Exercise 2.1 and 2.2 PDF

Document Details

SignificantRuthenium6334

Uploaded by SignificantRuthenium6334

GDC Shah Essa Bilot Sharif

Khalid Mehmood

Tags

average rate of change calculus mathematics functions

Summary

This document contains exercises and solutions about average rate of change of functions, finding average velocity for the specified intervals (e.g. from t=2 to t=2.1) and the first principle for derivative of y = x^n. The problems are from Chapter 2. The exercises cover functions like y = x^2 + 4, and y = x^2 - 6x + 8.

Full Transcript

Exercise 2.1 Chapter 2  average rate of change h  ...

Exercise 2.1 Chapter 2  average rate of change h   h t  t   h  t  Chapter 2 With t  tmax  tmin t t then t  8.5  8  0.5 f  x  x   f  x  Substituting h  t   2t  7 Average rate of change y  x x h h  8.5  h  8  Exercise 2.1 t 0.5 Q1. Find the average rate of change of the h     2  8.5   7  2 8  7  following functions over the indicated intervals: t 0.5 a). y  x2  4 from x=2 to x=3 h 17  16  Sol: We have y  f  x   x  4 2 0.246 t 0.5 y f  x  x   f  x  Q2. Use definition to find out average rate of change  average rate of change  over specified interval for following functions: x x a). s  2t  3 from t=2 to t=5 With x  xmax  xmin then x  3  2  1 Solution: We have s  t   2t  3 y f  3  f  2   average rate of change s    s t  t   s  t  x x t t y 3  4    2  4  With t  tmax  tmin then t  5  2  3 2 2  x 1 s s  5   s  2   y t   9  4    4  4   13  8 3 x s  2  5   3   2  2   3  y t 3 5 x s 10  3  4  3  1 t 3 b). y  x 2  x from x=-3 to x=3 s 6 3  2 1 t 3 Solution: We have y  f  x   x 2  x s 3 2 t With x  xmax  xmin then x  3   3  6 b). y  x2  6x  8 from x=3 to x=3.1 y f  3  f  3  average rate of change  Solution: We have y  f  x   x  6 x  8 2 x 6  average rate of change y   f x  x   f  x   2 1   1   3  3  3    3  3  3  2 y x x  With x  xmax  xmin then x  3.1  3  0.1 x 6 y  9  1   9  1 y f  3.1  f  3   x 6 x 0.1 y 10  8 2  3.12  6  3.1  8   32  6  3  8   y     x 6 6  x 0.1 y y 9.61  18.6  8  9  18  8 1  x 3  x 0.1 c). s  2t 3  5t  7 from t=1 to t=3 y  0.99   1  Solution: We have s  t   2t  5t  7 3 x 0.1 y 0.99  1 0.01 1 With t  tmax  tmin then x  3  1  2     0.1 x 0.1 0.1 10 s s  3  s 1 A   r2  average rate of change  c). from r=2 to r=2.1 t 2 Solution: We have A  r    r 2 s  2  3  5  3  7    2 1  5 1  7   3   3   A A  r  r   A  r  t 2  average rate of change  r r s  2  27   15  7    2  5  7  t  2 With r  rmax  rmin then r  2.1  2  0.1 s 54  8  4 42 A A  2.1  A  2     t 2 2 r 0.1 s A   2.1    2 2 2  21  t r 0.1 d). h  2t  7 from t=8 to t=8.5 A 4.41  4  Solution: We have h  t   2t  7 r 0.1 Khalid Mehmood Lect: GDC Shah Essa Bilot Available at http://www.MathCity.org Page 17 Exercise 2.2 Chapter 2 A 0.41 With t  tmax  tmin then t  5  3  2  r 0.1 p p  5   p  3 A  4.1 12.88  r t 2 p 3  5    5   1  3  3   3  1 d). h  t 9 from t=9 to t=16  2   2   Solution: We have h  t   t  9 t 2 With t  tmax  tmin then t  16  9  7 p 3  25   6   3  9   4    average rate of change h h 16   h  9  t 2  t 7 p 75  6  27  4         h 16 9 9 9 t      2 t 7 p 50 h 4  9  3  9   25  t 2 t 7 First principle for derivative h 4  3 1   dy y f  x  x   f  x  t 7 7  lim  lim Q3. A ball is thrown straight up. Its height after t seconds dx x0 x x0 x is given by the formula h  t   16t 2  80t Find the Slope when two point P1  x1 , y1  , P2  x2 , y2  are h given Slope = m  y2  y1 average velocity for the specified intervals x2  x1 t a). From t=2 to t=2.1 Differentiation of y  x n by first principle Rule Solution: We have h  t   16t  80t If f  x   x so f  x  x    x  x  2 n n With t  tmax  tmin then t  2.1  2  0.1 Using first principle for derivative of f  x  h h  2.1  h  2  f  x  x   f  x   average rate of change  d f  x   lim t 0.1 dx x 0 x h  16  2.1  80  2.1    16  2   80  2        x  x  2 2  xn n  f   x   lim t 0.1 x 0 x h 16  4.41  168  16  4   160 Using binomial theorem  n n 1 t  x  x   x n  nx n 1x  x n  2  x   n 2 0.1 2! h 70.56  168  64  160   x  x  n  xn t 0.1 so f   x   lim h 1.44 x 0 x   14.4 x  nx x   2!  x n2  x   n n 1 n 1  xn 2 t 0.1 n f  x   lim  b). From t=2 to t=2.01 x 0 x Solution: We have h  t   16t  80t 2 x n2  x   n n 1 nx n1x  2 With t  tmax  tmin then t  2.01  2  0.01 f   x   lim 2! x 0 x h h  2.1  h  2  x  nx  2! x  x    n 1 n n 1 n  2  average rate of change    t 0.1 f  x   lim  x 0 x  16  2.012  80  2.01    16  2 2  80  2   h     n n 1 n  2  f   x   lim  nx  2! x  x    n  1 t 0.01 x 0   h 16  4.0401  160.8  16  4   160 f   x   nx n1   2!  x n2  0   0  0   n n 1  t 0.01   h 64.6416  160.8  64  160  f   x   nx n 1 t 0.01 Exercise 2.2 h 0.1584   15.84 Q1. Use first Principle to determine the derivative t 0.01 of the following functions. Q4. The rate of change of price is called inflation. a). f  x   3x price P in rupees after t years is p  t   3t  t  1 2 Solution: We have f  x   3 x Find the average rate of change of inflation from t=3 to t=5 years. What the rate of change means? Explain First principle for derivative Solution: We have p  t   3t  t  1 2 dy y f  x  x   f  x   lim  lim p p  t  t   p  t  dx x0 x x0 x  average rate of change  Substituting f  x   3 x t t Khalid Mehmood Lect: GDC Shah Essa Bilot Available at http://www.MathCity.org Page 18 Exercise 2.2 Chapter 2 dy y 3  x  x   3x y 12   x  x 2   12  x 2   lim  lim dy  lim  lim     dx x 0 x x 0 x dx x 0 x x 0 x dy  lim y  lim 3x  3x  3x dy  lim y  lim  12  x 2   x   2 xx  12  x 2 2  dx x 0 x x 0 x dx x 0 x x0 x y 3x 12  x 2   x   2 xx  12  x 2 dy 2  lim  lim dy y dx x 0 x x 0 x  lim  lim dy y dx x0 x x0 x  lim  lim 3  3   x   2 xx 2 dx  x x0 dy y  lim  lim x 0 b). f  x   5x  6 dx x0 x x0 x Solution: We have dy y x  x  2 x   lim  lim First principle for derivative dx x0 x x0 x y f  x  x   f  x  dy y  lim  x  2 x  dy  lim  lim  lim dx x 0 x x 0 x dx x0 x x0 Substituting dy y  lim  0  2 x y 5  x  x   6   5 x  6 x  lim  dy dx x 0  lim dx x 0 x x 0 x dy y y 5 x  5x  6  5 x  6  lim  2 x dy  lim  lim dx x 0 x dx x 0 x x f  x   16 x 2  7 x x 0 e). dy y 5x  lim  lim Solution: We have f  x   16 x  7 x 2 dx x 0 x x0 x dy y First principle for derivative  lim  lim 5 f  x  x   f  x  dx  x 0 x x0 dy y  lim  lim dy y dx x0 x x0 x  lim 5 Substituting dx x 0 x 16  x  x 2  7  x  x    16 x 2  7 x  y    c). f  x   x2  1 dy  lim  lim  dx x0 x x0 x Solution: We have f  x   x  1   2 16 x 2   x   2 xx  7 x  7x  16 x 2  7 x 2 dy y  lim  lim First principle for derivative dx x0 x x0 x dy y f  x  x   f  x  dy y 16 x 2  16  x   32 xx  7 x  7x  16 x 2  7 x 2  lim  lim  lim  lim dx x0 x x0 x dx x0 x x0 x 16  x   32 xx  7x 2 Substituting dy y  lim  lim  x  x 2  1   x 2  1 dx x 0 x x 0 x y     lim  dy y x 16x  32 x  7   lim dy  lim  lim dx x 0 x x 0 x dx x0 x x0 x y x 2   x   2 xx  1  x 2  1 2 dy y dy  lim  lim  lim  lim 16x  32 x  7  dx x 0 x x 0 x dx x0 x x0 dy y  x   2 xx  16  0   32 x  7  2 y  lim dx x0 x  dy  lim  lim dx x 0 x x 0 x dy y dy y x  x  2 x   lim  32 x  7  lim  lim dx x0 x dx x 0 x x 0 x 7 dy y f). f  x   lim  lim  x  2 x  x dx x 0 x x 0 7 dy y Solution: We have f  x    lim  0  2 x x dx x 0 x First principle for derivative dy y y f  x  x   f  x   lim  2x dy  lim  lim dx x 0 x dx x0 x x0 x d). f  x   12  x 2 7 Substituting f  x   Solution: We have f  x   12  x 2 x dy y 1  7 7 First principle for derivative  lim  lim    dy y f  x  x   f  x  dx x 0 x x 0 x  x  x x   lim  lim dx x0 x x0 x dy y 1  7 x  7  x  x    lim  lim   Substituting f  x   12  x x x  x  x  x   2   dx x 0 x 0 Khalid Mehmood Lect: GDC Shah Essa Bilot Available at http://www.MathCity.org Page 19 Exercise 2.2 Chapter 2 dy y 1  7 x  7 x  7x  dy y 1  5  2 x  4   5  2 x  2x  4    lim  lim  lim  lim     dx x 0 x x0 x   2 x  2x  4  2 x  4   dx x0 x x0 x  x  x  x   y 1 10 x  20  10 x  10x  20  1  7x  dy dy y  lim  lim    lim  lim   dx x 0 x x0 x   2 x  2x  4  2 x  4   dx x0 x x0 x  x  x  x   dy y 1  10x  y  7   lim  lim   dx x0 x x 0 x   2 x  2x  4  2 x  4   dy  lim  lim   dx x0 x x0  x  x  x   dy y  10  y  7   7   lim  lim   dx x0 x x 0   2 x  2x  4  2 x  4   dy  lim    dx x0 x  x  x  0    x  x   dy y  10  dy y 7  lim    lim  dx x0 x   2 x  2  0   4   2 x  4   dx x 0 x x 2 3 dy y  10  g). f  x   lim   x3 dx x 0 x   2 x  4  2 x  4   Solution: We have dy y 10 First principle for derivative  lim  dx x 0 x  2 x  4 2 dy y f  x  x   f  x   lim  lim i). f  x   3x 2  4 x  9 dx x 0 x x 0 x 1  3  Solution: We have f  x   3x  4 x  9 2 dy 3 Substituting  lim    dx x0 x   x  x   3 x  3  First principle for derivative dy y f  x  x   f  x  dy y 1  3 3   lim  lim  lim  lim   x  x dx x 0 x x 0 x  x  x  3 x  3  dx x 0 x 0 Substituting f  x   3x  4 x  9 2 dy y 1  3  x  3  3  x  x  3   lim  lim   3  x  x 2  4  x  x   9   3 x 2  4 x  9     dx x0 x x0 x   x  x  3 x  3  dy  lim  dx x 0 x dy  lim y  lim 1  3x  9  3 x  3x  9    dy  lim  2  3 x 2   x   2 xx  4 x  4x  9  3x 2  4 x  9 dx x 0 x x 0 x   x  x  3 x  3  dx x 0 x 3x 2  3  x   6 xx  4 x  4x  9  3x 2  4 x  9 2 dy y 1  3x  dy  lim  lim  lim   x dx x 0 x x 0 x   x  x  3 x  3  dx x 0 3  x   6 xx  4x 2 dy dy y  3   lim  lim  lim   dx x 0 x x   x  x  3 x  3  dx   x 3x  6 x  4 x 0 x 0 dy y  3   lim dy  lim   dx x 0 x dx x 0 x   x  0  3 x  3  dy  lim 3x  6 x  4 dy y  3  dx x 0  lim   dx x 0 x   x  3 x  3  dy  3  0   6 x  4  dy y 3 dx  lim  dy dx x 0 x  x  32  6x  4 dx 5 h). f  x  Q2. Estimate the slope of the tangent line on a curve at 2x  4 a point P(x,y) for each of the following graph Solution: We have f  x   5 a). Solution: From graph points are  5,3  and  7, 7  2x  4 73 4 First principle for derivative slope  m   2 75 2 y f  x  x   f  x  dy  lim  lim b). Solution: From graph points are  2, 2  and  0, 4  dx x0 x x0 x 42 2 5 slope  m    1 Substituting f  x   0  2 2 2x  4 c).Solution: From graph points are  2, 2  and  4, 3  dy y 1  5 5  3 2 1  lim  lim    slope  m   dx x0 x x0 x  2  x  x   4 2 x  4  4   2  6 dy y 1  5 5  Q3a). Draw a tangent line to the graph of function  lim  lim  f  x   x 2  7 x  6 at point 1, 0  of function and dx x 0 x x 0 x  2 x  2x  4 2 x  4   Khalid Mehmood Lect: GDC Shah Essa Bilot Available at http://www.MathCity.org Page 20 Exercise 2.2 Chapter 2 estimate it slope at the same point graphically. y  4  3x 15 Sol: since tangent line passing through one point of curve y  3x  19 …………………………………(2) therefore draw a tangent line on the curve at point 1, 0  Which passing through estimated point  3, 10  i.e. 10  3  3  19 10  9  19 10  10 Name of Rule Leibniz Notation Constant d dx c  0 dx  cf   c dx Constant d d f multiple Which line passing through the point  3, 10  Sum d dx  f  g   dxd f  dxd g dx  f  g   dx f  dx g b). Draw a tangent line to the graph of the function Difference d d d f  x   x  7 x  6 at point  5, 4  of the 2 dx  af  bg   a dx f  b dx g Linearity d d d function and estimate it slope at same point graphically. dx  fg   f dx g  g dx f Sol: since tangent line passing through one point of curve Product d d d therefore draw a tangent line on the curve at point 1, 0  f  f Quotient   g d d d f dx dx g dx g g2 Constant Rule Let f  x   c then f  x  x   c First principle for derivative d f  x  x   f  x  f  x  f  x   lim dx x 0 x Putting the value d cc f  x  f  x   lim 0 Which line passing through the point  3, 10  dx x 0 x c). Is your estimate about tangent line at the point  f  x  0 1, 0   5, 4  equal to actual derivatives of the and Constant multiple First principle for derivative function at point 1, 0  and  5, 4  cf  x  x   cf  x  Solution: we have the function f  x   x  7 x  6 2 d dx cf  x   lim x 0 x Differentiating with respect to x Putting the value f  x  x 7 2 x f  x  x   f  x  d cf  x   c lim d d d d dx dx dx dx 6 f   x   2x  7 dx x 0 x Slope of function at point 1, 0  i.e. x  1 & y  0 d dx cf  x   c d dx f  x f  1  2 1  7 Sum Rule Let h  x   f  x   g  x  then m1  5 h  x  x   f  x  x   g  x  x  So the equation of tangent y  y1  m1  x  x1  First principle for derivative y  0  5  x  1 d h  x  x   h  x  h  x   h  x   lim dx x 0 x y  5x  5 …………………………………….(1) Putting the value of h  x   f  x   g  x  Which passing through estimated point  3, 10   f  x  x   g  x  x    f  x   g  x  i.e. 10  5  3  5 d dx  f  x   g  x   lim x 0 x 10  15  5 f  x  x   f  x   g  x  x   g  x  d dx  f  x   g  x   lim x 0 x 10  10 f  x  x   f  x  g  x  x   g  x  Slope of f  x  at point  5, 4  i.e. x  5 & y  4 d dx  f  x   g  x   lim x 0 x  x f   5  2  5  7 d  f  x   g  x   dx f  x   dx g  x  d d dx m2  3 Difference Rule Let h  x   f  x   g  x  then So the equation of tangent y  y1  m2  x  x1  h  x  x   f  x  x   g  x  x  y   4   3  x  5  First principle for derivative Khalid Mehmood Lect: GDC Shah Essa Bilot Available at http://www.MathCity.org Page 21 Exercise 2.3 Chapter 2 d h  x  x   h  x  1  g  x   f  x  x   f  x   f  x  g  x  x   g  x   h  x   h  x   lim h  x   lim   dx x 0 x x 0 x  g  x  x  g  x   Putting the value of h  x   f  x   g  x   g  x  f  x xx f  x   f  x  g  x xx g  x   h  x   lim    f  x  x   g  x  x    f  x   g  x  x 0  g  x  x  g  x   d  f  x   g  x   lim  x dx  g  x  lim f  x x   f  x   f  x  lim g  x x   g  x   x 0 f  x  x   f  x   g  x  x   g  x  h  x    x 0 x x 0 x  d  f  x   g  x   lim x  lim g  x  x  g  x   dx x 0   x 0  f  x  x     g  x  x   g  x   f x d  f  x    g  x  dx f  x   f  x  dx g  x  d  f  x   g  x   lim d d x x    dx  g  x    g  x g  x dx x 0  d  f  x   g  x   dx f  x   dx g  x  d d d f  x   g  x  dx f  x   f  x  dx g  x  d d dx   dx  g  x   Linearity Rule Let h  x   af  x   bg  x  then  g  x   2 h  x  x   af  x  x   bg  x  x  Exercise 2.3 Q1. Use the product rule to find out the derivative First principle for derivative of following functions; d h  x  x   h  x  h  x   dx h  x   lim x 0 x a). y   x 2  2   3 x  1 Putting the value of h  x   af  x   bg  x  af  x  x   bg  x  x   af  x   bg  x  Sol: Differentiating dy d  dx dx  x 2  2   3x  1  d dx af  x   bg  x   lim x 0 x Using the product rule af  x  x   af  x   bg  x  x   bg  x    x 2  2   3 x  1   3 x  1  x 2  2  dy d d d af  x   bg  x   lim  x dx x 0 dx dx dx f  x  x   f  x  g  x  x   g  x  d dx af  x   bg  x   a lim x 0 x b x dy    x2  2  3 d d  x  1   3 x  1   d 2 d  x  2 dx  dx dx   dx dx  d dx af  x   bg  x   a d dx d f  x  b g  x dx y   x 2  2   3 1  0    3x  1 2 x  0  Product Rule Let h  x   f  x .g  x  then y  3  x 2  2   2 x  3x  1 h  x  x   f  x  x  g  x  x  y  3x 2  6  6 x 2  2 x First principle for derivative y  9 x 2  2 x  6 d h  x  x   h  x  h  x   h  x   lim dx x 0 x b). y   6 x3  2   5 x  3 Putting the value of h  x   f  x .g  x  d h  x   lim  f  x  x  g  x  x   f  x  g  x  1 Sol: Differentiating dy d  dx dx   6 x 3  2   5 x  3  dx  x 0 x Using the product rule 1  f  x  x  g  x  x   g  x  x  f  x   dy   6 x 3  2   5 x  3   5 x  3  6 x 3  2  d d h  x   lim   x 0 x    g  x  x  f  x   f  x  g  x    dx dx dx  d d   d 3 d    6 x3  2   5 x  3    5 x  3  6 dy 1  g  x  x   f  x  x   f  x    x  2 h  x   lim   dx  dx dx   dx dx  x 0 x             f x g x x g x f  x x  f  x  g  x x  g  x   y   6 x3  2   5 1  0    5 x  3 6  3 x 2   0  h  x   lim g  x  x  lim x  f  x  lim x y  5  6 x3  2   18 x 2  5 x  3 x 0 x 0 x 0 y  30 x3  10  90 x3  54 x 2 d  f  x  g  x   g  x  f  x   f  x  g  x  d d dx dx dx y  120x3  54x2  10 Quotient RuleLet h  x   g  x  , g  x   0 then f  x c). y   7 x 4  2 x  x 2  4  f  x x  h  x  x   g  x x  Sol: Differentiating dy  d dx dx  7 x 4  2 x  x 2  4   First principle for derivative Using the product rule d h  x  x   h  x  h  x   h  x   lim dy   7 x4  2x   x2  4   x2  4  7 x4  2x  d d dx x 0 x dx dx dx f  x  d 2 d   d 4 d  Putting the value of h  x   g  x    7 x4  2x   4    x2  4  7 dy x  x 2 x dx  dx dx   dx dx  d  f  x .g  x   lim 1  f  x  x  f  x       y   7 x 4  2 x   2 x  0    x 2  4  7  4 x 3   2 1  dx  x  g  x  x  g  x   y  2 x  7 x 4  2 x    x 2  4  28 x 3  2  x 0 d 1  g  x  f  x  x   f  x  g  x  x   h  x   lim   y  14x5  4x2  28x5  2x2 112x3  8 dx x 0 x  g  x  x  g  x   1  g  x  f  x x  g  x  f  x  f  x  g  x x  g  x  f  x   y  14x5  28x5 112x3  4x2  2x2  8 h  x   lim x 0 x  g  x x  g  x   y  42x5 112x3  6x2  8 Khalid Mehmood Lect: GDC Shah Essa Bilot Available at http://www.MathCity.org Page 22 Exercise 2.3 Chapter 2 d). y   2 x 2  4 x  3 5 x3  x  2  dy  1   4 1 1    3 x 2  6   x 2  0  dx   2  Sol: Differentiating dy  d dx dx  2x 2  4 x  3 5 x3  x  2   1   3 12 1  Using the product rule   4x 2  2   x  0   2    2 x 2  4 x  3  5 x3  x  2  dy d dy 1  1  3 1  1  dx dx  2 x 2  3x 2  6   x 2  4 x 2  2    5 x3  x  2  dx   2   d dx  2 x 2  4 x  3 1 1 1 1 1 1 dy  3  3  d 3 d d   6 x 2 2  12 x 2   4 x 2 2   2 x 2   2 x 2  4 x  3  5 dy x  x 2 dx 2 2 dx  dx dx dx  1 1 dy  d 2   5 x3  x  2   2 x 4 d x d  3  6 x0  12 x 2  6 x 0  3x 2  dx dx dx  dx 1 1  y   2 x 2  4 x  3 5  3 x 2   1  0  dy dx  12 x 2  3x 2  6  6   5 x3  x  2   2  2 x   4 1  0  dy 1  15 x 2  12 y   2 x 2  4 x  315 x 2  1   5 x3  x  2   4 x  4  dx Q2. Use the quotient rule to find out the derivative y  30 x 4  2 x 2  60 x3  4 x  45 x 2  3 of the following functions; 20 x 4  20 x3  4 x 2  4 x  8 x  8 3x  5 a). y y  30 x 4  20 x 4  60 x3  20 x3  2 x 2  45 x 2  4 x 2 x4 4 x  4 x  8 x  8  3 dy d  3 x  5  Solution: Differentiating    dx dx  x  4  y  50 x 4  80 x3  39 x 2  16 x  5 Using Quotient rule e). y   2 x  3  x 1  dy  x  4  dxd  3x  5   3x  5 dxd  x  4    x  4 2 Sol: Differentiating dy  d    1   2 x  3  x 2  1  dx dy  x  4   3 dxd x  dxd 5    3 x  5   dxd x  dxd 4  dx dx      Using the product rule   x  4 2 dx dy d  12   12  d   2 x  3     x  1  2 x  3  dy  x  4   3 1  0    3 x  5 1  0  x 1 dx dx     dx   x  4 2 dy  d 12 d   12  d d  dx   2 x  3  x  1   x  1  2 x 3 dx  dx dx     dx dx  dy 3  x  4   1 3x  5    1 1 1   1   x  4 2 dx   2 x  3  x 2  0    x 2  1  2 1  0  dy dx 2    dy 3x  12  3x  5     x  4 1 1 2 dy 1 2 dx  x  2 x  3  2  x 2  1 dx 2   dy 7 1 1 3 1  dx  x  4 2 1 dy  x 2  2x  x 2  2x 2  2 dx 2 2 1 1 2 y 1 dy 1 3 b).  x 2  x 2  2x 2  2 3x  5 dx 2 1 1 3 1 dy d  2  dy  x 2  2x 2  x 2  2 Solution: Differentiating    dx 2 dx dx  3 x  5  1 1 Using Quotient rule dy 3  3x 2  x 2  2 dx 2 dy  3x  5  dtd 2  2 dtd  3x  5  f).  y  3 x  6 4 x  2     3x  5 2 dx Sol: Differentiating dy  d dx dx  3 x 6  4 x 2  dy  3x  5 .0  2  3 dtd x  dtd 5  Using the product rule   3x  5 2 dy  1  d  1  dx   3 x 2  6   4x  2  2     dy 2  3 1  0  dx dx  1  d  1     4x 2  2   3 x  6   3x  5 2 2   dx   dx     6 1 1 dy   3 x 2  6   4 d x2  d dy 2     dx dx  3 x  5  2 dx dx   1  d 1 d    4 x 2  2   3 x2  6   dx dx  Khalid Mehmood Lect: GDC Shah Essa Bilot Available at http://www.MathCity.org Page 23 Exercise 2.3 Chapter 2 c). f t   t2  t dy  1   x d  5 x  6    5 x  6  dxd x t 1  x   2 dx dx d d t 2  t  f t     dy 1    x  5 Solution: Differentiating 1 dt dt  t  1    d dx x d dx 6  5x  6 x  d dx 2 Using Quotient rule dx x    t  1 dtd  t 2  t    t 2  t  dtd  t  1 dy 1  1    1 x  5 1  0    5 x  6  x 2  d 1 f t      t  1 dx x   2 dt 2  t  1  dtd t 2  dtd t    t 2  t   dtd t  dtd 1 dy 1  1 1  f  t    5 x   5 x  6  x 2   t  1 2 dx x  2   t  1 2t  1   t 2  t  1  0  dy 1   5 x  5x  6  f  t   dx x    t  1 2 2 x  dy 1 10 x   5 x  6    t  1 2t  1  1 t 2  t     f  t   dx x  2 x   t  1 2 dy 1  5 x  6  2t 2  t  2t  1  t 2  t  f  t   dx x  2 x   t  1 2 dy 5 x  6 2t 2  t 2  t  t  2t  1  f  t   dx 2 x x  t  1 2 x2  7 x  2 t  2t  1 2 f). y f  t   x2  t  1 2 dy d  x 2  7 x  2  Solution: Differentiating    x  6x 2 dx dx  x  2  d). y 4 x3  1 Using Quotient rule dy d   x 2  6 x  dy  x  2  dx  x  7 x  2    x  7 x  2  dx  x  2  d 2 2 d Solution: Differentiating     dx dx  4 x3  1  dx  x  2 2 dy  x  2   dx x  7 dx x  dx 2    x  7 x  2   dx x  dx 2  Using Quotient rule d 2 d d 2 d d dy      4 x3  1 dxd  x 2  6 x   x 2  6 x   4x d 3  1    x  2 dx 2 dx   2 dx 4 x3  1  x  2   2 x  7 1  0    x 2  7 x  2  1  0        dy dy 4 x  1  dxd x  6 dxd x   x  6 x 4 dxd x  dxd 1 3 2 2  3  x  2 2  dx   2 dx 4 x3  1 dy  x  2  2 x  7   1 x  7 x  2  2 dy  4 x  1  2 x  6 1     x  6 x  4  3x   0  3 2 2 dx     x  2 2  4 x3  1 2 dx dy 2 x 2  7 x  4 x  14  x 2  7 x  2  dy  4 x  1  2 x  6   12 x   x  6 x   x  2

Use Quizgecko on...
Browser
Browser