IMP THEOREMS CLASS 12 PDF

Summary

This document provides notes on IMP theorems for 12th-grade students. It covers various mathematical concepts like the sine and cosine rule in trigonometry, along with other theorems.

Full Transcript

๐ŸŽฏ HERE YOU GET ALL 12TH & OTHER ENTRACE STUDY MATERIAL ๐ŸŽฏ Join Telegram ;- @NOTESPROVIDER12TH_BOARD AND DAILY QUIZZES ๐Ÿ˜Š JOIN TELEGRAM ๐Ÿ˜Š โœด๏ธ KEEP SHARE THIS LINKS...

๐ŸŽฏ HERE YOU GET ALL 12TH & OTHER ENTRACE STUDY MATERIAL ๐ŸŽฏ Join Telegram ;- @NOTESPROVIDER12TH_BOARD AND DAILY QUIZZES ๐Ÿ˜Š JOIN TELEGRAM ๐Ÿ˜Š โœด๏ธ KEEP SHARE THIS LINKS โœด๏ธ ๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡ JOIN TELEGRAM ALL LINKS FOR NOTES Click๐Ÿ‘‰โžก๏ธ@SCIENCE11MAHARASTRA Clickโžก@HSCNOTESPROVIDER_12TH_BOARD Clickโžก @HSCNOTESPROVIDER12TH Click ๐Ÿ‘‰โžก @NOTESPROVIDER12TH โ‡๏ธ ALL HSC MHT CET NEET JEE NOTES BOTS โ‡๏ธ ๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡ Click๐Ÿ‘‰โžก @NOTESPROVIDER12TH_BOT โžก๏ธ Join Telegram:- @NOTESPROVIDER12TH_BOARD โ˜โ˜โ˜โ˜โ˜โ˜ click@MHTCET_NOTESPROVIDER_BOT โ‡๏ธALL HSC MHT CET NEET JEE NOTES โ‡๏ธ ENTRANCE PREPARATION Clickโžก @HSCNEETCETQUIZCOLLECTION Clickโžก @NEET_JEE_TOPPERS_2021 Clickโžก๏ธ @MHTCET_NOTESPROVIDER โœณ๏ธ KEEP SHARE THIS LINK โœณ๏ธ โœด๏ธ JOIN BACKUP CHANNEL ๐Ÿ‘‡ โœด๏ธ Click๐Ÿ‘‰@NOTESPROVIDER12TH_BOARD ๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡ Join telegram for more notes Clickโžก๏ธ@NOTESPROVIDER12TH Clickโžก๏ธ SCIENCE BUDDYS JOIN TELEGRAM CHANNEL ๐Ÿ‘‰click link @NOTESPROVIDER12TH SEARCH TELEGRAM๐Ÿ‘‰click link @NOTESPROVIDER12TH USE THIS BOT FOR NOTES TELEGRAM click๐Ÿ‘‰ @NOTESPROVIDERTH_BOT Join Telegram ;- @NOTESPROVIDER12TH_BOARD Join Telegram:- @NOTESPROVIDER12TH_BOARD Join Telegram ;- @NOTESPROVIDER12TH_BOARD The Sine Rule : a b c In โˆ†ABC, sin A = sin B = sin C = 2R, where R is the circumradius of โˆ†ABC. Proof :Let AD be perpendicular to BC. ๐ด AD = b sin C ๐‘ 1 โˆด A(โˆ†ABC) = 2 BC ร— AD 1 = 2 a ร— b sin C ๐ต ๐ท ๐ถ 1 โˆด A(โˆ†ABC) = 2 ab sin C โˆด 2A(โˆ†ABC) = ab sin C Similarly 2A(โˆ†ABC) = ac sin B and 2A(โˆ†ABC) = bc sin A โˆด bc sin A = ac sin B = ab sin C ๐ด Divide by abc, bc sin A ac sin B ab sin C โˆด = = ๐‘ abc abc abc 2๐‘… sin A sin B sin C ๐‘‚ โˆด = = a b c Join Telegram:- @NOTESPROVIDER12TH_BOARD ๐ต ๐ถ a b c โˆด sin A = sin B = sin C โ€ฆ (1) ๐‘ƒ To prove that each ratio is equal to 2R. As the sum of three angles of triangle is 1800 , at least one of the angle of the triangle is not right angle. Suppose A is not right angle. Draw diameter through A. Let it meet circle in P. โˆด AP = 2R and โˆ†ACP is a right angled triangle. โˆ ABC and โˆ APC are inscribed in the same arc. โˆด mโˆ ABC = mโˆ APC b b โˆด sin B = sin P = AP = 2R b โˆด sin B = 2R b โˆด sin B = 2R โ€ฆ (2) From (1) and (2) , we get a b c = sin B = sin C = 2R sin A 1 Join Telegram ;- @NOTESPROVIDER12TH_BOARD The Cosine Rule : In โˆ†ABC, (i) a2 = b2 + c 2 โˆ’ 2bc cos A (ii) b2 = c 2 + a2 โˆ’ 2ca cos B (iii) c 2 = a2 + b2 โˆ’ 2ab cos C Proof :Take A as the origin, X โˆ’ axis along AB and the line perpendicular to AB through A as the Y โˆ’ axis. ๐‘Œ ๐ถ(๐‘ cos ๐ด , ๐‘ sin ๐ด) The co-ordinates of ๐‘ A(0, 0) ๐‘Ž B(c, 0) and C(b cos A , b sin A) ๐ด ๐‘ ๐ต ๐‘‹ 2 2 2 To prove that a = b + c โˆ’ 2bc cos A BC = โˆš(c โˆ’ b cos A)2 + (0 โˆ’ b sin A)2 (by distance formula) BC 2 = (c โˆ’ b cos A)2 + (0 โˆ’ b sin A)2 a2 = c 2 + b2 cos 2 A โˆ’ 2 bc cos A + b2 sin2 A a2 = c 2 + b2 cos 2 A b2 sin2 A@NOTESPROVIDER12TH_BOARD +Telegram:- Join โˆ’ 2 bc cos A a2 = c 2 + b2 (cos 2 A + sin2 A) โˆ’ 2 bc cos A a2 = c 2 + b2 โˆ’ 2 bc cos A โˆด a2 = b2 + c 2 โˆ’ 2bc cos A b2 +c2 โˆ’a2 cosA = 2bc Similarly, we can prove that b2 = c 2 + a2 โˆ’ 2ca cos B c 2 = a2 + b2 โˆ’ 2ab cos C The Projection Rule: In โˆ†ABC, (i) a = b cos C + c cos B (ii) b = c cos A + a cos C (iii) c = a cos B + b cos A Proof: (i) a = b cos C + c cos B By cosine rule we have, 2 Join Telegram ;- @NOTESPROVIDER12TH_BOARD a2 +c2 โˆ’b2 a2 +b2 โˆ’c2 cosB = and cosC = 2ac 2ab Consider, a2 +b2 โˆ’c2 a2 +c2 โˆ’b2 b cos C + c cos B = b. + c. 2ab 2ac a2 +b2 โˆ’c2 a2 +c2 โˆ’b2 b cos C + c cos B = + 2a 2a a2 +b2 โˆ’c2 +a2 +c2 โˆ’b2 b cos C + c cos B = 2a 2a2 b cos C + c cos B = 2a b cos C + c cos B = a Similarly, we can prove (i) b = c cos A + a cos C (iii) c = a cos B + b cos A Bโˆ’C (bโˆ’c) A Napierโ€™s Analogy: In โˆ†ABC, tan ( ) = (b+c) cot 2 2 Proof: By sine rule b = k sin B and c = k sinC (bโˆ’c) k sin B โˆ’k sinC โˆด (b+c) = k sin B+k sinC Join Telegram:- @NOTESPROVIDER12TH_BOARD (bโˆ’c) sin B โˆ’ sinC โˆด (b+c) = sin B+ sinC Bโˆ’C B+c (bโˆ’c) 2 sin( ).cos( 2 ) 2 โˆด (b+c) = B+C Bโˆ’c 2 sin( 2 ).cos( 2 ) (bโˆ’c) B+C Bโˆ’C โˆด (b+c) = cot ( ) tan ( ) 2 2 (bโˆ’c) ฯ€ A Bโˆ’C โˆด (b+c) = cot (2 โˆ’ 2 ) tan ( ) 2 (bโˆ’c) A Bโˆ’C โˆด (b+c) = tan (2 ) tan ( ) 2 Bโˆ’C (bโˆ’c) A โˆด tan ( ) = (b+c) cot 2 2 Similarly we can prove that Cโˆ’A (cโˆ’a) B tan ( ) = (c+a) cot 2 2 3 Join Telegram ;- @NOTESPROVIDER12TH_BOARD Aโˆ’B (aโˆ’b) C tan ( ) = (a+b) cot 2 2 RECALL A homogeneous equation of degree two in x and y, ax 2 + 2hxy + by 2 = 0 represents a pair of lines passing through the origin if h2 โˆ’ ab โ‰ฅ 0. โˆ’hโˆ’โˆšh2 โˆ’ab โˆ’h+โˆšh2 โˆ’ab Slopes of these lines are m1 = and m2 = b b 2h The sum of slope is, m1 + m2 = โˆ’ b a Product of slope is m1 m2 = b 2โˆšh2 โˆ’ab The difference of slope is |m1 โˆ’ m2 | = b Theorem: HomogeneousJoin equation degree two in ๐ฑ and y, ๐š๐ฑ๐Ÿ + ๐Ÿ๐ก๐ฑ๐ฒ + ๐›๐ฒ ๐Ÿ = ๐ŸŽ of@NOTESPROVIDER12TH_BOARD Telegram:- represents a pair of lines passing through the origin if ๐ก๐Ÿ โˆ’ ๐š๐› โ‰ฅ ๐ŸŽ. Proof : Consider the homogeneous equation of degree two in x and y, ax 2 + 2hxy + by 2 = 0 โ‹ฏ(I) Here a, b and h are constants not all zero. Consider two cases (ii) b = 0 ( or a = 0 ) (iii) b โ‰  0 ( or a โ‰  0 ) Case ( i ) ๐›=๐ŸŽ Equation ( I ) becomes ax 2 + 2hxy = 0 โˆด x(ax + 2hy) = 0 โˆด x = 0 or ax + 2hy = 0. 4 Join Telegram ;- @NOTESPROVIDER12TH_BOARD Above are the combined equation of line y- axis and ax + 2hy = 0 both passes through origin. Case ( ii ) ๐›โ‰ ๐ŸŽ ax 2 + 2hxy + by 2 = 0 by 2 + 2hxy = โˆ’ax 2 Multiplying both side by b b2 y 2 + 2hbxy = โˆ’abx 2 To make L.H.S. complete square we add h2 x 2 to both sides. b2 y 2 + 2hbxy + h2 x 2 = h2 x 2 โˆ’ abx 2 (by + hx)2 = (h2 โˆ’ ab)x 2 Taking square roots on both side by + hx = ยฑโˆšh2 โˆ’ ab x Join Telegram:- @NOTESPROVIDER12TH_BOARD by = โˆ’hx ยฑ โˆšh2 โˆ’ ab x by = (โˆ’h ยฑ โˆšh2 โˆ’ ab )x (โˆ’hยฑโˆšh2 โˆ’ab ) y= x as b โ‰  0 b (โˆ’hโˆ’โˆšh2 โˆ’ab ) (โˆ’h+โˆšh2 โˆ’ab ) y= x and y = x h h Above are the two equations of the lines in the form y = mx both passes through origin. Therefore the equation ax 2 + 2hxy + by 2 = 0 represents a pair of lines passing through the origin if h2 โˆ’ ab โ‰ฅ 0. Theorem: The acute angle ๐›‰ between the lines represented by ๐š๐ฑ๐Ÿ + ๐Ÿ๐ก๐ฑ๐ฒ + ๐›๐ฒ๐Ÿ = ๐ŸŽ is ๐Ÿโˆš๐ก๐Ÿ โˆ’๐š๐› given by ๐ญ๐š๐ง ๐›‰ = | |. ๐š+๐› Proof: Let m1 and m2 be slopes of lines represented by the equation 5 Join Telegram ;- @NOTESPROVIDER12TH_BOARD ax 2 + 2hxy + by 2 = 0. โˆ’hโˆ’โˆšh2 โˆ’ab โˆ’h+โˆšh2 โˆ’ab โˆด m1 = and m2 = b b As ฮธ is the acute angle between the lines, 1m โˆ’m2 tanฮธ = |1+m | 1 m2 โˆ’hโˆ’โˆšh2 โˆ’ab โˆ’h+โˆšh2 โˆ’ab |m1 โˆ’m2 | = | โˆ’ | b b โˆ’hโˆ’โˆšh2 โˆ’ab+hโˆ’โˆšh2 โˆ’ab =| b | โˆ’2โˆšh2 โˆ’ab =| | b 2โˆšh2 โˆ’ab =| | b 2โˆšh2 โˆ’ab b โˆด tan ฮธ = | a | 1+b Join Telegram:- @NOTESPROVIDER12TH_BOARD 2โˆšh2 โˆ’ab b โˆด tan ฮธ = | b+a | b 2โˆšh2 โˆ’ab โˆด tan ฮธ = | |. a + b โ‰  0 a+b Remark: 1) Lines represented by ax 2 + 2hxy + by 2 = 0 are coincident if and only if m1 = m2 โˆด m1 โˆ’ m2 = 0 2โˆšh2 โˆ’ab โˆด =0 b โˆด h2 โˆ’ ab = 0 โˆด h2 = ab Thus lines represented by ax 2 + 2hxy + by 2 = 0 are coincident if and only if ๐ก๐Ÿ = ๐š๐›. 6 Join Telegram ;- @NOTESPROVIDER12TH_BOARD 2) Lines represented by ax 2 + 2hxy + by 2 = 0 are perpendicular if and only if m1 m2 = โˆ’1. a โˆด b = โˆ’1 โˆด a = โˆ’b โˆดa+b= 0 Thus lines represented by ax 2 + 2hxy + by 2 = 0 are perpendicular to each other if and only if ๐š + ๐› = ๐ŸŽ. Theorem: Let ๐šฬ… and ๐›ฬ… be non-collinear vectors. A vector ๐ซฬ… is coplanar with ๐šฬ… and ๐›ฬ… if and only if there exist unique scalars ๐ญ ๐Ÿ and ๐ญ ๐Ÿ such that ๐ซฬ… = ๐ญ ๐Ÿ ๐šฬ… + ๐ญ ๐Ÿ ๐›ฬ…. Proof: Only If Part : Given: Suppose rฬ… is coplanar aฬ… and bฬ…. with@NOTESPROVIDER12TH_BOARD Join Telegram:- To show: There exist unique scalars t1 and t 2 such that rฬ… = t1 aฬ… + t 2 bฬ…. Let aฬ… be along OA and bฬ… be along OB. Let ฬ…ฬ…ฬ…ฬ… OP = rฬ… , Draw lines parallel to OB, meeting OA in M and parallel to OA, meeting OB in N. ON = t 2 bฬ… and ฬ…ฬ…ฬ…ฬ…ฬ… Then ฬ…ฬ…ฬ…ฬ… OM = t1 aฬ… for some t1 , t 2 โˆˆ R By triangle law or parallelogram law We have rฬ… = t1 aฬ… + t 2 bฬ… If โ€“ Part: Given: Suppose rฬ… = t1 aฬ… + t 2 bฬ… To show: rฬ… , aฬ… and bฬ… are coplanar. 7 Join Telegram ;- @NOTESPROVIDER12TH_BOARD As aฬ… and bฬ… are coplanar t1 aฬ… , t 2 bฬ… are also coplanar. Therefore t1 aฬ… + t 2 bฬ… ,aฬ… , bฬ… are coplanar. Therefore aฬ… , bฬ… and rฬ… are coplanar. Uniqueness : Suppose vector rฬ… = t1 aฬ… + t 2 bฬ… - - - - - - - (1) Can also be written as rฬ… = S1 aฬ… + S2 bฬ… - - - - - - - - (2) Subtracting (2) from (1) we get ฬ… = (t1 โˆ’ S1 )aฬ… + (t 2 โˆ’ S2 )bฬ… 0 But aฬ… and bฬ… are non-collinear vectors โˆด t1 โˆ’ S1 = t 2 โˆ’ S2 = 0 โˆด t1 = S1 and t 2 = S2 Therefore the uniqueness follows. Join Telegram:- @NOTESPROVIDER12TH_BOARD Theorem: Three vectors ๐šฬ… , ๐›ฬ… and ๐œฬ… are coplanar if and only if there exists a non- zero linear combination ๐ฑ ๐šฬ… + ๐ฒ๐›ฬ… + ๐ณ๐œฬ… = ฬ… ๐ŸŽ with (๐ฑ, ๐ฒ, ๐ณ) โ‰  (๐ŸŽ, ๐ŸŽ, ๐ŸŽ) Proof: Only If โ€“ Part: Assume aฬ… , bฬ… and cฬ… are coplanar. Case โ€“ 1: Suppose that any two of aฬ… , bฬ… and cฬ… are collinear vectors, say aฬ… and bฬ…. โˆด There exist scalars x & y at least one of which is non zero such that xaฬ… + ybฬ… = 0 ฬ… i.e. xaฬ… + ybฬ… + 0cฬ… = 0 ฬ… and (x , y, 0) is the required Solution for xaฬ… + ybฬ… + zcฬ… = 0ฬ…. Case โ€“ 2 :No two vectors aฬ… , bฬ… and cฬ… are collinear. As cฬ… is coplanar with aฬ… and bฬ…. โˆด We have scalars x , y such that cฬ… = xaฬ… + ybฬ…. โˆด xaฬ… + ybฬ… โˆ’ cฬ… = 0 ฬ… and (x, y, โˆ’1) is the required Solution for xaฬ… + ybฬ… + zcฬ… = 0 ฬ…. 8 Join Telegram ;- @NOTESPROVIDER12TH_BOARD If โ€“ Part: Conversely suppose that xaฬ… + ybฬ… + zcฬ… = 0 ฬ… where one of x , y , z is non zero, say x y z โ‰  0. โˆด cฬ… = (โˆ’ z) aฬ… + (โˆ’ z) bฬ… โˆด cฬ… is coplanar with aฬ… and bฬ…. โˆด aฬ… , bฬ… and cฬ… are coplanar vectors. Section Formula: Theorem: (Section formula for internal division) Let A(aฬ…) and B(bฬ…) be any two points in the space and R(rฬ… ) be a point on the line segment AB ฬ… +naฬ… mb dividing it internally in the ratio m โˆถ n then rฬ… = m+n Proof :As R is a point on the line segment AB (A-R-B) and ฬ…ฬ…ฬ…ฬ… AR and ฬ…ฬ…ฬ…ฬ… RB are in same direction. AR m = n, RB Join Telegram:- @NOTESPROVIDER12TH_BOARD n(AR) = m(RB) ฬ…ฬ…ฬ…ฬ… have same direction and magnitude, ฬ…ฬ…ฬ…ฬ… and nAR As mRB ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…ฬ… = nAR โˆด mRB ฬ…ฬ…ฬ…ฬ… โˆ’ OR โˆด m(OB ฬ…ฬ…ฬ…ฬ…) = n(OR ฬ…ฬ…ฬ…ฬ… โˆ’ OA ฬ…ฬ…ฬ…ฬ…) โˆด m(bฬ… โˆ’ rฬ… ) = n(rฬ… โˆ’ aฬ…) โˆด mbฬ… โˆ’ mrฬ… = nrฬ… โˆ’ naฬ… โˆด mbฬ… + naฬ… = mrฬ… + nrฬ… = (m + n)rฬ… ฬ… +naฬ… mb โˆด rฬ… = m+n Theorem: (Section formula for External Division) Let ๐€(๐šฬ…) and ๐(๐›ฬ…) be any two points in the space and ๐‘(๐ซฬ… ) be a point on the line ๐ฆ๐›ฬ…โˆ’๐ง๐šฬ… segment ๐€๐ dividing it externally in the ratio ๐ฆ โˆถ ๐ง then ๐ซฬ… = ๐ฆโˆ’๐ง 9 Join Telegram ;- @NOTESPROVIDER12TH_BOARD Proof: As the point R divides the line segment AB externally, we have either A โˆ’ B โˆ’ R or Rโˆ’Aโˆ’B Assume that A โˆ’ B โˆ’ R AR โˆถ BR = m โˆถ n AR m โˆด BR = n n(AR) = m(BR) ฬ…ฬ…ฬ…ฬ…) and m(BR As n(AR ฬ…ฬ…ฬ…ฬ…) have same magnitude and direction โˆด n ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…ฬ… AR = mBR โˆด n(rฬ… โˆ’ aฬ…) = m(rฬ… โˆ’ bฬ…Join ) Telegram:- @NOTESPROVIDER12TH_BOARD โˆด nrฬ… โˆ’ naฬ… = mrฬ… โˆ’ mbฬ… โˆด mbฬ… โˆ’ naฬ… = mrฬ… โˆ’ nrฬ… = (m โˆ’ n)rฬ… ฬ… โˆ’naฬ… mb โˆด rฬ… = mโˆ’n Theorem: Prove that medians of a triangle are concurrent. Solution: Let A, B and C be the vertices of the triangle ABC. Let D, E and F be the mid-points of the sides BC, AC and AB respectively. Let aฬ…, bฬ…, cฬ…, d ฬ… , eฬ… and fฬ… be the position vectors of the points A, B, C, D, E and F respectively. โˆด By mid-point formula, 10 ฬ… ฬ… Join Telegram ;- @NOTESPROVIDER12TH_BOARD ฬ… = b+cฬ… , eฬ… = aฬ…+cฬ… , fฬ… = aฬ…+b โˆด d 2 2 2 ฬ… = bฬ… + cฬ… , 2eฬ… = aฬ… + ฬ…c , โˆด 2d 2fฬ… = aฬ… + bฬ… ฬ… + aฬ… = aฬ… + bฬ… + cฬ… , 2eฬ… + bฬ… = aฬ… + bฬ… + ฬ…c , 2fฬ… + ฬ…c = aฬ… + bฬ… + ฬ…c โˆด 2d ฬ… +aฬ… 2d ฬ… 2eฬ…+b 2fฬ…+ ฬ…c ฬ… +cฬ… aฬ…+b โˆด = = = = gฬ… (say) 3 3 3 3 ฬ… +cฬ… aฬ…+b ฬ… +(1)aฬ… (2)d (2)e ฬ… ฬ… +(1)b (2)fฬ…+(1) ฬ…c Then we have gฬ… = = = = 3 2+1 2+1 2+1 If G is the point whose position vector is gฬ… , then from the above equation it is clear that the point G lies on the medians AD, BE, CF and it divides each of the medians AD, BE , CF internally in the ratio 2 โˆถ 1. Therefore the medians of a triangle are concurrent. Prove that the angle bisectors of a triangle are concurrent. Solution: Join Telegram:- @NOTESPROVIDER12TH_BOARD Let A, B and C be vertices of triangle. Let AD, BE and CF be the angle bisectors of the triangle ABC. Also AB = z , BC = x , AC = y. Now the angle bisector AD meets the side BC at the point D. Here point D divides the line segment BC internally in the ratio AB : AC i.e. z : y. Let aฬ… , bฬ… , cฬ…, d ฬ… , eฬ… and fฬ… be the position vectors of the points A, B, C, D, E and F respectively. Hence by section formula for internal division, ฬ… ฬ… +xaฬ… ฬ… = zcฬ…+yb Similarly we get , eฬ… = xaฬ…+zcฬ… We have d and fฬ… = yb z+y x+z y+x ฬ… = zcฬ… + ybฬ… โˆด (z + y)d 11 Join Telegram ;- @NOTESPROVIDER12TH_BOARD ฬ… + xaฬ… = xaฬ… + zcฬ… + ybฬ… โˆด (z + y)d Similarly (x + z)eฬ… + ybฬ… = xaฬ… + zcฬ… + ybฬ… And (x + y)fฬ… + xcฬ… = xaฬ… + zcฬ… + ybฬ… ฬ… + xaฬ… = (x + z)eฬ… + ybฬ… = (x + y)fฬ… + xcฬ… = xaฬ… + zcฬ… + ybฬ… โˆด (z + y)d ฬ… +xa (z+y)d ฬ… (x+z)e ฬ… ฬ… +yb (x+y)fฬ…+xcฬ… ฬ… xaฬ…+zcฬ…+yb โˆด = = = = hฬ… (say) x+y+z x+y+z x+y+z x+y+z (z+y)d+xa ฬ… ฬ… (x+z)e ฬ… +yb (x+y)f+xcฬ… ฬ… ฬ… Then we have hฬ… = (z+y)+x = (x+z)+y = (x+y)+z That is point H(hฬ…) divides AD in the ratio (y + z): x, BE in the ratio (x + z): y and CF in the ratio (x + y): z. This shows that the point H is the point of concurrence of the angle bisectors AD, BE and CF of the triangle ABC. Thus, the angle bisectors of a triangle are concurrent. Prove that the median of a trapezium is parallel to sides of the trapezium and its length is Join Telegram:- @NOTESPROVIDER12TH_BOARD half the sum of parallel sides. Solution: Suppose that the ABCD is trapezium with AD and BC are parallel sides. A B Let E be the mid-point of side AD and F be the mid-point of side BC. ฬ…EF ฬ…ฬ…ฬ… = ฬ…EF ฬ…ฬ…ฬ… = 1 ฬ…ฬ…ฬ…ฬ… + (mDC 1 ฬ…ฬ…ฬ…ฬ… + (mDC 2 2F Here side EF is the median of the trapezium ABCD. E ฬ…ฬ…ฬ…ฬ… DC ) = ฬ…ฬ…ฬ…ฬ… DCฬ…EFฬ…ฬ…ฬ…)== ฬ…ฬ…ฬ…ฬ… 1=(m + EF 1 1(m + ฬ…ฬ…ฬ…ฬ… + Also ฬ…ฬ…ฬ…ฬ… ๐ด๐ต is parallel to ฬ…ฬ…ฬ…ฬ… ๐ท๐ถ. 1 2 (mDC ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…ฬ…+ 2 (mDC 2 D2 1)DC = 1)DC ฬ…ฬ…ฬ…ฬ… DC ) = ฬ…ฬ…ฬ…ฬ…C = ฬ…ฬ…ฬ…ฬ…kDC)ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…DCฬ… = kDC1ฬ…ฬ…ฬ…ฬ… ฬ…EF ฬ…ฬ…ฬ… = Let aฬ… , bฬ…, cฬ…, d ฬ… , eฬ… and fฬ… be the position vectors of the points A, B, C, D, E and EF F. 1 = 1 (m , + (m + , 2 1 (mDC 2(mDC ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…ฬ… 2 ฬ…ฬ…ฬ…ฬ… w + w1)DC 2ฬ…ฬ…ฬ…ฬ… = We have to show that the median EF is parallel to the sides AB and DC. ฬ…ฬ…ฬ…ฬ… )h= = DC 1)DC ฬ…ฬ…ฬ…ฬ… DC ) = ฬ…ฬ…ฬ…ฬ… ฬ…ฬ…ฬ…ฬ… hkDC 1 kDC 1 2, (me+ e, 2 (m + But it is sufficient to show that EF is parallel to AB or DC. r wฬ…ฬ…ฬ…ฬ… = 1)DC r w1)DC ฬ…ฬ…ฬ…ฬ… = e h ฬ…ฬ…ฬ…ฬ… kDChฬ…ฬ…ฬ…ฬ… e kDC e, As ฬ…ฬ…ฬ…ฬ… AB is parallel to ฬ…ฬ…ฬ…ฬ… DC. ,e k kr w wr eh For any scalar m we have he i i e e s sk r rk e e 12 s s i i c cs k ks a a Join Telegram ;- @NOTESPROVIDER12TH_BOARD ฬ…ฬ…ฬ…ฬ… AB = m ฬ…ฬ…ฬ…ฬ… DC โ€ฆ.. (i) ฬ… aฬ…+d ฬ… b+cฬ… Now by mid-point formula eฬ… = and fฬ… = 2 2 ฬ…ฬ… = fฬ… โˆ’ eฬ… Therefore, ฬ…ฬ… EF ฬ… +cฬ… b ฬ… aฬ…+d = โˆ’ 2 2 1 = 2 (bฬ… + cฬ… โˆ’ aฬ… โˆ’ d ฬ…) 1 = 2 (bฬ… โˆ’ aฬ… + cฬ… โˆ’ d ฬ…) ฬ…ฬ… = 1 (AB ฬ…ฬ… EF ฬ…ฬ…ฬ…ฬ… + ฬ…ฬ…ฬ…ฬ… DC ) โ€ฆ..(ii) 2 ฬ…ฬ… = 1 (mDC ฬ…ฬ… EF ฬ…ฬ…ฬ…ฬ… + ฬ…ฬ…ฬ…ฬ… 1 ฬ…ฬ…ฬ…ฬ… = kDC DC ) = 2 (m + 1)DC ฬ…ฬ…ฬ…ฬ…ฬ…, where k is scalar 2 ฬ…ฬ… is scalar multiple of ฬ…ฬ…ฬ…ฬ… โˆด ฬ…ฬ… EF DC ฬ…ฬ…ฬ…ฬ…. ฬ…ฬ…ฬ…ฬ… is parallel to DC โˆด EF 1 Join Telegram:- @NOTESPROVIDER12TH_BOARD ฬ…ฬ…ฬ…ฬ… + DC ฬ…ฬ…ฬ…ฬ… = (AB Also, (ii) โ†’ EF ฬ…ฬ…ฬ…ฬ… ) 2 ฬ…ฬ…ฬ…ฬ…| = 1 |AB |EF ฬ…ฬ…ฬ…ฬ… + DC ฬ…ฬ…ฬ…ฬ…| 2 1 โˆด l(median) = [ sum of length of sode AB and DC] 2 Prove by vector method that the angle subtended on semicircle is a right angle. Solution: Consider a circle with center Origin O and radios r. Let A and B be the end points of the diameter AB of the circle. Let C be any point on the circumference. Let aฬ…, bฬ… and cฬ… be the position vectors of the points A, B and C respectively. โˆด From figure,|aฬ… | = |bฬ… | = |cฬ… | = r 13 Join Telegram ;- @NOTESPROVIDER12TH_BOARD Also, bฬ… = โˆ’aฬ… Consider, ฬ…ฬ…ฬ…ฬ… CB = (aฬ… โˆ’ cฬ…) โˆ™ (bฬ… โˆ’ cฬ…) CA โˆ™ ฬ…ฬ…ฬ…ฬ… = (aฬ… โˆ’ cฬ…) โˆ™ (โˆ’aฬ… โˆ’ cฬ…) = โˆ’(aฬ… โˆ’ cฬ…) โˆ™ (aฬ… + cฬ…) = โˆ’[ |aฬ…|2 โˆ’ |cฬ…|2 ] = โˆ’[r 2 โˆ’ r 2 ] As |aฬ…| = |cฬ…| = r =0 ฬ…ฬ…ฬ…ฬ… and CB โˆด CA ฬ…ฬ…ฬ…ฬ… are perpendicular to each other. โˆด mโˆ ACB = 90o โˆด Angle subtended on semicircle is a right angle. Join Telegram:- @NOTESPROVIDER12TH_BOARD 14 Join Telegram ;- @NOTESPROVIDER12TH_BOARD Theorem: If y = f (u) is a differentiable function of u and u = g (x) is a differentiable function of x such that the composite function ๐ฒ = ๐Ÿ[๐ (๐ฑ)]is a differentiable function of x ๐๐ฒ ๐๐ฒ ๐๐ฎ then ๐๐ฑ = ๐๐ฎ ร— ๐๐ฑ Proof: Let ฮดx be the small increment in x and ฮดu and ฮดy are the corresponding increments in u and y respectively. As y = f (u) is a differentiable function of u. dy ฮดy โˆด du = lim โ€ฆ..(i) ฮดuโ†’0 ฮดu Also, u = g (x) is a differentiable function of x du ฮดu โˆด dx = lim โ€ฆ..(ii) ฮดxโ†’0 ฮดx Consider, ฮดy ฮดy ฮดu = ฮดu ร— ฮดx ฮดx Taking the limit as ฮดx โ†’ 0JoinonTelegram:- both sides @NOTESPROVIDER12TH_BOARD We get, ฮดy ฮดy ฮดu lim = lim (ฮดu ร— ฮดx ) ฮดxโ†’0 ฮดx ฮดxโ†’0 ฮดy ฮดy ฮดu lim = lim (ฮดu ) ร— lim (ฮดx ) ฮดxโ†’0 ฮดx ฮดxโ†’0 ฮดxโ†’0 ฮดy ฮดy du lim = lim (ฮดu ) ร— dx by (ii) ฮดxโ†’0 ฮดx ฮดxโ†’0 As ฮดx โ†’ 0, we get, ฮดu โ†’ 0 ( โˆต u is a continuous function of x) ฮดy ฮดy du lim = lim ร— dx ฮดxโ†’0 ฮดx ฮดuโ†’0 ฮดu ฮดy dy du lim = dx ร— dx (1) by (i) ฮดxโ†’0 ฮดx โˆดRHS of (1) is differentiable implies LHS of (1) is also differentiable. ฮดy dy lim = dx ฮดxโ†’0 ฮดx Then equation (1) becomes, dy dy du = du ร— dx dx 15 Join Telegram ;- @NOTESPROVIDER12TH_BOARD Theorem: Suppose ๐ฒ = ๐Ÿ(๐ฑ)is a differentiable function of ๐ฑ on an interval I and y is One- ๐๐ฒ ๐๐ฑ ๐Ÿ ๐๐ฒ one, onto and ๐๐ฑ on I. Also if ๐Ÿ โˆ’๐Ÿ (๐ฒ) is differentiable on ๐Ÿ(๐ˆ) then๐๐ฒ = ๐๐ฒ , ๐๐ฑ โ‰  ๐ŸŽ ๐๐ฑ Proof: Let ฮดx be the small increment in x and ฮดy is the corresponding increments y. As y = f(x) is a differentiable function of x. dy ฮดy โˆด dx = lim โ€ฆ..(i) ฮดxโ†’0 ฮดx Consider, ฮดx ๏ค y ๏‚ด =1 ๏คy ๏คx ๏คx 1 ๏คy ๏œ = , where ๏‚น 0 ๏คy ๏คy ๏คx ๏คx Taking the limit as ฮดx โ†’ 0 on both sides We get, Join Telegram:- @NOTESPROVIDER12TH_BOARD ฮดx 1 lim = lim ( ฮดy ) ฮดxโ†’0 ฮดy ฮดxโ†’0 ฮดx ฮดx 1 lim =( ฮดy ) ฮดxโ†’0 ฮดy lim ฮดxโ†’0 ฮดx ฮดx 1 dy lim = ( dy ), dx โ‰  0 by (i) ฮดxโ†’0 ฮดy dx As ฮดx โ†’ 0 implies that ฮดy โ†’ 0 ฮดx 1 lim = ( dy ) โ€ฆ..(1) ฮดyโ†’0 ฮดy dx As RHS of (1) is differentiable implies LHS of (1) is also differentiable. dx 1 dy โˆด = where ๏‚น 0 dy dy dx dx 16 Join Telegram ;- @NOTESPROVIDER12TH_BOARD Theorem: If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable ๐๐ฒ ๐๐ฑ ๐๐ฒ ๐๐ญ function of x and if ๐๐ญ โ‰  ๐ŸŽ ๐ญ๐ก๐ž๐ง = ๐๐ฑ. ๐๐ฑ ๐๐ญ Proof: Let ฮดt be the small increment in t say then ฮดx and ฮดy are corresponding increments in the x and y respectively. As x and y are differentiable functions of t, We have, dx lim ฮดx โˆด = ----- (i) dt ฮดt โ†’ 0 ฮดt dy lim ฮดy = ----- (ii) dt ฮดt โ†’ 0 ฮดt Consider, ฮดy ฮดy ฮดt ฮดx Join Telegram:- @NOTESPROVIDER12TH_BOARD = ฮดx โˆต โ‰  0. ฮดx ฮดt ฮดt Taking the limit ฮดt โ†’ 0 on both sides we get, lim ฮดy lim ฮดy ฮดtโ†’0ฮดt = lim ฮดx ฮดt โ†’ 0 ฮดx ฮดt ฮดtโ†’0 dy lim ฮดy dt = dx -----(1) by (i) and (ii) ฮดt โ†’ 0 ฮดx dt As RHS of (1) is differentiable implies LHS of (1) is also differentiable. dy lim ฮดy = dx ฮดt โ†’ 0 ฮดx Thus the equation (1) becomes, dy dy dx dx = dt dx Where dt โ‰  0 dt 17 Join Telegram ;- @NOTESPROVIDER12TH_BOARD ๐’‡ โ€ฒ (๐’™) ๐Ÿ โ€ฒ (๐ฑ) Theorem: โˆซ ๐’…๐’™ = 2 โˆš๐’‡(๐’™) + c โˆš๐’‡(๐’™) Theorem: โˆซ ๐๐ฑ = log |๐Ÿ(๐ฑ)| + ๐œ ๐Ÿ(๐ฑ) Proof: Consider, Proof: Consider, d 1 d 1 (2 โˆšf(x) + c) = 2 โˆ™ โˆ™ f โ€ฒ (x) (log |f(x)| + c ) = โˆ™ fโ€ฒ(x) dx 2f(x) dx f(x) โˆด By definition of integral โˆด By definition of integral 1 1 โˆซ โˆ™ f โ€ฒ (x) dx = log |f(x)| + c โˆซ2โˆ™ โˆ™ f โ€ฒ (x)dx = 2 โˆšf(x) + c f(x) 2f(x) f โ€ฒ (x) f โ€ฒ (x) โˆซ dx = 2 โˆšf(x) + c โˆซ dx = log |f(x)| + c f(x) f(x) ๐Ÿ ๐Ÿ ๐ฑ Theorem: โˆซ ๐๐ฑ = ๐ญ๐š๐งโˆ’๐Ÿ ( ) + ๐œ ๐ฑ ๐Ÿ +๐š๐Ÿ ๐š ๐š Proof: Consider, Join Telegram:- @NOTESPROVIDER12TH_BOARD ๐‘‘ 1 ๐‘ฅ ๐‘‘ 1 ๐‘ฅ ๐‘‘ [ tanโˆ’1 (๐‘Ž) + ๐‘] = [ tanโˆ’1 (๐‘Ž)] + ๐‘ ๐‘‘๐‘ฅ ๐‘Ž ๐‘‘๐‘ฅ ๐‘Ž ๐‘‘๐‘ฅ ๐‘‘ 1 ๐‘ฅ 1 1 ๐‘‘ ๐‘ฅ [ tanโˆ’1 ( ) + ๐‘] = ( )+0 ๐‘‘๐‘ฅ ๐‘Ž ๐‘Ž ๐‘Ž ๐‘ฅ 2 ๐‘‘๐‘ฅ ๐‘Ž 1 + (๐‘Ž ) ๐‘‘ 1 ๐‘ฅ 1 1 1 [ tanโˆ’1 (๐‘Ž) + ๐‘] = ๐‘ฅ2 (๐‘Ž ) ๐‘‘๐‘ฅ ๐‘Ž ๐‘Ž 1+ 2 ๐‘Ž ๐‘‘ 1 ๐‘ฅ 1 1 [ tanโˆ’1 ( ) + ๐‘] = 2 2 ๐‘‘๐‘ฅ ๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž + ๐‘ฅ2 ๐‘Ž2 ๐‘‘ 1 ๐‘ฅ 1 [ tanโˆ’1 ( ) + ๐‘] = 2 ๐‘‘๐‘ฅ ๐‘Ž ๐‘Ž ๐‘ฅ + ๐‘Ž2 โˆด By definition of integration, 1 1 โˆ’1 ๐‘ฅ โˆดโˆซ ๐‘‘๐‘ฅ = tan ( )+๐‘ ๐‘ฅ 2 + ๐‘Ž2 ๐‘Ž ๐‘Ž 18 Join Telegram ;- @NOTESPROVIDER12TH_BOARD ๐Ÿ ๐Ÿ ๐ฑโˆ’๐š Theorem:โˆซ ๐ฑ ๐Ÿ โˆ’๐š๐Ÿ ๐๐ฑ = ๐ฅ๐จ๐  (๐ฑ+๐š) + ๐œ ๐Ÿ๐š 1 Proof: Let , I = โˆซ x2 โˆ’a2 dx 1 I= โˆซ dx (x + a)(x โˆ’ a) 1 A B Consider, (x+a)(xโˆ’a) = (x+a) + (xโˆ’a) โˆด 1 = A(x โˆ’ a) + B((x + a)) Put x = โˆ’a then we get, 1 = A(โˆ’a โˆ’ a) 1 A = โˆ’ 2a Put x = a then we get, 1 = B(a + a) 1 B = 2a Join Telegram:- @NOTESPROVIDER12TH_BOARD 1 1 1 A B โˆ’ 2a โˆซ dx = โˆซ ( + ) dx = โˆซ ( + 2a ) dx (x + a)(x โˆ’ a) (x + a) (x โˆ’ a) (x + a) (x โˆ’ a) 1 1 1 1 1 โˆซ dx = โˆซ ( โˆ’ ) dx = [log|x โˆ’ a| โˆ’ log|x + a|] + c (x + a)(x โˆ’ a) 2a (x โˆ’ a) (x + a) 2a 1 1 xโˆ’a โˆซ dx = log | |+c (x + a)(x โˆ’ a) 2a x+a 1 1 xโˆ’a โˆดโˆซ dx = log ( )+c x 2 โˆ’ a2 2a x+a ๐Ÿ ๐Ÿ ๐š+๐ฑ Theorem:โˆซ ๐š๐Ÿ โˆ’๐ฑ ๐Ÿ ๐๐ฑ = ๐ฅ๐จ๐  (๐šโˆ’๐ฑ) + ๐œ ๐Ÿ๐š 1 Proof: Let , I = โˆซ a2 โˆ’x2 dx 1 I= โˆซ dx (a + x)(a โˆ’ x) 19 1 A B Join Telegram ;- @NOTESPROVIDER12TH_BOARD Consider, (a+x)(aโˆ’x) = (a+x) + (aโˆ’x) โˆด 1 = A(a โˆ’ x) + B(a + x) Put x = โˆ’a then we get, 1 = A(a + a) 1 A = 2a Put x = a then we get, 1 = B(a + a) 1 B = 2a 1 1 1 A B 2a 2a โˆซ dx = โˆซ ( + ) dx = โˆซ ( + ) dx (a + x)(a โˆ’ x) (a + x) (a โˆ’ x) (a + x) (a โˆ’ x) 1 1 1 1 1 โˆซ dx = โˆซ ( + ) dx = [log|๐‘Ž + ๐‘ฅ| โˆ’ log|a โˆ’ x|] + c (a + x)(a โˆ’ x) 2a (๐‘Ž + ๐‘ฅ) (a โˆ’ x) 2a 1 1 a+x โˆซ dx = log | |+c (a + x)(a โˆ’ x) 2a aโˆ’x Join Telegram:- @NOTESPROVIDER12TH_BOARD 1 1 a+x โˆดโˆซ dx = log ( )+c a2 โˆ’ x 2 2a aโˆ’x ๐Ÿ Theorem: โˆซ ๐๐ฑ = ๐ฅ๐จ๐ (๐ฑ + โˆš๐ฑ๐Ÿ โˆ’ ๐š๐Ÿ ) + ๐œ โˆš๐ฑ ๐Ÿ โˆ’๐š๐Ÿ 1 Proof:Let I = โˆซ 2 2 dx โˆšx โˆ’a Put x = a sec ฮธ x ie ฮธ = sec โˆ’1 ( ) a โˆด dx = asecฮธ โˆ™ tanฮธ โˆ™ dฮธ 1 I= โˆซ a โˆ™ secฮธ โˆ™ tanฮธ โˆ™ dฮธ โˆša2 sec 2 ฮธ โˆ’ a2 asecฮธ โˆ™ tanฮธ = โˆซ dฮธ โˆša2 (sec 2 ฮธ โˆ’ 1) 20 Join Telegram ;- @NOTESPROVIDER12TH_BOARD a โˆ™ secฮธ โˆ™ tanฮธ = โˆซ dฮธ โˆša2 tan2 ฮธ a โˆ™ secฮธ โˆ™ tanฮธ = โˆซ dฮธ a โˆ™ tan ฮธ = โˆซ secฮธ dฮธ = log ( sec ฮธ + tan ฮธ ) + C = log ( sec ฮธ + โˆštan2 ฮธ ) + C = log ( sec ฮธ + โˆšsec 2 ฮธ โˆ’ 1) + C x x2 โˆš = log ( + 2 โˆ’ 1) + C a a x + โˆšx 2 โˆ’ a2 = log ( )+C a Join Telegram:- @NOTESPROVIDER12TH_BOARD = log (x + โˆšx 2 โˆ’ a2 ) โˆ’ log a + C = log (x + โˆšx 2 โˆ’ a2 ) + c Where C โˆ’ loga = c 1 โˆดโˆซ dx = log (x + โˆšx 2 โˆ’ a2 ) + c โˆšx 2 โˆ’ a2 ๐Ÿ Theorem: โˆซ ๐๐ฑ = ๐ฅ๐จ๐ (๐ฑ + โˆš๐ฑ๐Ÿ + ๐š๐Ÿ ) + ๐œ โˆš๐ฑ ๐Ÿ +๐š๐Ÿ 1 Proof:Let I = โˆซ 2 2 dx โˆšx +a Put x = a tan ฮธ x ie ฮธ = tanโˆ’1 ( ) a โˆด dx = a โˆ™ sec 2 ฮธ โˆ™ dฮธ 21 Join Telegram ;- @NOTESPROVIDER12TH_BOARD 1 2 I= โˆซ a โˆ™ sec ฮธ โˆ™ dฮธ โˆša2 tan2 ฮธ + a2 a sec 2 ฮธ = โˆซ dฮธ โˆša2 (tan2 ฮธ + 1) a โˆ™ secฮธ โˆ™ tanฮธ = โˆซ dฮธ โˆša2 tan2 ฮธ a โˆ™ sec 2 ฮธ = โˆซ dฮธ a โˆ™ sec ฮธ = โˆซ secฮธ dฮธ = log ( sec ฮธ + tan ฮธ ) + C = log ( tan ฮธ + โˆšsec 2 ฮธ ) + C = log ( tan ฮธ + โˆštan2 ฮธ + 1) + C x x 2 Join Telegram:- @NOTESPROVIDER12TH_BOARD โˆš = log ( + 2 + 1) + C a a x + โˆšx 2 + a2 = log ( )+C a = log (x + โˆšx 2 + a2 ) โˆ’ log a + C = log (x + โˆšx 2 + a2 ) + c Where C โˆ’ loga = c 1 โˆดโˆซ dx = log (x + โˆšx 2 + a2 ) + c โˆšx 2 + a2 22 Join Telegram ;- @NOTESPROVIDER12TH_BOARD Theorem: If u and v two differentiable functions of x then ๐๐ฎ โˆซ ๐ฎ ๐ฏ ๐๐ฑ = ๐ฎ โˆซ ๐ฏ ๐๐ฑ โˆ’ โˆซ [๐๐ฑ โˆซ ๐ฏ ๐๐ฑ] ๐๐ฑ Proof: let โˆซ v dx = w โ€ฆ (i) dw โˆดv= โ€ฆ (ii) dx Consider, d d d (u. w) = u w + w dx u dx dx du = uv + w dx By definition of integration du (u. w) = โˆซ [uv + w ] dx dx du = โˆซ uv dx + โˆซ w dx dx Join Telegram:- du @NOTESPROVIDER12TH_BOARD u โˆซ v dx = โˆซ uv dx + โˆซ dx w dx du โˆซ u v dx = u โˆซ v dx โˆ’ โˆซ [dx โˆซ v dx] dx ๐ฑ ๐š๐Ÿ ๐ฑ Theorem: โˆซ โˆš๐š๐Ÿ โˆ’ ๐ฑ๐Ÿ ๐๐ฑ = โˆš๐š๐Ÿ โˆ’ ๐ฑ ๐Ÿ + ๐ฌ๐ข๐งโˆ’๐Ÿ (๐š) + ๐œ ๐Ÿ ๐Ÿ Proof: Let I = ๏ƒฒ โˆša2 โˆ’ x 2 โˆ™ 1dx d(โˆša2 โˆ’x2 ) = โˆša2 โˆ’ x 2 ๏ƒฒ 1 dx โˆ’ ๏ƒฒ [ โˆ™ โˆซ 1๐‘‘๐‘ฅ] ๐‘‘๐‘ฅ dx 1 = โˆša2 โˆ’ x 2 x โˆ’ โˆซ (โˆ’2x)(x)dx 2โˆša2 โˆ’x2 x2 = โˆša2 โˆ’ x 2 x + ๏ƒฒ dx โˆša2 โˆ’x2 a2 โˆ’ ( a2 โˆ’x2) = โˆša2 โˆ’ x 2 x + ๏ƒฒ dx โˆša2 โˆ’x2 a2 ( a2 โˆ’x2 ) = โˆša2 โˆ’ x 2 x + โˆซ [โˆša2 โˆ’x2 โˆ’ ] dx โˆša2 โˆ’x2 23 1 Join Telegram ;- @NOTESPROVIDER12TH_BOARD = x โˆša2 โˆ’ x 2 + a2 ๏ƒฒ dx โˆ’ ๏ƒฒโˆša2 โˆ’ x 2 dx โˆša2 โˆ’x2 1 I = x โˆša2 โˆ’ x 2 + a2 ๏ƒฒ dx โ€“ I โˆša2 โˆ’x2 x ๏œI+I= x โˆša2 โˆ’ x 2 + a2 sinโˆ’1 (a) + c x a2 x ๏œI= โˆša2 โˆ’ x 2 + sinโˆ’1 (a) + c 2 2 x a2 x ๏œ ๏ƒฒ โˆša2 โˆ’ x 2 dx = โˆša2 โˆ’ x 2 + sinโˆ’1 (a) + c 2 2 ๐ฑ ๐š๐Ÿ Theorem: โˆซ โˆš๐ฑ๐Ÿ โˆ’ ๐š๐Ÿ ๐’…๐’™ = โˆš๐ฑ๐Ÿ โˆ’ ๐š๐Ÿ โˆ’ ๐ฅ๐จ๐ |๐’™ + โˆš๐ฑ๐Ÿ โˆ’ ๐š๐Ÿ | + ๐œ ๐Ÿ ๐Ÿ Proof: Let I = ๏ƒฒ โˆšx 2 โˆ’ a2 โˆ™ 1dx d(โˆšx2 โˆ’a2 ) = โˆšx 2 โˆ’ a2 ๏ƒฒ 1 dx โˆ’ ๏ƒฒ [ โˆ™ โˆซ 1dx] dx dx 1 = โˆšx 2 โˆ’ a2 x โˆ’ โˆซ (2x)(x)dx 2โˆšx2 โˆ’a2 Join Telegram:- x2 @NOTESPROVIDER12TH_BOARD = โˆšx 2 โˆ’ a2 x โˆ’ โˆซ dx โˆšx2 โˆ’a2 x2 โˆ’a2 +a2 = โˆšx 2 โˆ’ a2 x โˆ’ โˆซ dx โˆšx2 โˆ’a2 x2 โˆ’a2 a2 = โˆšx 2 โˆ’ a2 x โˆ’ โˆซ [ + ] dx โˆšx2 โˆ’a 2 โˆšx2 โˆ’a2 1 = โˆšx 2 โˆ’ a2 x โˆ’ โˆซ โˆšx 2 โˆ’ a2 dx โˆ’ a2 ๏ƒฒ dx โˆšx2 โˆ’a2 I = x โˆšx 2 โˆ’ a2 โˆ’ I โˆ’ a2 log|x + โˆšx 2 โˆ’ a2 | I + I = xโˆšx 2 โˆ’ a2 โˆ’ a2 log|x + โˆšx 2 โˆ’ a2 | 2I = xโˆšx 2 โˆ’ a2 โˆ’ a2 log|x + โˆšx 2 โˆ’ a2 | x a2 ๏œ I= โˆšx 2 โˆ’ a2 โˆ’ log|x + โˆšx 2 โˆ’ a2 | + c 2 2 24 Join Telegram ;- @NOTESPROVIDER12TH_BOARD ๐ฑ ๐š๐Ÿ Theorem: โˆซ โˆš๐ฑ๐Ÿ + ๐š๐Ÿ ๐’…๐’™ = โˆš๐ฑ๐Ÿ + ๐š๐Ÿ + ๐Ÿ ๐Ÿ ๐ฅ๐จ๐ |๐’™ + โˆš๐ฑ + ๐š | + ๐œ ๐Ÿ ๐Ÿ Proof: Let I = ๏ƒฒ โˆšx 2 + a2 โˆ™ 1dx d(โˆšx2 +a2 ) = โˆšx 2 + a2 ๏ƒฒ 1 dx โˆ’ ๏ƒฒ [ โˆ™ โˆซ 1dx] dx dx 1 = โˆšx 2 + a2 x โˆ’ โˆซ (2x)(x)dx 2โˆšx2 +a2 x2 = โˆšx 2 + a2 x โˆ’ โˆซ dx โˆšx2 +a2 x2 +a2 โˆ’a2 = โˆšx 2 + a2 x โˆ’ โˆซ dx โˆšx2 โˆ’a2 x2 +a2 a2 = โˆšx 2 + a2 x โˆ’ โˆซ [ โˆ’ ] dx โˆšx2 +a 2 โˆšx2 +a2 1 = โˆšx 2 + a2 x โˆ’ โˆซ โˆšx 2 + a2 dx + a2 ๏ƒฒ dx โˆšx2 +a2 I = x โˆšx 2 + a2 โˆ’ I + a2 log|x + โˆšx 2 + a2 | I + I = xโˆšx 2 + a2 Join + aTelegram:- 2 โˆšx 2 + a2 | log|x +@NOTESPROVIDER12TH_BOARD 2I = xโˆšx 2 + a2 + a2 log|x + โˆšx 2 + a2 | x a2 ๏œI= โˆšx 2 + a2 + log|x + โˆšx 2 + a2 | + c 2 2 Theorem: โˆซ ๐’†๐’™ โˆ™ [๐’‡(๐’™) + ๐’‡โ€ฒ (๐’™)]๐’…๐’™ = ๐’†๐’™ ๐’‡(๐’™) + ๐’„ Proof: Consider, d (ex โˆ™ f(x) + c) = ex โˆ™ f โ€ฒ (x) + ex โˆ™ f(x) dx d (ex โˆ™ f(x) + c) = ex โˆ™ [f(x) + f โ€ฒ (x) ] dx โˆดBy definition of integral โˆซ ex โˆ™ [f(x) + f โ€ฒ (x)]dx = ex โˆ™ f(x) + c 25 Join Telegram ;- @NOTESPROVIDER12TH_BOARD ๐š ๐› ๐š Property I: โˆซ๐š ๐Ÿ(๐ฑ)๐๐ฑ = ๐ŸŽ Property II:โˆซ๐š ๐Ÿ(๐ฑ)๐๐ฑ = โˆ’ โˆซ๐› ๐Ÿ(๐ฑ)๐๐ฑ Proof: Let โˆซ f(x)dx = g(x) + c Proof: If โˆซ f(x)dx = g(x) + c a b โˆด โˆซa f(x) dx = [g(x) + c]aa โˆด โˆซa f(x)dx = g(b) โˆ’ g(a) = [ g(a) โˆ’ g(a)] = โˆ’[g(a) โˆ’ g(b)] a =0 = โˆ’ โˆซb f(x)dx b a Thus โˆซa f(x)dx = โˆ’ โˆซb f(x)dx ๐› ๐› Property III: โˆซ๐š ๐Ÿ(๐ฑ)๐๐ฑ = โˆซ๐š ๐Ÿ(๐ญ)๐๐ญ Property IV: ๐› ๐œ ๐› Proof: Let โˆซ f(x)dx = g(x) + c โˆซ๐š ๐Ÿ(๐ฑ)๐๐ฑ = โˆซ๐š ๐Ÿ(๐ฑ)๐๐ฑ + โˆซ๐œ ๐Ÿ(๐ฑ)๐๐ฑ b Join Telegram:- @NOTESPROVIDER12TH_BOARD โˆซ f(x)dx = g(b) โˆ’ g(a) Where ๐š < ๐œ < ๐› i.e. ๐œ โˆˆ [๐š, ๐›] a = [(g(b) + c) โˆ’ ( g(a) + c] Proof: Let โˆซ f(x)dx = g(x) + c c b โˆซa f(x)dx + โˆซc f(x)dx = [g(x) + c]ca + [g(x) + c]bc = g(b) โˆ’ g(a) --- (i) b = [(g(c) + c) โˆ’ (g(a) + c)] + โˆซ f(t)dt = [g(t) + c]ba [(g(b) + c) โˆ’ (g(c) + c)] a = [(g(b) + c) โˆ’ ( g(a) + c] = g(c) + c โˆ’ g(a) โˆ’ c + g(b) + c โˆ’ g(c) โˆ’ c = g(b) โˆ’ g(a) --- (ii) = g(b) โˆ’ g(a) From (i) and (ii) = [g(x) + c]ba b b b โˆซa f(x)dx = โˆซa f(t)dt = โˆซa f(x)dx b c b Thusโˆซa f(x)dx = โˆซa f(x)dx + โˆซc f(x)dx where a < c < b 26 Join Telegram ;- @NOTESPROVIDER12TH_BOARD ๐› ๐› Property V: โˆซ๐š ๐Ÿ(๐ฑ) ๐๐ฑ = โˆซ๐š ๐Ÿ(๐š + ๐› โˆ’ ๐ฑ) ๐๐ฑ Proof: Let โˆซ f(x) dx = g(x) + c Consider b R. H. S. = โˆซa f(a + b โˆ’ x) dx Put a + b โˆ’ x = t i.e. x = a + b โˆ’ t โˆด โˆ’dx = dt โŸน dx = โˆ’dt When x = a โŸน t = b When x = b โŸน t = a a โˆด R. H. S. = โˆซb f(t) (โˆ’dt) a = โˆ’ โˆซb f(t) dt b b a = โˆซa f(t) dt - - - - - - - (โˆต โˆซa f(x) dx = โˆ’ โˆซb f(x)dx) Join Telegram:- @NOTESPROVIDER12TH_BOARD b b b = โˆซa f(x) dx - - - - - - - (โˆต โˆซa f(x) dx = โˆซa f(t)dt) = L. H. S. b b Thus, โˆซa f(x) dx = โˆซa f(a + b โˆ’ x) dx ๐š ๐š Property VI: โˆซ๐ŸŽ ๐Ÿ(๐ฑ) ๐๐ฑ = โˆซ๐ŸŽ ๐Ÿ(๐š โˆ’ ๐ฑ) ๐๐ฑ Proof: Let โˆซ f(x) dx = g(x) + c Consider, a R. H. S. = โˆซ0 f(a โˆ’ x) dx Put a โˆ’ x = t i.e. x = a โˆ’ t โˆด โˆ’dx = dt โŸน dx = โˆ’dt When x = 0 โŸน t = a 27 Join Telegram ;- @NOTESPROVIDER12TH_BOARD When x = a โŸน t = 0 0 โˆด R. H. S. = โˆซa f(t) (โˆ’dt) 0 = โˆ’ โˆซa f(t) dt a b a = โˆซ0 f(t) dt - - - - - - - (โˆต โˆซa f(x) dx = โˆ’ โˆซb f(x)dx) a b b = โˆซ0 f(x) dx - - - - - - - (โˆต โˆซa f(x) dx = โˆซa f(t)dt) = L. H. S. a a Thus, โˆซ0 f(x) dx = โˆซ0 f(a โˆ’ x) dx ๐Ÿ๐š ๐š ๐š Property VII: โˆซ๐ŸŽ ๐Ÿ(๐ฑ) ๐๐ฑ = โˆซ๐ŸŽ ๐Ÿ(๐ฑ) ๐๐ฑ + โˆซ๐ŸŽ ๐Ÿ(๐Ÿ๐š โˆ’ ๐ฑ) ๐๐ฑ Proof: Consider a a R. H. S. = โˆซ0 f(x) dx + โˆซ0 f(2a โˆ’ x) dx R. H. S. = I1 + I2 -Join - - -Telegram:- - - - - - -@NOTESPROVIDER12TH_BOARD - - - - - - -- - - - - - - - (i) a Consider I2 = โˆซ0 f(2a โˆ’ x) dx Put 2a โˆ’ x = t i.e. x = 2a โˆ’ t โˆด โˆ’dx = dt โŸน dx = โˆ’dt When x = 0 โŸน t = 2a When x = a โŸน t = a a โˆด I2 = โˆซ2a f(t) (โˆ’dt) a โˆด I2 = โˆ’ โˆซ2a f(t) dt 2a b a = โˆซa f(t) dt - - - - - - - (โˆต โˆซa f(x) dx = โˆ’ โˆซb f(x)dx) 2a b b = โˆซa f(x) dx - - - - - - - (โˆต โˆซa f(x) dx = โˆซa f(t)dt) From equation (i) 28 a a a Join 2a Telegram ;- @NOTESPROVIDER12TH_BOARD โˆซ f(x) dx + โˆซ f(2a โˆ’ x) dx = โˆซ f(x) dx + โˆซ f(x) dx 0 0 0 a 2a b c b = โˆซ0 f(x) dx ------ By โˆซa f(x)dx = โˆซa f(x)dx + โˆซc f(x)dx 2a a a Thus, โˆซ0 f(x) dx = โˆซ0 f(x) dx + โˆซ0 f(2a โˆ’ x) dx ๐š ๐š Property VIII: โˆซโˆ’๐š ๐Ÿ(๐ฑ) ๐๐ฑ = ๐Ÿ โˆซ๐ŸŽ ๐Ÿ(๐ฑ) ๐๐ฑ , if ๐Ÿ(๐ฑ) is even function. =๐ŸŽ , if ๐Ÿ(๐ฑ) is odd function. Proof: f(x) even function if f(โˆ’x) = f(x) And f(x) odd function if f(โˆ’x) = โˆ’f(x) a 0 a โˆซโˆ’a f(x) dx = โˆซโˆ’a f(x) dx + โˆซ0 f(x) dx - - - - - - - - - - - - - - - (i) 0 Consider, I = โˆซโˆ’a f(x) dx Put x = โˆ’t โˆด dx = โˆ’dt Join Telegram:- @NOTESPROVIDER12TH_BOARD When x = โˆ’a โŸน t = a When x = 0 โŸน t = 0 0 I = โˆซa f(โˆ’t)(โˆ’dt) 0 = โˆ’ โˆซa f(โˆ’t)dt a b a = โˆซ0 f(โˆ’t) dt - - - - - - (โˆซa f(x) dx = โˆ’ โˆซb f(x) dx) a b b = โˆซ0 f(โˆ’x) dx - - - - - - (โˆซa f(x) dx = โˆซa f(t) dt) Equation (i) becomes a a a โˆซโˆ’a f(x) dx = โˆซ0 f(โˆ’x) dx + โˆซ0 f(x) dx a a โˆซโˆ’a f(x) dx = โˆซ0 [f(โˆ’x) + f(x)] dx a If f(x) is odd function then f(โˆ’x) = โˆ’f(x), hence โˆซโˆ’a f(x) = 0 29 Join Telegram ;-a@NOTESPROVIDER12TH_BOARD a If f(x) is even function then f(โˆ’x) = f(x), hence โˆซโˆ’a f(x) = 2 โˆซ0 f(x) dx Hence, a a โˆซโˆ’a f(x) dx = 2 โˆซ0 f(x) dx , if f(x) is even function. =0 , if f(x) is odd function. Join Telegram:- @NOTESPROVIDER12TH_BOARD 30

Use Quizgecko on...
Browser
Browser