Imunologia Básica (18 a 52 pags) PDF
Document Details
Uploaded by Deleted User
Tags
Summary
Este documento apresenta uma introdução à imunologia, abordando a imunidade inata e adquirida, as células e os tecidos do sistema imunológico, e a resposta imunológica a microrganismos infecciosos. O documento também discute diversos aspectos da imunologia, incluindo a defesa contra infecções, o tratamento do câncer e o reparo de tecidos.
Full Transcript
CAPÍTULO 1 Introdução à Imunologia Nomenclatura, Propriedades Gerais e Componentes IMUNIDADE INATA E IMUNIDADE ADQUIRIDA TIPOS DE IMUNIDADE ADQUIRIDA PROPRIEDADES DA RESPOSTA IMUNOLÓGICA ADQUIRIDA Especificidade e Diversidade Memória Outros Aspectos da Imunidade Adquirida CÉLULAS DO SISTEMA IMU...
CAPÍTULO 1 Introdução à Imunologia Nomenclatura, Propriedades Gerais e Componentes IMUNIDADE INATA E IMUNIDADE ADQUIRIDA TIPOS DE IMUNIDADE ADQUIRIDA PROPRIEDADES DA RESPOSTA IMUNOLÓGICA ADQUIRIDA Especificidade e Diversidade Memória Outros Aspectos da Imunidade Adquirida CÉLULAS DO SISTEMA IMUNOLÓGICO Linfócitos Células Apresentadoras de Antígenos Células Efetoras TECIDOS DO SISTEMA IMUNOLÓGICO Órgãos Linfoides Periféricos Recirculação dos Linfócitos e Migração para os Tecidos VISÃO GERAL DA RESPOSTA IMUNOLÓGICA AOS MICRORGANISMOS Resposta Imune Inata Inicial aos Micróbios Resposta Imune Adquirida Declínio da Resposta Imune e da Memória Imunológica RESUMO Imunidade é definida como a resistência a doenças, mais especificamente às doenças infecciosas. O conjunto de células, tecidos e moléculas que medeiam a resistência às infecções é chamado de sistema imunológico, e a reação coordenada dessas células e moléculas aos microrganismos infecciosos é conhecida como resposta imunológica. Imunologia é o estudo do sistema imunológico, incluindo suas respostas aos patógenos microbianos e tecidos danificados e seu papel na doença. A função fisiológica mais importante do sistema imunológico é prevenir as infecções e erradicar as infecções estabelecidas, e este é o principal contexto em que as respostas imunológicas são abordadas neste livro. A importância do sistema imunológico para a saúde é ilustrada pela observação frequente de que indivíduos com resposta imunológica defeituosa são suscetíveis a infecções sérias, que frequentemente põem em risco a vida do paciente (Fig. 1- 1). Por sua vez, o estímulo da resposta imunológica contra os microrganismos por meio da vacinação é o método mais eficaz de proteger os indivíduos contra infecções, e essa abordagem levou à erradicação mundial da varíola, a única doença que foi eliminada da civilização pela intervenção humana (Fig. 1-2). A emergência da síndrome da imunodeficiência adquirida (AIDS) em 1980 enfatizou, de maneira trágica, a importância do sistema imunológico na defesa dos indivíduos contra as infecções. Mas o impacto da imunologia vai além das infecções (Fig. 1-1). O sistema imunológico impede o crescimento de alguns tumores, e vários métodos para o tratamento de cânceres por meio da estimulação da resposta imunológica contra células tumorais estão em desenvolvimento. As respostas imunológicas também participam da depuração de células mortas e da inicialização do reparo tecidual. FIGURA 1-1 A importância do sistema imunológico na saúde e na doença. Esta tabela resume algumas das funções fisiológicas do sistema imunológico e seu papel na doença; AIDS, Síndrome da imunodeficiência adquirida. FIGURA 1-2 Eficácia da vacinação para algumas doenças infecciosas comuns. A tabela ilustra a acentuada diminuição na incidência das doenças infecciosas para as quais foram desenvolvidas vacinas. Para algumas infecções, como a hepatite B, uma vacina tornou-se disponível recentemente, e a incidência da doença continua a diminuir. (Modificada de Orenstein WA, Hinman AR, Bart KJ, Hadler SC: Immunization. Em Mandell GL, Bennett JE, Dolin R, editors: Principles and practices of infectious diseases, ed 4, New York, 1995, Churchill Livingstone; and MMWR 58:1458-1469, 2010.) Porém, indo de encontro a essas funções benéficas, as respostas imunológicas anormais são responsáveis por diversas doenças inflamatórias com alto grau de morbidade e mortalidade. A resposta imunológica é a principal barreira para o sucesso dos transplantes para o tratamento da falência de um órgão. Os produtos de células imunológicas também são de grande utilidade prática. Por exemplo, os anticorpos, que são proteínas produzidas por determinadas células do sistema imunológico, são usados em testes clínicos laboratoriais e na pesquisa de reagentes altamente específicos para a detecção de uma ampla variedade de moléculas na circulação e em células e tecidos. Os anticorpos designados para bloquear ou eliminar moléculas e células potencialmente perigosas têm seu uso muito difundido para o tratamento de doenças imunológicas, câncer e outros tipos de desordens. Por todas essas razões, o campo da imunologia chamou a atenção de médicos, cientistas e leigos. Este capítulo introduz a nomenclatura da imunologia, propriedades gerais importantes de todas as respostas imunológicas, e as células e tecidos que são os principais componentes do sistema imunológico. São abordadas principalmente as seguintes questões: Que tipos de resposta imunológica protegem os indivíduos contra as infecções? Quais são as características importantes da imunidade e que mecanismos são responsáveis por essas características? Como as células e os tecidos do sistema imunológico são organizados para que encontrem os patógenos e respondam a micróbios de uma forma que leve à sua eliminação? Concluímos o capítulo com uma visão rápida das respostas imunológicas contra os microrganismos. Os princípios básicos apresentados aqui preparam o terreno para discussões mais detalhadas das respostas imunológicas nos capítulos posteriores. No Apêndice I há um glossário com os termos importantes usados neste livro. Imunidade inata e imunidade adquirida Os mecanismos de defesa do hospedeiro são constituídos pela imunidade inata, responsável pela proteção inicial contra as infecções, e pela imunidade adquirida, que se desenvolve mais lentamente e proporciona uma defesa mais especializada e mais eficaz contra as infecções (Fig. 1-3). A imunidade inata, também chamada de imunidade natural ou nativa, está sempre presente nos indivíduos saudáveis (por isso o termo inata), estando preparada para bloquear a entrada de microrganismos e eliminar rapidamente aqueles que conseguem entrar nos tecidos do hospedeiro. A imunidade adquirida, também chamada de imunidade específica ou imunidade adaptativa, requer a expansão e a diferenciação de linfócitos em resposta a microrganismos antes que ela possa oferecer uma defesa eficaz, isto é, ela se adapta à presença dos invasores microbianos. A imunidade inata é filogeneticamente mais antiga, e o sistema imunológico adaptativo mais especializado e poderoso evoluiu posteriormente. FIGURA 1-3 Principais mecanismos das imunidades inata e adquirida. Os mecanismos da imunidade inata são responsáveis pela defesa inicial contra as infecções. Alguns mecanismos (p. ex., barreiras epiteliais) previnem as infecções e outros mecanismos (p. ex., fagócitos, células natural killer [NK] e o sistema do complemento) eliminam os microrganismos. A resposta imunológica adquirida se desenvolve mais tarde, sendo mediada pelos linfócitos e seus produtos. Os anticorpos bloqueiam as infecções e eliminam os microrganismos, enquanto os linfócitos T erradicam os patógenos intracelulares. A cinética das respostas inata e adquirida é aproximada, podendo variar nas diversas infecções. A primeira linha de defesa da imunidade natural é fornecida pelas barreiras epiteliais, células e antibióticos naturais presentes nos epitélios, que bloqueiam a entrada dos microrganismos. Se esses patógenos penetrarem no epitélio e entrarem nos tecidos ou na circulação, eles são atacados pelos fagócitos, linfócitos especializados chamados de células natural killer (NK), e diversas proteínas plasmáticas, incluindo as proteínas do sistema do complemento. Todos esses mecanismos da imunidade inata reconhecem e reagem especificamente contra microrganismos. Além de fornecer a defesa inicial contra as infecções, as respostas da imunidade inata estimulam as respostas da imunidade adquirida contra os agentes infecciosos. Os componentes e mecanismos do sistema inato são discutidos detalhadamente no Capítulo 2. A defesa contra microrganismos infecciosos adicionalmente requer respostas imunológicas adquiridas, especialmente com microrganismos que sejam patogênicos para humanos (i.e., capazes de causar doença) e pode ter evoluído para resistir à imunidade inata. O sistema imunológico adquirido é formado pelos linfócitos e seus produtos, como os anticorpos. Enquanto os mecanismos da imunidade inata reconhecem estruturas comuns a classes de microrganismos, as células da imunidade adquirida (linfócitos) expressam receptores que reconhecem especificamente uma variedade muito maior de moléculas produzidas pelos microrganismos, assim como substâncias não infecciosas. Essas substâncias são chamadas de antígenos. As respostas adquiridas geralmente usam células e moléculas do sistema imunológico inato para eliminar os microrganismos, e funções imunológicas adquiridas para aumentar acentuadamente esses mecanismos antibacterianos da imunidade inata. Por exemplo, os anticorpos (um componente da imunidade adquirida) se ligam aos microrganismos que, quando revestidos pelos anticorpos, ligam-se avidamente às células fagocitárias (um componente da imunidade inata) ativando-as, sendo ingeridos e destruídos por elas. Exemplos semelhantes de cooperação entre a imunidade inata e a adquirida são discutidos em outros capítulos. Tipos de imunidade adquirida Existem dois tipos de imunidade adquirida, conhecidos como imunidade humoral e imunidade celular, que são mediados por células e moléculas diferentes e fornecem a defesa contra microrganismos extra e intracelulares, respectivamente (Fig. 1-4). A imunidade humoral é mediada por proteínas chamadas anticorpos, produzidas pelos linfócitos B. Os anticorpos são secretados na circulação e nos líquidos das mucosas, neutralizando e eliminando os microrganismos e as toxinas microbianas presentes fora da célula do hospedeiro, no sangue e no lúmen dos órgãos mucosos, como os tratos gastrointestinal e respiratório. Uma das funções mais importantes dos anticorpos é impedir que patógenos presentes nas mucosas e no sangue tenham acesso e colonizem as células e os tecidos conjuntivos do hospedeiro. Assim, os anticorpos evitam que as infecções se estabeleçam. Os anticorpos não têm acesso aos microrganismos que vivem e se multiplicam dentro de células infectadas. A defesa contra esses microrganismos intracelulares é chamada de imunidade celular, porque é mediada pelas células conhecidas como linfócitos T. Alguns linfócitos T ativam os fagócitos para destruir os microrganismos ingeridos pelas células fagocitárias nas vesículas fagocíticas. Outros linfócitos T destroem qualquer tipo de célula do hospedeiro que apresente microrganismos infecciosos em seu citoplasma. Assim, os anticorpos produzidos pelos linfócitos B reconhecem os antígenos microbianos extracelulares, enquanto os linfócitos T reconhecem os antígenos produzidos pelos microrganismos intracelulares. Outra diferença importante entre os linfócitos B e T é que a maioria das células T reconhece apenas antígenos proteicos, enquanto células B e anticorpos são capazes de reconhecer muitos tipos diferentes de moléculas, incluindo proteínas, carboidratos, ácidos nucleicos e lipídios. FIGURA 1-4 Tipos de imunidade adquirida. Na imunidade humoral, os linfócitos B secretam anticorpos que eliminam microrganismos extracelulares. Na imunidade celular, diferentes tipos de linfócitos T recrutam e ativam os fagócitos para destruir microrganismos ingeridos e matam células infectadas. A imunidade pode ser induzida em um indivíduo pela infecção ou pela vacinação (imunidade ativa) ou conferida a um indivíduo pela transferência de anticorpos ou linfócitos de um indivíduo imunizado ativamente (imunidade passiva). Na imunidade ativa, um indivíduo exposto aos antígenos de um patógeno desenvolve uma resposta ativa para erradicar a infecção, criando uma resistência a infecções posteriores pelo mesmo microrganismo. Dizse que tais indivíduos estão imunes àquele microrganismo, em contraste com o indivíduo virgem, que não teve nenhuma exposição prévia aos antígenos daquele patógeno. Abordaremos os mecanismos da imunidade ativa. Na imunidade passiva, o indivíduo virgem recebe as células (p. ex., linfócitos, viáveis apenas em animais geneticamente idênticos [congênitos]) de outro indivíduo imune à infecção; o receptor é capaz de combater a infecção durante o tempo de vida limitado dos anticorpos ou células transferidos. Consequentemente, a imunidade passiva é útil para conferir imunidade rapidamente, antes mesmo que o indivíduo seja capaz de desenvolver uma resposta ativa, mas não produz uma resistência duradoura à infecção. O único exemplo fisiológico da imunidade passiva é visto nos recém- nascidos, cujo sistema imunológico não está maduro o suficiente para responder a muitos patógenos, mas que estão protegidos contra infecções pelos anticorpos maternos que foram transferidos através da placenta ou pelo leite materno. Propriedades da resposta imunológica adquirida Várias propriedades da imunidade adquirida são cruciais para a eficácia dessas respostas no combate às infecções (Fig. 1-5). FIGURA 1-5 Propriedades das respostas imunológicas adquiridas. Essa tabela resume as propriedades importantes da resposta imunológica adquirida e como cada uma delas contribui para a defesa do hospedeiro contra os microrganismos. Especificidade e Diversidade O sistema imunológico adquirido tem o potencial para distinguir entre milhões de antígenos ou parte de antígenos diferentes. Especificidade é a capacidade de distinguir entre muitos antígenos diferentes. Isto significa que a coleção total das especificidades dos linfócitos, algumas vezes chamada de repertório dos linfócitos, é incrivelmente diversa. A base para essa especificidade e dessa diversidade extraordinárias deve-se ao fato de que os linfócitos expressam receptores antigênicos distribuídos por clonalidade, ou seja, a população total de linfócitos é formada por diversos clones diferentes (cada clone é formado por uma célula e sua prole), e cada clone expressa um receptor antigênico diferente dos receptores dos outros clones. A hipótese da seleção clonal, formulada na década de 1950, prevê corretamente que os clones de linfócitos específicos para antígenos diferentes se desenvolvem antes do encontro com esses antígenos, e que cada antígeno desencadeia uma resposta imunológica selecionando e ativando os linfócitos de um clone específico (Fig. 1-6). Atualmente conhecemos a base molecular pelo modo como a especificidade e a diversidade dos linfócitos são geradas (Cap. 4). FIGURA 1-6 A seleção clonal. Linfócitos maduros com receptores para muitos antígenos se desenvolvem antes do encontro com esses antígenos. Um clone se refere a uma população de linfócitos com receptores de antígenos idênticos e, assim, especificidades; todas estas células são presumivelmente derivadas de uma célula precursora. Cada antígeno (p. ex., X e Y) seleciona um clone preexistente de linfócitos específicos e estimula a proliferação e a diferenciação daquele clone. O diagrama mostra apenas os linfócitos B dando origem a células secretoras de anticorpos, mas o mesmo princípio se aplica aos linfócitos T. Os antígenos apresentados são moléculas de superfície dos microrganismos, mas a seleção clonal também se aplica a antígenos solúveis extra e intracelulares. A diversidade do repertório de linfócitos, que permite que o sistema imunológico reaja a um vasto número e a uma variedade de antígenos, também significa que muito poucas células, talvez uma em 100.000 ou uma em 1 milhão de linfócitos, são específicas para qualquer antígeno. O número total de linfócitos virgens (não ativados) que podem reconhecer e reagir contra qualquer antígeno varia em cerca de 1.000 a 10.000 células. Para montar uma defesa efetiva contra microrganismos, essas poucas células têm de dar origem a um grande número de linfócitos capazes de destruir os microrganismos. A extraordinária efetividade da resposta imune pode ser atribuída a diversas características da imunidade adaptativa, incluindo (1) marcada expansão do conjunto de linfócitos específicos para qualquer antígeno mediante exposição àquele antígeno, (2) alças de retroalimentação positiva que amplificam a resposta imune e (3) mecanismos de seleção que preservam os linfócitos mais úteis. Essas características do sistema imunológico adaptativo são descritas em capítulos posteriores. Memória O sistema imunológico desenvolve respostas mais acentuadas e mais eficazes a exposições repetidas ao mesmo antígeno. A resposta à primeira exposição ao antígeno, chamada de resposta imunológica primária, é mediada pelos linfócitos, chamados de linfócitos virgens (ou naive), que encontram o antígeno pela primeira vez (Fig. 1-7). A denominação linfócito virgem refere-se ao fato de que essas células são imunologicamente inexperientes, ou seja, nunca responderam a um antígeno. Encontros subsequentes com o mesmo antígeno levam a respostas, chamadas de respostas imunológicas secundárias, que são geralmente mais rápidas, mais acentuadas e mais eficazes na eliminação do antígeno do que as respostas primárias. As respostas secundárias resultam da ativação dos linfócitos de memória, que são células de longa duração criadas durante a resposta imunológica primária. A memória imunológica otimiza a habilidade do sistema imunológico para combater infecções persistentes e recorrentes, porque cada encontro com um microrganismo gera mais células de memória e ativa células de memória geradas anteriormente. A memória também é uma das razões pelas quais as vacinas conferem proteção duradoura contra as infecções. FIGURA 1-7 Respostas imunológicas primária e secundária. Os antígenos X e Y induzem a produção de diversos anticorpos (especificidade). A resposta secundária ao antígeno X é mais rápida e mais acentuada do que a resposta primária (memória), e é diferente da resposta primária contra o antígeno Y (novamente refletindo a especificidade). Os níveis de anticorpos declinam com o tempo após cada imunização. O nível de anticorpos produzidos é mostrado como valores arbitrários e varia de acordo com o tipo de exposição ao antígeno. Apenas células B são mostradas, mas as mesmas características são vistas com respostas de células T a antígenos. O tempo após a imunização pode ser de 1 a 3 semanas para a resposta primária e de 2 a 7 dias para uma resposta secundária, mas a cinética varia dependendo do antígeno e da natureza da imunização. Outros Aspectos da Imunidade Adquirida As respostas imunológicas adquiridas apresentam outras características que são importantes para sua função (Fig. 1-5). Quando os linfócitos são ativados por antígenos, eles proliferam, gerando muitos milhares de células descendentes clonadas, todas com a mesma especificidade antigênica. Este processo, chamado expansão clonal, aumenta rapidamente o número de células específicas para o antígeno encontrado, permitindo que alguns linfócitos específicos ao antígeno assumam sua função de defesa, e garante que a imunidade adaptativa acompanhe a rápida proliferação dos microrganismos. As respostas imunes são especializadas, e respostas variadas são projetadas para oferecer a melhor defesa possível contra as diversas classes de microrganismos. Todas as respostas imunológicas são autolimitadas e diminuem à medida que a infecção é eliminada, permitindo que o sistema retorne a um estado de repouso e esteja preparado para responder a outra infecção. O sistema imunológico é capaz de reagir a um grande número e a uma enorme variedade de patógenos e outros antígenos estranhos, mas não reage contra substâncias potencialmente antigênicas do hospedeiro – também conhecidas como autoantígenos. Essa autoinsensibilidade é chamada de tolerância imunológica, referindo-se à capacidade do sistema imunológico de coexistir (tolerar) com moléculas, células e tecidos próprios potencialmente antigênicos. Células do sistema imunológico As células do sistema imunológico adaptativo consistem em linfócitos, células apresentadoras de antígeno, que capturam e apresentam antígenos microbianos, e células efetoras (que incluem linfócitos ativados e outras células, particularmente outros leucócitos), que eliminam microrganismos (Fig. 1-8). Esta seção descreve as propriedades funcionais importantes das principais populações celulares; uma discussão da morfologia dessas células pode ser encontrada em livros de histologia. As células da imunidade inata são descritas no Capítulo 2. FIGURA 1-8 As principais células do sistema imunológico. Esta tabela mostra os principais tipos de células envolvidas nas respostas imunológicas e as funções-chave destas células. As microfotografias nos painéis à esquerda mostram a morfologia de algumas células de cada tipo. Note que os macrófagos dos tecidos derivam de monócitos do sangue. Linfócitos Os linfócitos são as únicas células que possuem receptores específicos para antígenos diversos, sendo os principais mediadores da imunidade adquirida. Apesar de todos os linfócitos serem morfologicamente semelhantes e terem uma aparência comum, sua linhagem, função e fenótipo são heterogêneos, e eles são capazes de respostas e atividades biológicas complexas (Fig. 1-9). Essas células são diferenciadas pelas proteínas de superfície que podem ser identificadas por painéis de anticorpos monoclonais. A nomenclatura padrão para essas proteínas é a designação numérica CD (do inglês, cluster of differenciation – grupo de diferenciação), usada para designar proteínas de superfície que definem um determinado tipo ou estágio de diferenciação celular, sendo reconhecidas por um grupo de anticorpos. (O Apêndice II apresenta uma lista das moléculas CD.) FIGURA 1-9 Classes de linfócitos. As diversas classes de linfócitos reconhecem tipos distintos de antígenos, diferenciando-se em células efetoras, cuja função é eliminar os antígenos. Os linfócitos B reconhecem os antígenos solúveis ou de superfície, diferenciando- se em células secretoras de anticorpos. Os linfócitos T auxiliares reconhecem os antígenos na superfície das células apresentadoras de antígenos e secretam citocinas, que estimulam diversos mecanismos de imunidade e inflamação. Linfócitos T citotóxicos reconhecem antígenos em células infectadas e matam essas células. (Note que os linfócitos T reconhecem peptídeos que são apresentados por moléculas do MHC, discutidos no Capítulo 3.) Células T reguladoras limitam a ativação de outros linfócitos, especialmente de células T, e previnem a autoimunidade. As células NK reconhecem as alterações na superfície das células infectadas, destruindo-as. As células NK são células da imunidade inata e todos os demais linfócitos são células do sistema imunológico adquirido. Como mencionado, os linfócitos B são as únicas células capazes de produzir anticorpos; consequentemente, são responsáveis pela imunidade humoral. As células B expressam anticorpos nas suas membranas, que servem de receptores para reconhecer antígenos e iniciam o processo de ativação das células. Antígenos solúveis e antígenos na superfície de patógenos e outras células se ligam a esses receptores antigênicos dos linfócitos B, iniciando o processo de ativação de células B. Isto leva à secreção de formas solúveis de anticorpos com a mesma especificidade para o antígeno dos receptores de membrana. Os linfócitos T são responsáveis pela imunidade celular. Os receptores de antígenos dos linfócitos T reconhecem apenas fragmentos peptídicos de proteínas antigênicas que são ligados a moléculas de apresentação especializadas, chamadas de moléculas do complexo principal de histocompatibilidade (MHC, do inglês, major histocompatibility complex), na superfície de células especializadas, conhecidas como células apresentadoras de antígenos (Cap. 3). Entre os linfócitos T, as células T CD4+ são chamadas de células T auxiliares, porque ajudam os linfócitos B a produzir anticorpos e as células fagocitárias a ingerir os microrganismos. Os linfócitos T CD8+ são chamados de linfócitos T citotóxicos (CTL, do inglês, cytotoxic T lymphocytes), porque destroem as células infectadas por microrganismos intracelulares. Algumas células T CD4+ pertencem a uma subclasse especial que funciona para prevenir ou limitar a resposta imune; essas células são chamadas de linfócitos T reguladores. Outra classe de linfócitos é chamada de células natural killer (NK), que também matam células do infectadas do hospedeiro, mas, diferentemente das células B e T, elas não expressam receptores de antígenos distribuídos clonalmente. As células NK são componentes da imunidade inata, capaz de atacar rapidamente células infectadas. Todos os linfócitos se originam de células-tronco na medula óssea (Fig. 1-10). Os linfócitos B amadurecem na medula óssea, e os linfócitos T amadurecem em um órgão chamado timo. Esses locais nos quais linfócitos maduros são produzidos (gerados) são chamados de órgãos linfoides geradores. Os linfócitos maduros saem dos órgãos linfoides geradores e entram na circulação e nos órgãos linfoides periféricos, onde podem encontrar o antígeno para o qual expressam receptores específicos. FIGURA 1-10 Amadurecimento dos linfócitos. Os linfócitos se desenvolvem de precursores nos órgãos linfoides geradores (a medula óssea e o timo). Os linfócitos maduros entram nos órgãos linfoides periféricos, onde respondem aos antígenos estranhos e circulam pelo sangue e pela linfa. Quando os linfócitos virgens reconhecem os antígenos microbianos e recebem sinais adicionais desencadeados pelos patógenos, os linfócitos específicos para o antígeno proliferam e se diferenciam em células efetoras e células de memória (Fig. 1-11). Os linfócitos virgens expressam receptores para antígenos, mas não desempenham as funções necessárias para eliminá-los. Essas células residem ou circulam entre os órgãos linfoides periféricos, sobrevivendo por várias semanas ou meses, esperando encontrar o antígeno e responder a ele. Se não forem ativados pelo antígeno, os linfócitos virgens morrem pelo processo de apoptose e são substituídos por novas células que se originaram de órgãos linfoides geradores. A diferenciação de linfócitos virgens em células efetoras e células de memória é iniciada pelo reconhecimento do antígeno, assegurando, assim, que a resposta imunológica que se desenvolve seja específica. As células efetoras são da progênie diferenciada de células virgens que têm a habilidade de produzir moléculas cuja função é eliminar antígenos. As células efetoras da linhagem dos linfócitos B são células que secretam anticorpos, conhecidas como plasmócitos. Os plasmócitos desenvolvem-se em resposta à estimulação antigênica nos órgãos linfoides periféricos, onde eles podem permanecer e produzir anticorpos. Células secretoras de anticorpos, chamadas plasmoblastos, também estão presentes no sangue. Algumas delas migram para a medula óssea, onde amadurecem para plasmócitos de vida longa e continuam a produzir pequenas quantidades de anticorpos até muito tempo depois de a infecção ser erradicada, proporcionando proteção imediata em caso de recorrência da infecção. FIGURA 1-11 Estágios da vida dos linfócitos. A, Os linfócitos virgens reconhecem antígenos estranhos, iniciando a resposta imunológica adquirida. Os linfócitos virgens necessitam de sinais adicionais para antígenos a fim de proliferarem e diferenciarem-se em células efetoras. Esses sinais adicionais não são mostrados. As células efetoras, que se desenvolvem a partir de células virgens, atuam a fim de eliminar antígenos. As células efetoras da linhagem dos linfócitos B são células secretoras de anticorpos (algumas das quais são de longa duração). As células efetoras da linhagem dos linfócitos T CD4+ produzem citocinas. (As células efetoras da linhagem de CD8 são CTL; elas não são mostradas.) Outra parte da progênie dos linfócitos estimulados pelo antígeno se diferencia em células de memória de longa duração. B, As características importantes das células virgens, efetoras e de memória das linhagens de linfócitos B e T estão resumidas. A geração e as funções das células efetoras, incluindo mudanças nos padrões de migração e tipos de imunoglobulina produzida, são descritas em capítulos posteriores. As células efetoras T CD4+ (células T auxiliares) produzem proteínas, chamadas citocinas, que ativam as células B, os macrófagos e outros tipos de células, mediando assim a função auxiliar dessa linhagem, e as células efetoras T CD8+ (CTL) possuem as engrenagens para destruir as células do hospedeiro que estão infectadas. O desenvolvimento e as funções dessas células efetoras são discutidos em outros capítulos. Os linfócitos efetores T possuem vida curta e morrem conforme o antígeno é eliminado. As células de memória, também geradas da progênie de linfócitos estimulados pelo antígeno, sobrevivem por muito tempo na ausência do antígeno. Por esse motivo, a frequência das células de memória aumenta com a idade, provavelmente devido à exposição a microrganismos do meio ambiente. De fato, em um recém-nascido as células de memória originam menos de 5% das células T do sangue periférico, mas 50% ou mais em um adulto. As células de memória são funcionalmente silenciosas; elas não apresentam função efetora a não ser que sejam estimuladas pelo antígeno. Quando as células de memória encontram o mesmo antígeno que induziu o seu desenvolvimento, elas respondem rapidamente, iniciando respostas imunológicas secundárias. Os sinais que geram e mantêm as células de memória não são bem compreendidos, mas incluem as citocinas. Células Apresentadoras de Antígenos As portas comuns de entrada dos microrganismos – a pele, o trato gastrointestinal e o trato respiratório – contêm células apresentadoras de antígenos (APC, do inglês, antigen-presenting cells) especializadas, localizadas no epitélio que capturam os antígenos, transportam-nos para os tecidos linfoides periféricos e os expõem (apresentam) aos linfócitos. Essa função de captura e apresentação de antígenos é mais bem conhecida em um tipo de célula chamado de célula dendrítica, que possui longos processos membranares superficiais. As células dendríticas capturam os antígenos proteicos dos patógenos que entram através do epitélio, transportando-os para os linfonodos regionais, onde apresentam porções do antígeno para serem reconhecidos pelos linfócitos T. Se um microrganismo penetrou através do epitélio, ele pode ser fagocitado pelos macrófagos que vivem nos tecidos e em diversos órgãos. Microrganismos ou seus antígenos que entram em órgãos linfoides podem ser capturados por células dendríticas ou macrófagos que residem nesses órgãos e ser apresentados a linfócitos. As células dendríticas são as APC mais eficazes para iniciar respostas de células T. O processo de apresentação do antígeno às células T é descrito no Capítulo 3. As células que são especializadas para apresentar antígenos aos linfócitos T possuem outra característica importante que dá a elas a capacidade de desencadear respostas das células T. Essas células especializadas respondem aos microrganismos produzindo proteínas de superfície e proteínas secretadas que são necessárias, juntamente com o antígeno, para ativar os linfócitos T virgens para a proliferação e a diferenciação das células efetoras. As células especializadas que apresentam antígenos às células T e fornecem sinal de ativação adicional às vezes são chamadas de APC profissionais. As células APC profissionais prototípicas são células dendríticas, mas os macrófagos, células B e algumas outras células também podem desempenhar a mesma função em diversas respostas imunológicas. Sabe-se bem menos a respeito das células que capturam os antígenos e os apresentam aos linfócitos B. Os linfócitos B podem reconhecer os antígenos microbianos (ou liberados ou sobre a superfície do patógeno), ou os macrófagos que revestem os canais linfáticos podem capturar os antígenos e apresentá-los às células B. Um tipo de célula chamado de célula dendrítica folicular reside nos centros germinativos dos folículos linfoides dos órgãos linfoides periféricos e apresenta antígenos que estimulam a diferenciação das células B nos folículos (Cap. 7). As células dendríticas foliculares (FDC, do inglês, folicular dendritic cells) não apresentam antígenos para as células T e diferem das células dendríticas que funcionam como APC profissionais para os linfócitos T. Células Efetoras As células que eliminam os microrganismos são chamadas de células efetoras, consistindo em linfócitos e outros leucócitos. Referimo-nos previamente às células efetoras das linhagens dos linfócitos B e T. A eliminação dos patógenos requer a participação de outros leucócitos não linfoides, como os granulócitos e os macrófagos. Esses leucócitos podem funcionar como células efetoras tanto na imunidade inata quanto na adquirida. Na imunidade inata, os macrófagos e alguns granulócitos reconhecem os microrganismos diretamente, eliminando-os (Cap. 2). Na imunidade adquirida, as substâncias produzidas pelos linfócitos B e T intensificam as atividades dos macrófagos e recrutam outros leucócitos e os ativam para destruírem microrganismos. Tecidos do sistema imunológico Os tecidos do sistema imunológico são formados pelos órgãos linfoides geradores, nos quais os linfócitos T e B amadurecem, tornando-se competentes para responder aos antígenos, e os órgãos linfoides periféricos, nos quais as respostas imunológicas secundárias aos microrganismos são iniciadas (Fig. 1-10). Os órgãos linfoides geradores (também denominados primários ou centrais) são descritos no Capítulo 4, quando é abordado o processo de amadurecimento dos linfócitos. A seção a seguir discrimina algumas características dos órgãos linfoides periféricos (ou secundários) importantes para o desenvolvimento da imunidade adquirida. Órgãos Linfoides Periféricos Os órgãos linfoides periféricos, que incluem os linfonodos, o baço e os sistemas imunológicos das mucosas e cutâneo, são organizados para otimizar as interações entre antígenos, APC e linfócitos de modo a estimular o desenvolvimento da imunidade adquirida. Os linfócitos T e B precisam localizar os microrganismos que entram em qualquer lugar do corpo, responder a eles e eliminá-los. Além disso, conforme discutido anteriormente, no sistema imunológico normal uma quantidade muito pequena desses linfócitos é específica para qualquer antígeno. Não é possível para os poucos linfócitos específicos para qualquer antígeno patrulhar todos os locais de entrada do antígeno. A organização anatômica dos órgãos linfoides periféricos permite que as APC concentrem os antígenos nesses órgãos e os linfócitos localizem e respondam aos microrganismos. Essa organização é complementada por uma capacidade incrível dos linfócitos de circularem pelo corpo, de maneira que os linfócitos virgens se dirijam preferencialmente para os órgãos especializados, nos quais os antígenos estão concentrados, e as células efetoras se desloquem para os locais de infecção onde os microrganismos são eliminados. Além disso, diversos tipos de linfócitos precisam se comunicar para gerar respostas imunológicas eficazes. Por exemplo, células T auxiliares específicas para um antígeno interagem com e auxiliam os linfócitos B específicos para aquele mesmo antígeno, levando à produção de anticorpos. Reunir essas células raras para que interajam de maneira produtiva é uma função importante dos órgãos linfoides. Os linfonodos são agregados nodulares encapsulados de tecido linfoide, localizados ao longo dos canais linfáticos por todo o corpo (Fig. 1-12). Fluido é expelido constantemente dos vasos sanguíneos em todos os epitélios e tecidos conjuntivos e na maioria dos órgãos parenquimatosos. Esse fluido, chamado linfa, é drenado pelos vasos linfáticos dos tecidos até os linfonodos, e, por fim, retorna à circulação sanguínea. Consequentemente, a linfa contém uma mistura de substâncias absorvidas dos epitélios e dos tecidos. Conforme a linfa passa pelos linfonodos, as APC localizadas nos linfonodos podem identificar os antígenos dos patógenos que possam ter entrado nos tecidos. Além disso, as células dendríticas capturam os antígenos dos microrganismos do epitélio e outros tecidos e os transportam para os linfonodos. O resultado deste processo de captura e transporte de antígenos é que os antígenos dos microrganismos que entram através do epitélio ou que colonizam os tecidos se concentram nos linfonodos que drenam a região. FIGURA 1-12 A morfologia dos linfonodos. A, O diagrama esquemático mostra a organização estrutural de um linfonodo. B, Microfotografia óptica mostrando um corte transversal de um linfonodo com numerosos folículos no córtex, alguns contendo áreas centrais de coloração mais clara (centros germinativos). O baço é um órgão abdominal altamente vascularizado, que desempenha o mesmo papel que os linfonodos na resposta imunológica às infecções que ganham acesso ao sangue (Fig. 1-13). O sangue que entra no baço circula por uma rede de canais (sinusoides). Os antígenos presentes no sangue são aprisionados e concentrados pelas células dendríticas e macrófagos no baço. Este contém uma grande quantidade de células fagocitárias que ingerem e destroem os patógenos presentes no sangue. FIGURA 1-13 A morfologia do baço. A, Diagrama esquemático mostrando uma arteríola esplênica cercada por uma bainha linfoide periarteriolar (PALS) e um folículo ligado a ela contendo um centro germinativo proeminente. A PALS e os folículos linfoides formam a polpa branca. B, Microfotografia óptica de uma secção do baço mostrando uma arteríola com a PALS e um folículo com um centro germinativo. Eles estão cercados pela polpa vermelha, que é rica em sinusoides vasculares. O sistema imunológico cutâneo e o sistema imunológico mucoso são coleções especializadas de tecidos linfoides, APC e moléculas efetoras localizadas no interior e sob o epitélio da pele e tratos gastrointestinal e respiratório, respectivamente. Embora a maior parte das células imunológicas nesses tecidos seja difusamente dispersa sob as barreiras epiteliais, existem coleções discretas de linfócitos e APC organizadas de maneira semelhante à dos linfonodos. Por exemplo, as amígdalas, na faringe, e as placas de Peyer, no intestino, são exemplos de tecido linfoide associado às mucosas (Fig. 1-14). A qualquer momento, pelo menos um quarto dos linfócitos do corpo está nas mucosas (refletindo o grande tamanho desses tecidos), e muitos desses linfócitos são células de memória. Os tecidos linfoides cutâneo e mucoso são locais em que ocorrem respostas imunológicas aos antígenos que penetram nos epitélios. Um desafio para os sistemas imunológicos cutâneo e mucoso consiste em eles serem capazes de responder a patógenos, mas não reagirem às enormes quantidades de microrganismos comensais normalmente inofensivos e presentes nas barreiras epiteliais. Isto se dá por meio de vários mecanismos não totalmente compreendidos, incluindo a ação de células T reguladores e células dendríticas, que suprimem ao invés de ativar linfócitos T. FIGURA 1-14 Sistema imunológico mucoso. O diagrama esquemático do sistema imunológico mucoso utiliza o intestino delgado como exemplo. Muitas bactérias comensais estão presentes no lúmen. O epitélio secretor de muco oferece uma barreira inata à invasão de microrganismos (discutida no Cap. 2). Células epiteliais especializadas, como as células M, promovem o transporte de antígenos do lúmen para os tecidos subjacentes. Células na lâmina própria, incluindo células dendríticas, linfócitos T e macrófagos, oferecem defesa imunológica inata e adquirida contra microrganismos invasores; algumas dessas células são organizadas em estruturas especializadas, tais como as placas de Peyer no intestino delgado. A imunoglobulina A (IgA) é um tipo de anticorpo produzido em abundância nos tecidos mucosos que é transportado para o lúmen, onde se liga a microrganismos e os neutraliza (Cap. 8). Os linfócitos T e os linfócitos B são segregados em compartimentos anatômicos diferentes nos órgãos linfoides periféricos (Fig. 1-15). Nos linfonodos, as células B se concentram em estruturas discretas, chamadas de folículos, localizadas na periferia ou córtex. Se as células B em um folículo responderam recentemente a um antígeno, o folículo pode apresentar uma área central levemente corada chamada de centro germinativo. O papel dos centros germinativos na produção de anticorpos é descrito no Capítulo 7. Os linfócitos T são concentrados fora, mas adjacentes aos folículos, no paracórtex. Os folículos contêm as FDC descritas anteriormente que estão envolvidas na ativação das células B, enquanto o paracórtex contém as células dendríticas que apresentam os antígenos aos linfócitos T. No baço, os linfócitos T estão concentrados na bainha linfoide periarteriolar que circunda as pequenas arteríolas, enquanto as células B residem nos folículos. FIGURA 1-15 Segregação dos linfócitos T e B em diferentes regiões dos órgãos linfoides periféricos. A, O diagrama esquemático mostra o caminho pelo qual os linfócitos T e B virgens migram para as diversas áreas de um linfonodo. Os linfócitos virgens B e T entram através de uma vênula endotelial alta (HEV), mostrada aqui em um corte transversal, sendo encaminhados para as diversas áreas dos linfonodos pelas quimiocinas produzidas nessas áreas, e se ligam seletivamente a cada tipo celular. Também é exibida a migração das células dendríticas que capturam os antígenos dos epitélios, entram pelos vasos linfáticos aferentes e migram para as áreas ricas em células T (Cap. 3). B, Nesse corte histológico de um linfonodo, os linfócitos B, localizados nos folículos, estão corados em verde, e as células T, no córtex parafolicular, são coradas em vermelho por meio da imunofluorescência. Nessa técnica, um corte do tecido é corado com anticorpos específicos para células T ou B ligados a fluorocromos, que emitem cores diferentes quando estimulados pelos comprimentos de onda apropriados. A segregação anatômica das células T e B também é vista no baço (não mostrada aqui). (Cortesia dos Drs. Kathryn Pape e Jennifer Walter, University of Minnesota Medical School, Minneapolis.) A organização anatômica dos órgãos linfoides periféricos é rigidamente controlada para permitir o desenvolvimento das respostas imunológicas após a estimulação pelos antígenos. Os linfócitos B são atraídos para os folículos e retidos neles por causa da ação de uma classe de citocinas chamadas quimiocinas (citocinas quimiotáticas, quimiocinas e outras citocinas são discutidas mais detalhadamente nos capítulos posteriores). As FDC nos folículos constantemente secretam uma quimiocina em particular para a qual as células B virgens expressam um receptor, chamado CXCR5. A quimiocina que se liga ao CXCR5 atrai as células B do sangue para os folículos dos órgãos linfoides. Similarmente, as células T são segregadas no paracórtex dos linfonodos e na bainha linfoide periarteriolar do baço, pois os linfócitos T virgens expressam um receptor, denominado CCR7, que reconhece as quimiocinas produzidas nessas regiões do linfonodo e baço. Consequentemente, os linfócitos T são recrutados do sangue para a região do córtex parafolicular do linfonodo e bainhas linfoides periarteriolares do baço. Quando os linfócitos são ativados por antígenos, eles alteram sua expressão dos receptores de quimiocinas. As células B e T, então, migram em direção umas às outras, encontrando-se na periferia dos folículos, onde as células T auxiliares interagem e ajudam as células B a se diferenciarem em células produtoras de anticorpos (Cap. 7). Portanto, essas populações de linfócitos são mantidas separadas umas das outras até que haja utilidade em sua interação, após a exposição ao antígeno. Isto é um excelente exemplo de como a estrutura de órgãos linfoides garante que as células que reconheceram e responderam a um antígeno interajam e comuniquem-se umas com as outras apenas quando necessário. Muitos dos linfócitos ativados, especialmente as células T, finalmente saem do linfonodo, pelos vasos linfáticos eferentes, e do baço, pelas veias. Esses linfócitos ativados entram na circulação sanguínea e podem atingir locais distantes de infecção. Recirculação dos Linfócitos e Migração para os Tecidos Os linfócitos virgens recirculam constantemente entre o sangue e os órgãos linfoides periféricos, onde podem ser ativados por antígenos para tornarem-se células efetoras, e os linfócitos efetores migram dos tecidos linfoides para os locais de infecção, onde os patógenos são eliminados (Fig. 1-16). Assim, os linfócitos, em estágios distintos de suas vidas, migram para os diversos locais onde sua função é necessária. A migração de linfócitos efetores para locais de infecção é mais relevante para os linfócitos T, pois as células T efetoras precisam localizar e eliminar os microrganismos nesses locais. Em contrapartida, os plasmócitos não precisam migrar para locais de infecção, mas, em vez disso, eles secretam anticorpos e estes entram no sangue, onde eles podem se ligar a patógenos ou toxinas hematogênicas. Além disso, anticorpos podem ser transportados a locais de tecidos de infecção pela circulação. FIGURA 1-16 Migração dos linfócitos T. Os linfócitos T virgens migram do sangue, pelas vênulas endoteliais altas, para a zona de células T dos linfonodos, onde são ativados pelos antígenos. As células T ativadas saem dos linfonodos, entram no sangue e migram, de preferência, para os locais de infecção e inflamação nos tecidos periféricos. As moléculas de adesão envolvidas na ligação das células T às células endoteliais são descritas no Capítulo 6. Os linfócitos T virgens que amadureceram no timo e entraram na circulação migram para os linfonodos, onde podem encontrar antígenos que entram pelos vasos linfáticos, drenando os epitélios e os órgãos parenquimatosos. Essas células entram nos linfonodos pelas vênulas pós-capilares especializadas, chamadas de vênulas endoteliais altas (HEV, do inglês, high endothelial venules). As moléculas de adesão usadas pelas células T para se ligarem ao endotélio são descritas no Capítulo 6. Quimiocinas produzidas nas zonas de células T dos linfonodos e apresentadas em superfícies de HEV se ligam ao receptor de quimiocina CCR7 expresso em células T virgens, o que faz as células T se ligarem firmemente às HEV. As células T virgens, então, migram para a zona da célula T, onde antígenos são apresentados por células dendríticas. As células B virgens também entram nos tecidos linfoides, mas depois migram para folículos em resposta a quimiocinas que ligam o CXCR5, o receptor de quimiocina expresso nessas células B. No linfonodo, se uma célula T encontra um antígeno que reconhece especificamente em uma célula dendrítica, aquela célula T forma conjugados estáveis com a célula dendrítica e, então, é ativada. Esse encontro entre um antígeno e um linfócito específico é provavelmente um evento aleatório, mas a maioria das células T no corpo circula através de alguns linfonodos pelo menos uma vez ao dia. Como mencionado e descrito mais detalhadamente no Capítulo 3, a probabilidade de a célula T correta encontrar seu antígeno está aumentada nos órgãos linfoides periféricos, especialmente os linfonodos, porque os antígenos microbianos estão concentrados na mesma região desses órgãos pela qual as células T virgens circulam. Desse modo, as células T encontram o antígeno que elas podem reconhecer e essas células T são ativadas para que se proliferem e se diferenciem. Células virgens que não encontraram antígenos específicos deixam os linfonodos e entram novamente na circulação. As células efetoras que são geradas mediante ativação de células T migram preferencialmente para os tecidos infectados por microrganismos, onde os linfócitos T desempenham sua função de erradicar a infecção. Sinais específicos controlam esses padrões precisos de migração de células T virgens e ativadas (Cap. 6). Os linfócitos B que reconhecem e respondem ao antígeno em folículos do linfonodo diferenciam-se em células secretoras de anticorpos, que permanecem nos linfonodos ou migram para a medula óssea (Cap. 7). As células T de memória consistem em diferentes populações; algumas células circulam pelos linfonodos, onde podem desenvolver respostas secundárias aos antígenos capturados, e por outras células que migram para locais de infecção, onde podem responder rapidamente para eliminar a infecção. Sabemos menos a respeito da circulação através do baço ou outros tecidos linfoides. O baço não possui HEV, mas o padrão geral de migração dos linfócitos virgens através desse órgão é provavelmente semelhante à migração através dos linfonodos. Visão geral da resposta imunológica aos microrganismos Agora que descrevemos os principais componentes do sistema imunológico, é útil resumir as características fundamentais da resposta imunológica aos microrganismos. O foco aqui é a função fisiológica do sistema imune – defesa contra infecções. Em capítulos subsequentes, cada uma dessas características será discutida em mais detalhes. Resposta Imune Inata Inicial aos Micróbios A principal barreira entre o hospedeiro e o meio ambiente são os epitélios da pele e dos tratos gastrointestinal e respiratório. Os microrganismos infecciosos entram através dessas vias e tentam colonizar o hospedeiro. O epitélio serve simultaneamente como uma barreira física e funcional contra infecções, impedindo a entrada de microrganismos e interferindo com seu crescimento através da produção de agentes antimicrobianos naturais. Se os microrganismos forem capazes de atravessar esse epitélio e entrar nos tecidos e na circulação, eles encontram os mecanismos de defesa da imunidade inata, o qual é projetado para reagir rapidamente contra os microrganismos e seus produtos. Os fagócitos, incluindo os neutrófilos e os macrófagos, ingerem os microrganismos para dentro de vesículas e os destroem pela produção de substâncias microbicidas nas suas vesículas. Os macrófagos e as células dendríticas que encontram os microrganismos também secretam citocinas, que desempenham várias funções. As duas principais reações celulares da imunidade inata são a inflamação, que é induzida por citocinas e outras moléculas e serve para trazer leucócitos e proteínas plasmáticas ao local de infecção ou lesão, e a defesa antiviral, que é mediada por interferons tipo I (uma família particular de citocinas) e células NK. Muitas proteínas plasmáticas estão envolvidas na defesa do hospedeiro, incluindo as proteínas do sistema complemento, as quais são ativadas por microrganismos e cujos produtos matam os microrganismos e os recobrem (opsonizam) para a fagocitose pelos macrófagos e neutrófilos. Em adição ao combate a infecções, a resposta imunológica inata estimula a imunidade adaptativa subsequente provendo sinais que são essenciais para a iniciação da resposta de linfócitos T e B específicos de antígeno. As ações combinadas dos mecanismos da imunidade inata podem erradicar várias infecções e manter outros patógenos sob controle até que a resposta imunológica adquirida mais potente seja ativada. Resposta Imune Adquirida O sistema imunológico adquirido utiliza as seguintes estratégias para combater a maioria dos microrganismos: Anticorpos secretados ligam-se aos micróbios extracelulares, bloqueiam sua capacidade de infectar células do hospedeiro e promovem sua ingestão e subsequente destruição por fagócitos. Fagócitos ingerem os micróbios e os destroem, e as células T auxiliares aumentam as capacidades microbicidas dos fagócitos. Células T auxiliares recrutam leucócitos para destruir micróbios e intensificam a função de barreira epitelial para expelir microrganismos. Os linfócitos T citotóxicos destroem as células infectadas pelos microrganismos que são inacessíveis aos anticorpos. As respostas imunes adquiridas se desenvolvem por etapas, cada uma das quais corresponde a reações particulares dos linfócitos (Fig. 1-17). FIGURA 1-17 As fases da resposta imunológica adquirida. A resposta imunológica adquirida consiste em fases sequenciais: reconhecimento do antígeno por linfócitos específicos, ativação dos linfócitos e eliminação do antígeno (fase efetora). A resposta declina conforme os linfócitos estimulados pelo antígeno morrem por apoptose, restaurando o estado de equilíbrio basal chamado de homeostasia, e as células específicas para o antígeno que sobrevivem são responsáveis pela memória. A duração de cada fase pode variar nas diversas respostas imunológicas. Esses princípios se aplicam à imunidade humoral (mediada pelos linfócitos B) e à imunidade celular (mediada pelos linfócitos T). Captura e Exposição dos Antígenos Microbianos Os microrganismos que entram através do epitélio e seus antígenos proteicos são capturados pelas células dendríticas, residentes nesse epitélio, e as células ligadas aos antígenos são transportadas para os nódulos linfáticos. Os antígenos proteicos são processados pelas células dendríticas para gerar peptídeos que são expostos na superfície das APC, ligados às moléculas de MHC. As células T virgens reconhecem esses complexos peptídeos-MHC e essa é a primeira etapa na inicialização da resposta das células T. Os antígenos proteicos também são reconhecidos pelos linfócitos B nos folículos linfoides de órgãos linfoides periféricos. Os polissacarídeos e outros antígenos não proteicos são capturados nos órgãos linfoides e reconhecidos pelos linfócitos B, mas não pelas células T. Como parte da resposta imunológica inata, as células dendríticas que apresentam os antígenos às células T virgens são ativadas para expressar moléculas chamadas de coestimuladoras e para secretar citocinas, ambas as quais são necessárias, juntamente com o antígeno, para estimular a proliferação e a diferenciação dos linfócitos T. A resposta imunológica inata a alguns microrganismos e antígenos polissacarídeos também resulta na ativação do sistema complemento, que gera a depuração de produtos de proteínas que possuem diversas funções imunológicas. Alguns produtos gerados pelo complemento intensificam a proliferação e a diferenciação de linfócitos B. Por conseguinte, o antígeno (muitas vezes designado por sinal 1) e as moléculas produzidas durante as respostas imunológicas inatas (sinal 2) funcionam de forma cooperativa para ativar os linfócitos específicos ao antígeno. O requerimento para o microrganismo disparar o sinal 2 assegura que a resposta imunológica adquirida seja induzida por microrganismos e não por uma substância inofensiva. Os sinais gerados nos linfócitos pela ocupação dos receptores antigênicos e receptores para coestimuladores leva à transcrição de vários genes, os quais codificam para citocinas, receptores para citocinas, moléculas efetoras e proteínas que controlam a sobrevivência e o ciclo celular. Todas essas moléculas estão envolvidas nas respostas dos linfócitos. Imunidade Mediada por Célula: Ativação dos Linfócitos T e Eliminação dos Microrganismos Associados a Células Quando as células T virgens são ativadas pelos antígenos e pelos coestimuladores nos órgãos linfoides, elas secretam citocinas que atuam como fatores de crescimento e respondem a outras citocinas secretadas pelas APC. A combinação de sinais (antígeno, coestimuladores e citocinas) estimula a proliferação das células T e sua diferenciação a células T efetoras. As células T efetoras geradas nos órgãos linfoides podem migrar de volta para o sangue e então para qualquer lugar onde o antígeno (ou microrganismo) esteja presente. Essas células efetoras são reativadas pelos antígenos nos locais de infecção e desempenham as funções responsáveis pela eliminação dos microrganismos. Diversas classes de células T se diferenciam em células efetoras com propriedades funcionais distintas. As células T auxiliares secretam citocinas e expressam moléculas de superfície que medeiam suas funções. Algumas destas células T auxiliares ativadas atuam a fim de recrutar neutrófilos e outros leucócitos para locais de infecção. Outras células auxiliares ativam macrófagos para matar microrganismos ingeridos e, ainda assim, outras células T auxiliares permanecem nos órgãos linfoides e ajudam linfócitos B. As CTL matam diretamente as células com microrganismos em seu citoplasma. Esses microrganismos podem ser vírus que infectam muitos tipos celulares ou bactérias que são ingeridas pelos macrófagos, mas que aprenderam a escapar das vesículas dos fagócitos para o citoplasma (onde ficam inacessíveis à maquinaria de morte dos fagócitos, que são confinadas às vesículas). Pela destruição das células infectadas, as CTL eliminam os reservatórios de infecção. Imunidade Humoral: Ativação dos Linfócitos B e Eliminação dos Microrganismos Extracelulares Na ativação, os linfócitos B proliferam e então se diferenciam em células plasmáticas que secretam diferentes classes de anticorpos com diferentes funções. Muitos antígenos polissacarídicos e lipídicos têm múltiplos determinantes antigênicos idênticos (epítopos) que são capazes de ocupar muitas moléculas receptoras para os antígenos em cada célula B e iniciar o processo de ativação da célula B. Antígenos proteicos, globulares típicos, não são capazes de se ligar a vários receptores antigênicos, e a resposta completa das células B aos antígenos proteicos requer ajuda das células T CD4+. As células B ingerem os antígenos proteicos, os degradam e expõem peptídeos ligados às moléculas de MHC para o reconhecimento pelas células T auxiliares. As células T auxiliares expressam citocinas e proteínas de superfície celular, as quais trabalham juntas para ativar as células B. Muitas das descendentes dos clones das células B expandidas se diferenciam em células secretoras de anticorpos. Cada célula B secreta anticorpos que têm os mesmos sítios de ligação ao antígeno dos anticorpos de superfície das células (receptores nas células B) que primeiramente reconheceram os antígenos. Os polissacarídeos e os lipídios estimulam a secreção principalmente de uma classe de anticorpos chamada de imunoglobulina M (IgM). Os antígenos proteicos estimulam as células T auxiliares, que induzem a produção dos anticorpos de diferentes classes (IgG, IgA e IgE). Essa produção de diferentes anticorpos, todos com a mesma especificidade, é chamada de mudança de classe de cadeia pesada (ou isótipo), que aumenta a capacidade de defesa na resposta do anticorpo, permitindo aos anticorpos possuírem várias funções. As células T auxiliares também estimulam a produção de anticorpos com grande afinidade aos antígenos. Esse processo, chamado de maturação da afinidade, aumenta a qualidade da resposta imunológica humoral. A resposta imunológica humoral defende contra os microrganismos de diversas maneiras. Os anticorpos se ligam aos microrganismos e os impedem de se desligarem das células infectadas, neutralizando assim os microrganismos. Os microrganismos recobertos com anticorpos (opsonizados) são alvos para a fagocitose, porque os fagócitos (os neutrófilos e os macrófagos) expressam receptores para os anticorpos. Adicionalmente, os anticorpos ativam o sistema complemento, gerando fragmentos de proteína que promovem a fagocitose e a destruição dos microrganismos. Tipos especializados de anticorpos e de mecanismos de transporte para anticorpos têm papéis distintos em sítios anatômicos particulares, incluindo a luz dos tratos respiratório e gastrointestinal ou a placenta e o feto. Declínio da Resposta Imune e da Memória Imunológica A maioria dos linfócitos efetores induzidos por um patógeno infeccioso morre por apoptose depois que o microrganismo é eliminado, retornando, então, o sistema imunológico para seu estado de repouso basal, chamado de homeostasia. Isso ocorre porque os microrganismos provêm estímulo essencial para a sobrevivência e a ativação dos linfócitos, e porque as células efetoras têm vida curta. Por esse motivo, assim que o estímulo é eliminado, os linfócitos ativados deixam de viver. A ativação inicial dos linfócitos gera células de memória de vida longa, as quais podem sobreviver por anos após a infecção e montam respostas rápidas e vigorosas para um encontro repetido com o antígeno. Resumo ✹ A função fisiológica do sistema imunológico é proteger os indivíduos contra as infecções. ✹ A imunidade inata é a primeira linha de defesa, mediada por células e moléculas que estão sempre presentes e prontas para eliminar os microrganismos infecciosos. ✹ A imunidade adquirida é mediada por linfócitos estimulados por antígenos microbianos, requer expansão e diferenciação clonal dos linfócitos antes de ela ser efetiva, e responde de forma mais eficaz contra cada exposição sucessiva a um microrganismo. ✹ Os linfócitos são as células do sistema imunológico adquirido e as únicas células com receptores distribuídos clonalmente bastante específicos para diferentes antígenos. ✹ A imunidade adquirida é formada pela imunidade humoral, na qual os anticorpos neutralizam e erradicam os microrganismos extracelulares e toxinas, e a imunidade celular, na qual os linfócitos T erradicam os patógenos intracelulares. ✹ A resposta imunológica adquirida consiste em fases sequenciais: reconhecimento dos antígenos pelos linfócitos, ativação dos linfócitos para que proliferem e se diferenciem em células efetoras e de memória, eliminação dos microrganismos, declínio da resposta imunológica e memória duradoura. ✹ Existem diferentes populações de linfócitos que desempenham funções distintas e que podem ser diferenciadas pela expressão superficial de determinadas moléculas na membrana. ✹ Os linfócitos B são as únicas células que produzem anticorpos. Os linfócitos B expressam anticorpos de membrana, que reconhecem os antígenos, e a progênie de células B ativadas, chamadas plasmócitos, secretam anticorpos, que neutralizam e eliminam os antígenos. ✹ Os linfócitos T reconhecem fragmentos peptídicos dos antígenos proteicos apresentados por outras células. Os linfócitos T auxiliares produzem citocinas que ativam as células fagocitárias para que destruam os microrganismos ingeridos, recrutem linfócitos e ativem os linfócitos B para que produzam anticorpos. Linfócitos T citotóxicos (CTL) matam as células infectadas, hospedando os micróbios no citoplasma. ✹ As células apresentadoras de antígeno (APC), capturam os antígenos dos microrganismos que entram pelos epitélios, concentrando-os nos órgãos linfoides e apresentando-os às células T para reconhecimento. ✹ Os linfócitos e as APC se organizam nos órgãos linfoides periféricos, onde as respostas imunológicas são iniciadas e desenvolvidas. ✹ Os linfócitos virgens circulam através dos órgãos linfoides periféricos em busca de antígenos estranhos. Os linfócitos T efetores migram para locais periféricos de infecção, onde eles atuam a fim de eliminar microrganismos infecciosos. Os plasmócitos permanecem nos órgãos linfoides e na medula óssea, de onde secretam anticorpos que entram na circulação, encontram os microrganismos e os eliminam. Perguntas de revisão 1. Quais são os dois tipos de imunidade adquirida e que tipos de microrganismos essas respostas imunológicas combatem? 2. Quais são as principais classes de linfócitos e como suas funções se diferenciam? 3. Quais são as diferenças importantes entre os linfócitos T e B virgens, efetores e de memória? 4. Em que região dos linfonodos os linfócitos T e B estão localizados e como é mantida sua separação anatômica? 5. Como os linfócitos T virgens e efetores diferem em seus padrões de migração? As respostas e as discussões das Perguntas de Revisão estão disponíveis em studentconsult.com.br.