x 3 x t t Khalid Mehmood Lect: GDC Shah Essa Bilot Available at http://www.MathCity.org Page 18 Exercise 2.2 Chapter 2 dy y 3 x x 3x y 12 x x 2 12 x 2 lim lim dy lim lim dx x 0 x x 0 x dx x 0 x x 0 x dy lim y lim 3x 3x 3x dy lim y lim 12 x 2 x 2 xx 12 x 2 2 dx x 0 x x 0 x dx x 0 x x0 x y 3x 12 x 2 x 2 xx 12 x 2 dy 2 lim lim dy y dx x 0 x x 0 x lim lim dy y dx x0 x x0 x lim lim 3 3 x 2 xx 2 dx x x0 dy y lim lim x 0 b). f x 5x 6 dx x0 x x0 x Solution: We have dy y x x 2 x lim lim First principle for derivative dx x0 x x0 x y f x x f x dy y lim x 2 x dy lim lim lim dx x 0 x x 0 x dx x0 x x0 Substituting dy y lim 0 2 x y 5 x x 6 5 x 6 x lim dy dx x 0 lim dx x 0 x x 0 x dy y y 5 x 5x 6 5 x 6 lim 2 x dy lim lim dx x 0 x dx x 0 x x f x 16 x 2 7 x x 0 e). dy y 5x lim lim Solution: We have f x 16 x 7 x 2 dx x 0 x x0 x dy y First principle for derivative lim lim 5 f x x f x dx x 0 x x0 dy y lim lim dy y dx x0 x x0 x lim 5 Substituting dx x 0 x 16 x x 2 7 x x 16 x 2 7 x y c). f x x2 1 dy lim lim dx x0 x x0 x Solution: We have f x x 1 2 16 x 2 x 2 xx 7 x 7x 16 x 2 7 x 2 dy y lim lim First principle for derivative dx x0 x x0 x dy y f x x f x dy y 16 x 2 16 x 32 xx 7 x 7x 16 x 2 7 x 2 lim lim lim lim dx x0 x x0 x dx x0 x x0 x 16 x 32 xx 7x 2 Substituting dy y lim lim x x 2 1 x 2 1 dx x 0 x x 0 x y lim dy y x 16x 32 x 7 lim dy lim lim dx x 0 x x 0 x dx x0 x x0 x y x 2 x 2 xx 1 x 2 1 2 dy y dy lim lim lim lim 16x 32 x 7 dx x 0 x x 0 x dx x0 x x0 dy y x 2 xx 16 0 32 x 7 2 y lim dx x0 x dy lim lim dx x 0 x x 0 x dy y dy y x x 2 x lim 32 x 7 lim lim dx x0 x dx x 0 x x 0 x 7 dy y f). f x lim lim x 2 x x dx x 0 x x 0 7 dy y Solution: We have f x lim 0 2 x x dx x 0 x First principle for derivative dy y y f x x f x lim 2x dy lim lim dx x 0 x dx x0 x x0 x d). f x 12 x 2 7 Substituting f x Solution: We have f x 12 x 2 x dy y 1 7 7 First principle for derivative lim lim dy y f x x f x dx x 0 x x 0 x x x x lim lim dx x0 x x0 x dy y 1 7 x 7 x x lim lim Substituting f x 12 x x x x x x 2 dx x 0 x 0 Khalid Mehmood Lect: GDC Shah Essa Bilot Available at http://www.MathCity.org Page 19 Exercise 2.2 Chapter 2 dy y 1 7 x 7 x 7x dy y 1 5 2 x 4 5 2 x 2x 4 lim lim lim lim dx x 0 x x0 x 2 x 2x 4 2 x 4 dx x0 x x0 x x x x y 1 10 x 20 10 x 10x 20 1 7x dy dy y lim lim lim lim dx x 0 x x0 x 2 x 2x 4 2 x 4 dx x0 x x0 x x x x dy y 1 10x y 7 lim lim dx x0 x x 0 x 2 x 2x 4 2 x 4 dy lim lim dx x0 x x0 x x x dy y 10 y 7 7 lim lim dx x0 x x 0 2 x 2x 4 2 x 4 dy lim dx x0 x x x 0 x x dy y 10 dy y 7 lim lim dx x0 x 2 x 2 0 4 2 x 4 dx x 0 x x 2 3 dy y 10 g). f x lim x3 dx x 0 x 2 x 4 2 x 4 Solution: We have dy y 10 First principle for derivative lim dx x 0 x 2 x 4 2 dy y f x x f x lim lim i). f x 3x 2 4 x 9 dx x 0 x x 0 x 1 3 Solution: We have f x 3x 4 x 9 2 dy 3 Substituting lim dx x0 x x x 3 x 3 First principle for derivative dy y f x x f x dy y 1 3 3 lim lim lim lim x x dx x 0 x x 0 x x x 3 x 3 dx x 0 x 0 Substituting f x 3x 4 x 9 2 dy y 1 3 x 3 3 x x 3 lim lim 3 x x 2 4 x x 9 3 x 2 4 x 9 dx x0 x x0 x x x 3 x 3 dy lim dx x 0 x dy lim y lim 1 3x 9 3 x 3x 9 dy lim 2 3 x 2 x 2 xx 4 x 4x 9 3x 2 4 x 9 dx x 0 x x 0 x x x 3 x 3 dx x 0 x 3x 2 3 x 6 xx 4 x 4x 9 3x 2 4 x 9 2 dy y 1 3x dy lim lim lim x dx x 0 x x 0 x x x 3 x 3 dx x 0 3 x 6 xx 4x 2 dy dy y 3 lim lim lim dx x 0 x x x x 3 x 3 dx x 3x 6 x 4 x 0 x 0 dy y 3 lim dy lim dx x 0 x dx x 0 x x 0 3 x 3 dy lim 3x 6 x 4 dy y 3 dx x 0 lim dx x 0 x x 3 x 3 dy 3 0 6 x 4 dy y 3 dx lim dy dx x 0 x x 32 6x 4 dx 5 h). f x Q2. Estimate the slope of the tangent line on a curve at 2x 4 a point P(x,y) for each of the following graph Solution: We have f x 5 a). Solution: From graph points are 5,3 and 7, 7 2x 4 73 4 First principle for derivative slope m 2 75 2 y f x x f x dy lim lim b). Solution: From graph points are 2, 2 and 0, 4 dx x0 x x0 x 42 2 5 slope m 1 Substituting f x 0 2 2 2x 4 c).Solution: From graph points are 2, 2 and 4, 3 dy y 1 5 5 3 2 1 lim lim slope m dx x0 x x0 x 2 x x 4 2 x 4 4 2 6 dy y 1 5 5 Q3a). Draw a tangent line to the graph of function lim lim f x x 2 7 x 6 at point 1, 0 of function and dx x 0 x x 0 x 2 x 2x 4 2 x 4 Khalid Mehmood Lect: GDC Shah Essa Bilot Available at http://www.MathCity.org Page 20 Exercise 2.2 Chapter 2 estimate it slope at the same point graphically. y 4 3x 15 Sol: since tangent line passing through one point of curve y 3x 19 …………………………………(2) therefore draw a tangent line on the curve at point 1, 0 Which passing through estimated point 3, 10 i.e. 10 3 3 19 10 9 19 10 10 Name of Rule Leibniz Notation Constant d dx c 0 dx cf c dx Constant d d f multiple Which line passing through the point 3, 10 Sum d dx f g dxd f dxd g dx f g dx f dx g b). Draw a tangent line to the graph of the function Difference d d d f x x 7 x 6 at point 5, 4 of the 2 dx af bg a dx f b dx g Linearity d d d function and estimate it slope at same point graphically. dx fg f dx g g dx f Sol: since tangent line passing through one point of curve Product d d d therefore draw a tangent line on the curve at point 1, 0 f f Quotient g d d d f dx dx g dx g g2 Constant Rule Let f x c then f x x c First principle for derivative d f x x f x f x f x lim dx x 0 x Putting the value d cc f x f x lim 0 Which line passing through the point 3, 10 dx x 0 x c). Is your estimate about tangent line at the point f x 0 1, 0 5, 4 equal to actual derivatives of the and Constant multiple First principle for derivative function at point 1, 0 and 5, 4 cf x x cf x Solution: we have the function f x x 7 x 6 2 d dx cf x lim x 0 x Differentiating with respect to x Putting the value f x x 7 2 x f x x f x d cf x c lim d d d d dx dx dx dx 6 f x 2x 7 dx x 0 x Slope of function at point 1, 0 i.e. x 1 & y 0 d dx cf x c d dx f x f 1 2 1 7 Sum Rule Let h x f x g x then m1 5 h x x f x x g x x So the equation of tangent y y1 m1 x x1 First principle for derivative y 0 5 x 1 d h x x h x h x h x lim dx x 0 x y 5x 5 …………………………………….(1) Putting the value of h x f x g x Which passing through estimated point 3, 10 f x x g x x f x g x i.e. 10 5 3 5 d dx f x g x lim x 0 x 10 15 5 f x x f x g x x g x d dx f x g x lim x 0 x 10 10 f x x f x g x x g x Slope of f x at point 5, 4 i.e. x 5 & y 4 d dx f x g x lim x 0 x x f 5 2 5 7 d f x g x dx f x dx g x d d dx m2 3 Difference Rule Let h x f x g x then So the equation of tangent y y1 m2 x x1 h x x f x x g x x y 4 3 x 5 First principle for derivative Khalid Mehmood Lect: GDC Shah Essa Bilot Available at http://www.MathCity.org Page 21 Exercise 2.3 Chapter 2 d h x x h x 1 g x f x x f x f x g x x g x h x h x lim h x lim dx x 0 x x 0 x g x x g x Putting the value of h x f x g x g x f x xx f x f x g x xx g x h x lim f x x g x x f x g x x 0 g x x g x d f x g x lim x dx g x lim f x x f x f x lim g x x g x x 0 f x x f x g x x g x h x x 0 x x 0 x d f x g x lim x lim g x x g x dx x 0 x 0 f x x g x x g x f x d f x g x dx f x f x dx g x d f x g x lim d d x x dx g x g x g x dx x 0 d f x g x dx f x dx g x d d d f x g x dx f x f x dx g x d d dx dx g x Linearity Rule Let h x af x bg x then g x 2 h x x af x x bg x x Exercise 2.3 Q1. Use the product rule to find out the derivative First principle for derivative of following functions; d h x x h x h x dx h x lim x 0 x a). y x 2 2 3 x 1 Putting the value of h x af x bg x af x x bg x x af x bg x Sol: Differentiating dy d dx dx x 2 2 3x 1 d dx af x bg x lim x 0 x Using the product rule af x x af x bg x x bg x x 2 2 3 x 1 3 x 1 x 2 2 dy d d d af x bg x lim x dx x 0 dx dx dx f x x f x g x x g x d dx af x bg x a lim x 0 x b x dy x2 2 3 d d x 1 3 x 1 d 2 d x 2 dx dx dx dx dx d dx af x bg x a d dx d f x b g x dx y x 2 2 3 1 0 3x 1 2 x 0 Product Rule Let h x f x .g x then y 3 x 2 2 2 x 3x 1 h x x f x x g x x y 3x 2 6 6 x 2 2 x First principle for derivative y 9 x 2 2 x 6 d h x x h x h x h x lim dx x 0 x b). y 6 x3 2 5 x 3 Putting the value of h x f x .g x d h x lim f x x g x x f x g x 1 Sol: Differentiating dy d dx dx 6 x 3 2 5 x 3 dx x 0 x Using the product rule 1 f x x g x x g x x f x dy 6 x 3 2 5 x 3 5 x 3 6 x 3 2 d d h x lim x 0 x g x x f x f x g x dx dx dx d d d 3 d 6 x3 2 5 x 3 5 x 3 6 dy 1 g x x f x x f x x 2 h x lim dx dx dx dx dx x 0 x f x g x x g x f x x f x g x x g x y 6 x3 2 5 1 0 5 x 3 6 3 x 2 0 h x lim g x x lim x f x lim x y 5 6 x3 2 18 x 2 5 x 3 x 0 x 0 x 0 y 30 x3 10 90 x3 54 x 2 d f x g x g x f x f x g x d d dx dx dx y 120x3 54x2 10 Quotient RuleLet h x g x , g x 0 then f x c). y 7 x 4 2 x x 2 4 f x x h x x g x x Sol: Differentiating dy d dx dx 7 x 4 2 x x 2 4 First principle for derivative Using the product rule d h x x h x h x h x lim dy 7 x4 2x x2 4 x2 4 7 x4 2x d d dx x 0 x dx dx dx f x d 2 d d 4 d Putting the value of h x g x 7 x4 2x 4 x2 4 7 dy x x 2 x dx dx dx dx dx d f x .g x lim 1 f x x f x y 7 x 4 2 x 2 x 0 x 2 4 7 4 x 3 2 1 dx x g x x g x y 2 x 7 x 4 2 x x 2 4 28 x 3 2 x 0 d 1 g x f x x f x g x x h x lim y 14x5 4x2 28x5 2x2 112x3 8 dx x 0 x g x x g x 1 g x f x x g x f x f x g x x g x f x y 14x5 28x5 112x3 4x2 2x2 8 h x lim x 0 x g x x g x y 42x5 112x3 6x2 8 Khalid Mehmood Lect: GDC Shah Essa Bilot Available at http://www.MathCity.org Page 22 Exercise 2.3 Chapter 2 d). y 2 x 2 4 x 3 5 x3 x 2 dy 1 4 1 1 3 x 2 6 x 2 0 dx 2 Sol: Differentiating dy d dx dx 2x 2 4 x 3 5 x3 x 2 1 3 12 1 Using the product rule 4x 2 2 x 0 2 2 x 2 4 x 3 5 x3 x 2 dy d dy 1 1 3 1 1 dx dx 2 x 2 3x 2 6 x 2 4 x 2 2 5 x3 x 2 dx 2 d dx 2 x 2 4 x 3 1 1 1 1 1 1 dy 3 3 d 3 d d 6 x 2 2 12 x 2 4 x 2 2 2 x 2 2 x 2 4 x 3 5 dy x x 2 dx 2 2 dx dx dx dx 1 1 dy d 2 5 x3 x 2 2 x 4 d x d 3 6 x0 12 x 2 6 x 0 3x 2 dx dx dx dx 1 1 y 2 x 2 4 x 3 5 3 x 2 1 0 dy dx 12 x 2 3x 2 6 6 5 x3 x 2 2 2 x 4 1 0 dy 1 15 x 2 12 y 2 x 2 4 x 315 x 2 1 5 x3 x 2 4 x 4 dx Q2. Use the quotient rule to find out the derivative y 30 x 4 2 x 2 60 x3 4 x 45 x 2 3 of the following functions; 20 x 4 20 x3 4 x 2 4 x 8 x 8 3x 5 a). y y 30 x 4 20 x 4 60 x3 20 x3 2 x 2 45 x 2 4 x 2 x4 4 x 4 x 8 x 8 3 dy d 3 x 5 Solution: Differentiating dx dx x 4 y 50 x 4 80 x3 39 x 2 16 x 5 Using Quotient rule e). y 2 x 3 x 1 dy x 4 dxd 3x 5 3x 5 dxd x 4 x 4 2 Sol: Differentiating dy d 1 2 x 3 x 2 1 dx dy x 4 3 dxd x dxd 5 3 x 5 dxd x dxd 4 dx dx Using the product rule x 4 2 dx dy d 12 12 d 2 x 3 x 1 2 x 3 dy x 4 3 1 0 3 x 5 1 0 x 1 dx dx dx x 4 2 dy d 12 d 12 d d dx 2 x 3 x 1 x 1 2 x 3 dx dx dx dx dx dy 3 x 4 1 3x 5 1 1 1 1 x 4 2 dx 2 x 3 x 2 0 x 2 1 2 1 0 dy dx 2 dy 3x 12 3x 5 x 4 1 1 2 dy 1 2 dx x 2 x 3 2 x 2 1 dx 2 dy 7 1 1 3 1 dx x 4 2 1 dy x 2 2x x 2 2x 2 2 dx 2 2 1 1 2 y 1 dy 1 3 b). x 2 x 2 2x 2 2 3x 5 dx 2 1 1 3 1 dy d 2 dy x 2 2x 2 x 2 2 Solution: Differentiating dx 2 dx dx 3 x 5 1 1 Using Quotient rule dy 3 3x 2 x 2 2 dx 2 dy 3x 5 dtd 2 2 dtd 3x 5 f). y 3 x 6 4 x 2 3x 5 2 dx Sol: Differentiating dy d dx dx 3 x 6 4 x 2 dy 3x 5 .0 2 3 dtd x dtd 5 Using the product rule 3x 5 2 dy 1 d 1 dx 3 x 2 6 4x 2 2 dy 2 3 1 0 dx dx 1 d 1 4x 2 2 3 x 6 3x 5 2 2 dx dx 6 1 1 dy 3 x 2 6 4 d x2 d dy 2 dx dx 3 x 5 2 dx dx 1 d 1 d 4 x 2 2 3 x2 6 dx dx Khalid Mehmood Lect: GDC Shah Essa Bilot Available at http://www.MathCity.org Page 23 Exercise 2.3 Chapter 2 c). f t t2 t dy 1 x d 5 x 6 5 x 6 dxd x t 1 x 2 dx dx d d t 2 t f t dy 1 x 5 Solution: Differentiating 1 dt dt t 1 d dx x d dx 6 5x 6 x d dx 2 Using Quotient rule dx x t 1 dtd t 2 t t 2 t dtd t 1 dy 1 1 1 x 5 1 0 5 x 6 x 2 d 1 f t t 1 dx x 2 dt 2 t 1 dtd t 2 dtd t t 2 t dtd t dtd 1 dy 1 1 1 f t 5 x 5 x 6 x 2 t 1 2 dx x 2 t 1 2t 1 t 2 t 1 0 dy 1 5 x 5x 6 f t dx x t 1 2 2 x dy 1 10 x 5 x 6 t 1 2t 1 1 t 2 t f t dx x 2 x t 1 2 dy 1 5 x 6 2t 2 t 2t 1 t 2 t f t dx x 2 x t 1 2 dy 5 x 6 2t 2 t 2 t t 2t 1 f t dx 2 x x t 1 2 x2 7 x 2 t 2t 1 2 f). y f t x2 t 1 2 dy d x 2 7 x 2 Solution: Differentiating x 6x 2 dx dx x 2 d). y 4 x3 1 Using Quotient rule dy d x 2 6 x dy x 2 dx x 7 x 2 x 7 x 2 dx x 2 d 2 2 d Solution: Differentiating dx dx 4 x3 1 dx x 2 2 dy x 2 dx x 7 dx x dx 2 x 7 x 2 dx x dx 2 Using Quotient rule d 2 d d 2 d d dy 4 x3 1 dxd x 2 6 x x 2 6 x 4x d 3 1 x 2 dx 2 dx 2 dx 4 x3 1 x 2 2 x 7 1 0 x 2 7 x 2 1 0 dy dy 4 x 1 dxd x 6 dxd x x 6 x 4 dxd x dxd 1 3 2 2 3 x 2 2 dx 2 dx 4 x3 1 dy x 2 2 x 7 1 x 7 x 2 2 dy 4 x 1 2 x 6 1 x 6 x 4 3x 0 3 2 2 dx x 2 2 4 x3 1 2 dx dy 2 x 2 7 x 4 x 14 x 2 7 x 2 dy 4 x 1 2 x 6 12 x x 6 x x 2