Probability Theory Formula Sheet PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document is a formula sheet covering probability theory. It includes equations for various concepts such as total probability rule, Bayes' rule, expectation, variance, covariance, correlation, and distributions like binomial, Poisson and normal.
Full Transcript
Probability Theory. P( A B) = P ( A) + P ( B) P( A B ), P( A B ) = P ( A B )P ( B ) = P ( B A )P ( A ) The Total Probability Rule...
Probability Theory. P( A B) = P ( A) + P ( B) P( A B ), P( A B ) = P ( A B )P ( B ) = P ( B A )P ( A ) The Total Probability Rule Bayes’ Rule P ( A E j )P ( E j ) P ( A) = P ( A E1 ) + P ( A E2 ) + + P( A En ) P ( Ej A) = n P ( A Ei )P ( Ei ) i =1 E ( X ) = E ( X E)P ( E) + E ( X EC )P ( EC ) = E ( X E1 )P ( E1 ) + E ( X E2 )P ( E2 ) + + E ( X En )P ( En ) n n E(X) = Xi P ( Xi ) E (Y ) = E ( g( X )) = g ( Xi ) P ( Xi ) i =1 i =1 ⇣ ⌘ n Var ( X ) = E ( X E ( X ))2 = ( Xi E ( X ))2 P ( Xi ) Cov( X, Y ) = sX,Y = E ([ X E ( X )][Y E (Y )]) i =1 Cov( X,Y ) s r( X, Y ) = r X,Y = = sXX,Y sY s 2 ( X ) s 2 (Y ) E ( aX + bY ) = aE ( X ) + bE (Y ), E ( aX + c) = aE ( X ) + c, s2 ( X ) = E ( X 2 ) (E ( X ))2 s2 ( aX + bY ) = a2 s2 ( X ) + b2 s2 (Y ) + 2ab Cov( X, Y ) s2 ( aX + c) = a2 s2 ( X ) If X1 , X2 ,..., Xn are independent, Cov( X, Y ) = E ( XY ) E ( X ) E (Y ) ✓ n ◆ n s 2 Xi = s 2 ( Xi ) i =1 i =1 X B(n, p) X Poisson(l) n! lk p( x ) = P ( X = x ) = (n x )!x! p x (1 p)n x P( X = k) = k! e l, k = 0, 1, 2,... a+b (b a )2 X U [ a, b],E ( X ) = 2 , Var ( X ) = 12 0, for x a 1 b a for a x b f (x) = F(x) = x a b a, for a x b 0 otherwise 1, for x b. X N (µ, s2 ) Y = eX LN (µ, s2 ) ⇣ 2 ⌘ 1 ( x µ) 1 2 f (x) = 2ps exp 2s2 , for x E (Y ) = E e X = eE(X )+ 2 Var(X ) = eµ+0.5s c2 distribution: If z1 , z2 ,.., zn are standard normal independent random variables, then kn = z21 + z22 + + z2n is c2 distributed with n degrees of freedom. kn /n F-distribution: If kn c2 (n) and km c2 (m) are independent, then km /m F (n, m). z t-distribution: If z is standard normal, kn c2 (n), z and kn are independent then kn /n has t-distribution with n degrees of freedom. n n 2 1 s ( Xi X) X= n Xi sX = s ,s n X = n , s2 = i =1 n 1 i =1 nl L 1 Nl X l Stratified Sampling: X l = nl Xil Xs = N i =1 l =1 L ⇣ ⌘2 nl Nl 1 2 1 2 s2X = N nl s l , where s2l = nl 1 Xil Xl s l =1 i =1 n n 3 1 n i =1 ( Xi X) s XY = n 1 ( Xi X )(Yi Y) Skew = (n 1)(n 2) s3 i =1 n 4 n ( n +1) i =1 ( Xi X) 3( n 1)2 Kurt E = (n 1)(n 2)(n 3) s4 (n 2)(n 3) Hypothesis Testing. ( X1 X2 ) ( µ 1 µ 2 ) (n1 1)s21 +(n2 1)s22 Equal but unknown variances t= ✓ 2 ◆ , d f = n1 + n2 2, s2p = n1 + n2 2 sp s2p n +n 1 2 2 ( X1 X2 ) ( µ 1 µ 2 ) (s21 /n1 +s22 /n2 ) Unequal and unknown variances t= ✓ 2 2 ◆ , df = s41 /n31 +s42 /n32 s 1 + s2 n 1 n 2 ( n 1) s2 Test of a single variance TS = s02 c2n 1 s21 Test to compare two variances TS = s22 F ( d f 1 , d f 2 ), d f i = n i 1, rs n 2 Correlation test TS = tn 2 1 rs2 Regression Analysis. Univariate Regression Multivariate Regression N i =1 ( yi y )( xi x) s xy 1X b̂ 1 = N 2 = s2x b̂ 0 = y b̂ 1 x b̂ = ( X X ) Y i =1 ( x i x ) 1 1 xi2 ⇥ ⇤ SE b̂ 1 = s ( x i x )2 SE b̂ 0 = s N ( x i x )2 Var b̂ = E ( b̂ b)( b̂ b) = (X X) 1X E [uu ] X ( X X ) 1 = (X X) 1X ( s2 I ) X ( X X ) 1 = s2 ( X X ) 1 N 1 û û s2 = N 2 û2i s2 = N k 1 i =1 h i ESS RSS (yi ŷi )2 2 n 1 LLF R2 = TSS =1 TSS =1 ( y i y )2 , R =1 n k 1 1 R2 , pseudo R2 = 1 LLF0 RRSS URSS n k 1 F-test TS = URSS m F (m, n k 1) 2 2 TS = R1u RR2r n mk 1 F (m, n k 1) u ( R b̂ q) ( R( X X ) 1 R ) 1 ( R b̂ q) Wald-test ms2 F (m, n k 1) n n Durbin-Watson test DW = (ûi ûi 1 )2 / û2i i =2 i =1 White test nR 2 cm 2 Breusch-Godfrey test (N r ) R2 c2r h i 2 (kurt 3)2 Jaque-Berra test W = n skew6 + 24 c22 RSS ( RSS1 + RSS2 ) n 2(k +1) Chow test TS = RSS1 + RSS2 k +1 F (k + 1, n 2( k + 1) Logit model Pi = F (zi ), zi = b 0 + b 1 X1i + + b k Xki + ui , F ( zi ) = 1 1+exp( zi ) , XPij = F (z)(1 F (z)) b j zi 2 Probit model Pi = F(zi ), zi = b 0 + b 1 X1i + + b k Xki + ui , F ( zi ) = 12p e z /2 dz, XPij = f(z) b j