Summary

This document appears to be a mathematics textbook chapter. It discusses real numbers, including Euclid's division algorithm and the fundamental theorem of arithmetic.

Full Transcript

okLrfod la[;k,¡ 1 okLrfod la[;k,¡ 1 1.1 Hkwfedk d{kk 9 esa] vkius okLrfod la[;kvksa dh [kkst izkjaHk dh vkSj bl izfØ;k ls vkidks vifjes; la[;kvksa dks tkuus...

okLrfod la[;k,¡ 1 okLrfod la[;k,¡ 1 1.1 Hkwfedk d{kk 9 esa] vkius okLrfod la[;kvksa dh [kkst izkjaHk dh vkSj bl izfØ;k ls vkidks vifjes; la[;kvksa dks tkuus dk volj feykA bl vè;k; esa] ge okLrfod la[;kvksa osQ ckjs esa viuh ppkZ tkjh j[ksaxsA ;g ppkZ ge vuqPNsn 1-2 rFkk 1-3 esa /ukRed iw.kk±dksa osQ nks vfr egRoiw.kZ xq.kksa ls izkjaHk djsaxsA ;s xq.k gSa% ;wfDyM foHkktu ,YxksfjFe (dyu fof/) (Euclid’s division algorithm) vkSj vadxf.kr dh vk/kjHkwr izes; (Fundamental Theorem of Arithmetic) A tSlk fd uke ls fofnr gksrk gS] ;wfDyM foHkktu ,YxksfjFe iw.kk±dksa dh foHkkT;rk ls fdlh :i esa lacaf/r gSA lk/kj.k Hkk"kk esa dgk tk,] rks ,YxksfjFe osQ vuqlkj] ,d /ukRed iw.kk±d a dks fdlh vU; /ukRed iw.kk±d b ls bl izdkj foHkkftr fd;k tk ldrk gS fd 'ks"kiQy r izkIr gks] tks b ls NksVk (de) gSA vki esa ls vf/drj yksx 'kk;n bls lkekU; yach foHkktu izfØ;k (long division process) osQ :i esa tkurs gSaA ;|fi ;g ifj.kke dgus vkSj le>us esa cgqr ljy gS] ijarq iw.kk±dksa dh foHkkT;rk osQ xq.kksa ls lacafèkr blosQ vusd vuqiz;ksx gSaA ge buesa ls oqQN ij izdk'k Mkysaxs rFkk eq[;r% bldk iz;ksx nks /ukRed iw.kk±dksa dk egÙke lekiorZd (HCF) ifjdfyr djus esa djsaxsA nwljh vksj] vadxf.kr dh vk/kjHkwr izes; dk laca/ /ukRed iw.kk±dksa osQ xq.ku ls gSA vki igys ls gh tkurs gSa fd izR;sd HkkT; la[;k (Composite number) dks ,d vf}rh; :i ls vHkkT; la[;kvksa (prime numbers) osQ xq.kuiQy osQ :i esa O;Dr fd;k tk ldrk gSA ;gh egRoiw.kZ rF; vadxf.kr dh vk/kjHkwr izes; gSA iqu%] ;g ifj.kke dgus vkSj le>us esa cgqr ljy gS] ijarq blosQ xf.kr osQ {ks=k esa cgqr O;kid vkSj lkFkZd vuqiz;ksx gSaA ;gk¡] ge vadxf.kr dh vk/kjHkwr izes; osQ nks eq[; vuqiz;ksx ns[ksaxsA ,d Rationalised 2023-24 Rationalised 2023-24 2 xf.kr rks ge bldk iz;ksx d{kk IX esa vè;;u dh xbZ oqQN la[;kvksa] tSls 2 , 3 vkSj 5 vkfn dh vifjes;rk fl¼ djus esa djsaxsA nwljs] ge bldk iz;ksx ;g [kkstus esa djsaxs fd p fdlh ifjes; la[;k] eku yhft, q ( q  0) , dk n'keyo izlkj dc lkar (terminating) gksrk gS rFkk dc vlkar vkorhZ (non-terminating repeating) gksrk gSA ,slk ge p osQ gj q q osQ vHkkT; xq.ku[kaMu dks ns[kdj Kkr djrs gSaA vki ns[ksaxs fd q osQ vHkkT; xq.ku[kaMu ls p osQ n'keyo izlkj dh izo`Qfr dk iw.kZr;k irk yx tk,xkA q vr%] vkb, viuh [kkst izkjaHk djsaA 1.2 vadxf.kr dh vk/kjHkwr ize; s vki fiNyh d{kkvksa esa ns[k pqosQ gSa fd fdlh Hkh izko`Qr la[;k dks mlosQ vHkkT; xq.ku[kaMksa osQ ,d xq.kuiQy osQ :i esa fy[kk tk ldrk gSA mnkgj.kkFkZ] 2 = 2, 4 = 2 × 2, 253 = 11 × 23, bR;kfnA vc] vkb, izko`Qr la[;kvksa ij ,d vU; n`f"Vdks.k ls fopkj djus dk iz;Ru djsaA vFkkZr~ ;g ns[ksa fd D;k vHkkT; la[;kvksa dks xq.kk djosQ] ,d izko`Qr la[;k izkIr dh tk ldrh gSA vkb, bldh tk¡p djsaA oqQN vHkkT; la[;kvksa] eku yhft, 2, 3, 7, 11 vkSj 23 dk dksbZ laxgz yhft,A ;fn ge bu la[;kvkssa esa ls oqQN ;k lHkh la[;kvksa dks bl izdkj xq.kk djsa fd bu la[;kvksa dh ge ftruh ckj pkgsa iqujko`fÙk dj ldrs gSa] rks ge /ukRed iw.kk±dksa dk ,d cM+k laxgz cuk ldrs gSa (okLro esa] vifjfer :i ls vusd)A vkb, buesa ls oqQN dh lwph cuk,¡% 7 × 11 × 23 = 1771, 3 × 7 × 11 × 23 = 5313, 2 × 3 × 7 × 11 × 23 = 10626, 23 × 3 × 73 = 8232, 22 × 3 × 7 × 11 × 23 = 21252 bR;kfnA vc eku yhft, fd vkiosQ laxzg esa] lHkh laHko vHkkT; la[;k,¡ lfEefyr gSaA bl laxgz dh vkeki (size) osQ ckjs esa vki D;k vuqeku yxk ldrs gSa\ D;k blesa ifjfer la[;k esa iw.kk±d lfEefyr gSa vFkok vifjfer :i ls vusd iw.kk±d lfEefyr gSa\ okLro esa] vHkkT; la[;k,¡ vifjfer :i ls vusd gSaA blfy,] ;fn ge bu vHkkT; la[;kvksa dks lHkh laHko izdkjksa ls la;ksftr djsa rks geas lHkh vHkkT; la[;kvksa vkSj vHkkT; la[;kvksa osQ lHkh laHko xq.kuiQyksa dk ,d vuar laxzg izkIr gksxkA vc iz'u mBrk gS] D;k ge bl izdkj ls lHkh HkkT; la[;k,¡ (composite numbers) izkIr dj ldrs gSa\ vki D;k lksprs Rationalised 2023-24 Rationalised 2023-24 okLrfod la[;k,¡ 3 gSa\ D;k vki lksprs gSa fd dksbZ ,slh HkkT; la[;k gks ldrh gS tks vHkkT; la[;kvksa dh ?kkrksa (powers) dk xq.kuiQy u gks\ bldk mÙkj nsus ls igys] vkb, /ukRed iw.kk±dksa osQ xq.ku[kaMu djsa] vFkkZr~ vHkh rd tks geus fd;k gS mldk mYVk djsaA ge ,d xq.ku[kaM o`{k (factor tree) dk iz;ksx djsxa s ftlls vki iwoZ ifjfpr gSAa vkb,] ,d cM+h la[;k] eku yhft, 32760] ysa vkSj mlosQ xq.ku[kaM uhps n'kkZ, vuqlkj djsa% bl izdkj] geus 32760 dks vHkkT; la[;kvksa osQ ,d xq.kuiQy osQ :i esa xq.ku[kafMr dj fy;k gS] tks 2 × 2 × 2 × 3 × 3 × 5 × 7 × 13 gSA vFkkZr~ 32760 = 23 × 32 × 5 × 7 × 13 gS] tks vHkkT; la[;kvksa dh ?kkrksa osQ :i esa gSaA vkb, ,d vU; la[;k] eku yhft, 123456789 ysdj mlosQ xq.ku[kaM fy[ksaA bls 32 × 3803 × 3607 osQ :i esa fy[kk tk ldrk gSA fu%lansg] vkidks bldh tk¡p djuh gksxh fd 3803 vkSj 3607 vHkkT; la[;k,¡ gSaA (,slk gh vusd vU; izko`Qr la[;k,¡ ysdj Lo;a djus dk iz;Ru djsaA) blls gesa ;g vuqeku ;k oaQtsDpj (conjecture) izkIr gksrk gS fd izR;sd HkkT; la[;k dks vHkkT; la[;kvksa dh ?kkrksa osQ xq.kuiQy osQ :i esa fy[kk tk ldrk gSA okLro esa] ;g dFku lR; gS rFkk iw.kk±dksa osQ vè;;u esa ;g ewy:i ls ,d vfr egRoiw.kZ LFkku j[krk gSA blh dkj.k ;g dFku Rationalised 2023-24 Rationalised 2023-24 4 xf.kr vadxf.kr dh vk/kjHkwr izes; (Fundamental Theorem of Arithmetic) dgykrk gSA vkb, bl izes; dks vkSipkfjd :i ls O;Dr djsaA ize;s 1.1 (vadxf.kr dh vk/kjHkwr izes;) : izR;sd HkkT; la[;k dks vHkkT; la[;kvksa osQ ,d xq.kuiQy osQ :i esa O;Dr (xq.ku[kafMr) fd;k tk ldrk gS rFkk ;g xq.ku[kaaMu vHkkT; xq.ku[kaMksa osQ vkus okys Øe osQ fcuk vf}rh; gksrk gSA vadxf.kr dh vk/kjHkwr ize;s osQ :i esa fo[;kr gksus ls igys] ize;s 1-2 dk laHkor;k loZiFz ke o.kZu ;wfDyM osQ ,yhesaV~l dh iqLrd IX esa lkè; (proposition) 14 osQ :i esa gqvk FkkA ijarq bldh lcls igys lgh miifÙk dkyZ izQS fMªd xkWl (Carl Friedrich Gauss) us viuh o`Qfr fMlDoh'kal vfjfFkesfVdh (Disquisitions Arithmeticae) esa nhA dkyZ izQS fMªd xkWl dks izk;% ^xf.krKksa dk jktoqQekj* dgk tkrk gS rFkk mudk uke lHkh le;dkyksa osQ rhu egkure xf.krKksa esa fy;k tkrk gS] ftuesa vk£dfeMhT+k (Archimedes) dkyZ izSQfMªd xkWl vkSj U;wVu (Newton) Hkh lfEefyr gSaA mudk xf.kr vkSj (1777 – 1855) foKku nksuksa esas ekSfyd ;ksxnku gSA vadxf.kr dh vk/kjHkwr izes; dgrh gS fd izR;sd HkkT; la[;k vHkkT; la[;kvksa osQ ,d xq.kuiQy osQ :i esa xq.ku[kafMr dh tk ldrh gSA okLro esa] ;g vkSj Hkh oqQN dgrh gSA ;g dgrh gS fd ,d nh gqbZ HkkT; la[;k dks vHkkT; la[;kvksa osQ ,d xq.kuiQy osQ :i esa] fcuk ;g è;ku fn, fd vHkkT; la[;k,¡ fdl Øe esa vk jgh gSa] ,d vf}rh; izdkj (Unique way) ls xq.ku[kafMr fd;k tk ldrk gSA vFkkZr~ ;fn dksbZ HkkT; la[;k nh gqbZ gS] rks mls vHkkT; la[;kvksa osQ xq.kuiQy osQ :i esa fy[kus dh osQoy ,d gh fof/ gS] tc rd fd ge vHkkT; la[;kvksa osQ vkus okys Øe ij dksbZ fopkj ugha djrsA blfy,] mnkgj.kkFkZ] ge 2 × 3 × 5 × 7 dks ogh ekurs gSa tks 3 × 5 × 7 × 2, dks ekuk tkrk gSA blh izdkj] bUgha vHkkT; la[;kvksa osQ xq.kuiQy osQ fdlh vU; Øe dks Hkh ge 2 × 3 × 5 × 7 tSlk gh ekusaxsA bl rF; dks fuEufyf[kr :i esa Hkh O;Dr fd;k tkrk gS% ,d izko`Qr la[;k dk vHkkT; xq.ku[kaMu] mlosQ xq.ku[kaMksa osQ Øe dks NksM+rs gq, vf}rh; gksrk gSA Rationalised 2023-24 Rationalised 2023-24 okLrfod la[;k,¡ 5 O;kid :i es]a tc gesa ,d HkkT; la[;k x nh gqbZ gks] rks ge mls x = p1p2... pn, osQ :i esa xq.ku[kafMr djrs gS]a tgk¡ p1, p2,..., pn bR;kfn vkjksgh Øe esa fy[kh vHkkT; la[;k,¡ gSAa vFkkZr~ p1 £ p2 £... £ pn gSA ;fn ge leku vHkkT; la[;kvksa dks ,d lkFk (feyk) ys]a rks gesa vHkkT; la[;kvksa dh ?kkrsa (powers) izkIr gks tkrh gSAa mnkgj.kkFkZ] 32760 = 2 × 2 × 2 × 3 × 3 × 5 × 7 × 13 = 23 × 32 × 5 × 7 × 13 ,d ckj ;g fu.kZ; ysus osQ ckn fd xq.ku[kaMksa dk Øe vkjksgh gksxk rks nh gqbZ la[;k osQ vHkkT; xq.ku[kaM vf}rh; gksaxsA vadxf.kr dh vk/kjHkwr izes; osQ xf.kr rFkk vU; {ks=kksa esa Hkh vusd vuqiz;ksx gSaA vkb, buosQ oqQN mnkgj.k dks ns[ksaA mnkgj.k 1 : la[;kvksa 4n ij fopkj dhft,] tgk¡ n ,d izko`Qr la[;k gSA tk¡p dhft, fd D;k n dk dksbZ ,slk eku gS] ftlosQ fy, 4n vad 'kwU; (0) ij lekIr gksrk gSA gy : ;fn fdlh n osQ fy,] la[;k 4n 'kwU; ij lekIr gksxh rks og 5 ls foHkkT; gksxhA vFkkZr~ 4n osQ vHkkT; xq.ku[kaMu esa vHkkT; la[;k 5 vkuh pkfg,A ;g laHko ugha gS D;ksfa d 4n = (2)2n gSA blh dkj.k] 4n osQ xq.ku[kaMu esa osQoy vHkkT; la[;k 2 gh vk ldrh gSA vadxf.kr dh vk/kjHkwr izes; dh vf}rh;rk gesa ;g fuf'pr djkrh gS fd 4n osQ xq.ku[kaMu esa 2 osQ vfrfjDr vkSj dksbZ vHkkT; xq.ku[kaM ugha gSA blfy, ,slh dksbZ la[;k n ugha gS] ftlosQ fy, 4n vad 0 ij lekIr gksxhA vki fiNyh d{kkvksa esa] ;g i

Use Quizgecko on...
Browser
Browser